Study on Chinese Farmland Ecosystem Service Value Transfer Based on Meta Analysis
Abstract
:1. Introduction
- Economic development: globalization is better than non-globalization (1 series > 2 series), but focusing on the economy does not necessarily yield better benefits than focusing on the society/environment (A2 < B2).
- The Human Development Index (HDI) is an index proposed by the United Nations Development Programme (UNDP) that includes three dimensions: human health and longevity, knowledge and education, and economic development. A2 is basically the worst scenario, with B2 slightly worse.
- Temperature rise: Focus on more economic warming (A > B), less globalization warming (1 < 2)
2. Research Method and Data Processing
2.1. Database Establishment
2.2. Selection of Independent Variables
2.3. Model Establishment
3. Results Analysis
3.1. Meta-Regression Analysis
- Value assessment method: the regression coefficient of opportunity cost approach and market evaluation approach is statistically significant. This indicates when other influential factors remain unchanged, the value estimates obtained through opportunity cost approach and market valuation approach show significant difference with that obtained through surrogate market approach. The market valuation approach is higher than other value assessment method, while the value estimated obtained through opportunity cost approach is the lowest.
- Ecosystem service type: in the six farmland ecosystem services, the regression coefficients of crops, gas regulation, soil conservation, and recreational tourism are statistically significant. This indicates when other influential factors remain unchanged, the values of crops, gas regulation, soil conservation, and recreational tourism services show significant difference with water conservation. The values of crops, gas regulation, and soil conservation are higher than other farmland ecosystem services, in which the value of soil conservation service is the highest, while the value of recreational tourism service is the lowest.
- Cultivated land type: the regression coefficient of paddy field is positive and is statistically significant at the level of 1%. This indicates when other influential factors remain unchanged, the value estimates obtained when farmland ecosystem’s cultivated land type is paddy field are evidently higher than that obtained from dry land.
- Farmland division: in the four farmland division regions, the regression coefficient of Yangtze Plain Middle and Lower is statistically significant. This indicates when other influential factors remain unchanged, the farmland ecosystem service value of Yangtze Plain Middle and Lower is obviously lower than the service value of other regions.
- Farmland area: the regression coefficient of farmland area is significantly negative. This indicates the per hectare value of farmland ecosystem has decreasing return to scale, but this effect will decrease geometrically with the increase of ecosystem area [71,72]. Taking the regression coefficient −0.181 of farmland area as an example, for a farmland ecosystem of 10 ha, if the area increases by 1%, its per hectare value will decrease by 1.81%; but for a farmland ecosystem of 1000 ha, if the area increases by 1%, its per hectare value only decreases by 0.018%. So, the total value of farmland ecosystem still increases with the increase of farmland area.
- Per capital GDP: the regression coefficient of per capital GDP variable is statistically significant, showing negative correlation. This indicates when other conditions remain unchanged, if the per capital GDP of research region becomes higher, the unit area value of farmland ecosystem will be lower, and economic growth may lead to a recession of ecosystem function. When per capital GDP increases by 10%, the unit area value will reduce by 0.9%.
3.2. Value Transfer
3.3. Value Change Assessment of China’s Farmland Ecosystem between 2010 and 2100
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Assoc. Am. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Ye, Y.Q.; Zhang, J.E.; Qin, Z.; Li, Y.M.; Li, Y. Ecological profit and loss of farmland ecosystem in Foshan. Acta Ecol. Sin. 2012, 32, 4593–4604. [Google Scholar]
- Xie, G.D.; Xiao, Y. Research progress of farmland ecosystem service and its value. Chin. J. Eco-Agric. 2013, 21, 645–651. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, L.; Zhou, Q.; Song, Y. Does China’s Yangtze River Economic Belt policy impact on local ecosystem services? Sci. Total Environ. 2019, 676, 231–241. [Google Scholar] [CrossRef]
- Sun, X.Z.; Zhou, H.L.; Xie, G.D. Service function and economic value of farmland ecosystem in China. China Popul. Resour. Environ. 2007, 19, 55–60. [Google Scholar]
- Yin, F.; Mao, R.Z.; Fu, B.J.; Liu, G.H. Farmland ecosystem service function and its formation mechanism. Chin. J. Appl. Ecol. 2006, 17, 929–934. [Google Scholar]
- Zhu, H.H.; Zhang, Y. Changes of farmland ecosystem service value in Xinjiang and its influential factor analysis. J. Shihezi Univ. (Nat. Sci.) 2020, 38, 340–346. [Google Scholar]
- Yuan, Y.; Liu, J.T.; Jin, Z.Z. Comprehensive evaluation on positive and negative effect of farmland ecosystem service function in Luancheng county. Chin. J. Ecol. 2011, 30, 2809–2814. [Google Scholar]
- Zhou, Z.M.; Zhang, L.P.; Cao, W.D.; Huang, Y.F. Assessment on ecosystem service function value of winter green manure-spring maize farmland. Ecol. Environ. Sci. 2016, 25, 597–604. [Google Scholar]
- Sheng, J.; Chen, L.G.; Zhu, P.P. Assessment on ecosystem service function value of paddy-wheat rotation farmland. Chin. J. Eco-Agric. 2008, 16, 1541–1545. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.J.; Zhou, D.M.; Zhang, Y.R. Study of China’s lacustrine wetland ecosystem service value transfer based on Meta-analysis. Acta Ecol. Sin. 2015, 35, 5507–5517. [Google Scholar]
- Xue, B.L.; Zhang, L.F.; Zhang, T.L.; Sun, W.C.; Li, Z.J. Paddy field ecosystem service value assessment—Take Hunan province as an example. China Rural Water Hydropower 2020, 45, 52–57. [Google Scholar]
- Tang, H.; Zheng, Y.; Chen, F.; Yang, L.G.; Zhang, H.L.; Kong, Q.X. Assessment on ecosystem service value of different farmland types and cropping patterns in Beijing region. Ecol. Econ. 2008, 24, 56–59. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement to ecosystem service value method based on equivalent value factor per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Rao, L.Y.; Zhu, J.Z. Preliminary evaluation on ecosystem service function value of Simianshan forest in Chongqing. J. Soil Water Conserv. 2003, 17, 5–6. [Google Scholar]
- Xiao, H.; Ouyang, Z.Y.; Zhao, J.Z.; Wang, X.K. Initial exploration of forest ecosystem service function and its ecological economic value assessment—Take Jianfengling tropical forests in Hainan Island as an example. Chin. J. Appl. Ecol. 2000, 11, 481–484. [Google Scholar]
- Xue, D.Y.; Bao, H.; Li, W.H. Assessment on indirect economic value of forest ecosystem in Changbaishan Nature Reserve. China Environ. Sci. 1999, 6, 247–252. [Google Scholar]
- Wu, L.L.; Lu, J.J.; Tong, C.F.; Liu, C.Q. Assessment on ecosystem service function value of wetland in Yangtze Estuary. Resour. Environ. Yangtze Basin 2003, 12, 411–416. [Google Scholar]
- Wang, S.B.; Wang, P.J.; Hu, Z.Y.; Wang, X.R. Assessment on ecosystem landscape service value by contingent valuation method—Take Suzhou Creek in Shanghai as an example. J. Fudan Univ. (Nat. Sci.) 2003, 42, 463–467. [Google Scholar]
- Zhang, Z.Q.; Xu, Z.M.; Cheng, G.D.; Su, Z.Y. Contingent valuation on ecosystem service recovery of Zhangye region in Heihe River Basin. Acta Ecol. Sin. 2002, 22, 885–893. [Google Scholar]
- Lu, C.X.; Xie, G.D.; Cheng, S.K. Recreational entertainment function of river ecosystem and its value assessment. Resour. Sci. 2001, 23, 77–81. [Google Scholar]
- Zhao, R.Q.; Huang, A.M.; Qin, M.Z.; Yang, H. Study on farmland ecosystem service function and evaluation method. Syst. Sci. Compr. Stud. Agric. 2003, 19, 267–270. [Google Scholar]
- Zhang, D.; Li, X.S.; Chen, Y.H. Evaluation on farmland ecosystem service value classification in Huailai county. Res. Soil Water Conserv. 2016, 23, 234–239. [Google Scholar]
- Zhang, H.F.; Ouyang, Z.Y.; Zheng, H.; Xiao, Y. Assessment on farmland ecosystem service function value in Manas River Basin. Chin. J. Eco-Agric. 2009, 17, 1259–1264. [Google Scholar] [CrossRef]
- Moeltner, K.; Boyle, K.J.; Paterson, R.W. Meta-analysis and benefit transfer for resource valuation-addressing classical challenges with Bayesian modeling. J. Environ. Econ. Manag. 2007, 53, 250–269. [Google Scholar] [CrossRef]
- Bergstrom, J.C.; Taylor, L.O. Using meta-analysis for benefits transfer: Theory and practice. Ecol. Econ. 2006, 60, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.J.; Zeng, H. Assessment of forest ecosystem service value in China based on Meta-analysis. Acta Ecol. Sin. 2021, 41, 5533–5545. [Google Scholar]
- Miguel, M.F.; Butterfield, H.S.; Lortie, C.J. A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. PEERJ 2020, 8, e10428. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.B.; Han, X.L.; Li, M.Y. Land use changes and ecosystem service value transfer of Changbai Mountain region based on Meta-analysis. Res. Soil Water Conserv. 2020, 27, 293–300. [Google Scholar]
- Ivezic, V.; Yu, Y.; van der Werf, W. Crop Yields in European Agroforestry Systems: A Meta-Analysis. Front. Sustain. Food Syst. 2021, 5, 193. [Google Scholar] [CrossRef]
- Li, Q.B. Assessment on Ecological Protection Value of Wetland in Sanjiang Plain Based on Benefit Transfer Method. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Raskin, P.D. Global Scenarios: Background Review for the Millennium Ecosystem Assessment. Ecosystems 2005, 8, 133–142. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Value assessment for ecological assets in Qinghai-Tibet Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Salem, M.E.; Mercer, D.E. The Economic Value of Mangroves: A Meta-Analysis. Sustainability 2012, 4, 359–383. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Zhao, G.S.; Wen, Y.F.; Yu, F.W. Research progress, problem and trend of ecosystem service function value calculation. Ecol. Econ. 2008, 18, 100–103. [Google Scholar]
- Chen, R.; Hu, X.Q. Applied research of farmland ecological value in new urban governance—Based on experience of Chongqing region. Rural Econ. Sci. 2020, 31, 10–14. [Google Scholar]
- Zhou, R.J.; Wu, S.B.; Pi, X.P. Environmental value assessment of positive externality of agricultural production and its promotion study—Take Hunan province as example. Res. Agric. Mod. 2017, 38, 383–388. [Google Scholar]
- Li, S.N. Study of Farmland Ecosystem Service Value Calculation in Qianxi County. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Chen, Z.Z.; Zhang, Y.Q.; Wu, B.; Li, Z.P.; Geng, X.G.; Feng, J.Y.; Tian, S.Y.; Lei, N. Ecosystem service function value calculation of agricultural shelter forest in Shandong province. Chin. J. Ecol. 2012, 31, 59–65. [Google Scholar]
- Li, S.; Ren, X.X. Farmland ecosystem service value assessment in Shanxi province. Sci. Technol. Qinghai Agric. For. 2019, 49, 54–59. [Google Scholar]
- Zhu, Y.W.; Sang, B.Y.; Wang, Y.H.; Liu, K.; Chen, Q.M.; Chu, F.F. Calculation of farmland shelter forest’s wind prevention and sand fixation service function in Xinjiang. Chin. Agric. Sci. Bull. 2015, 31, 7–12. [Google Scholar]
- Kong, F.J.; Chen, Y.C.; Chen, Q.H.; Mou, Q.J.; Yan, J.Z. Spatial-temporal change characteristics of farmland ecological service value in Chongqing and its driving factor analysis. Chin. J. Eco-Agric. 2019, 27, 1637–1648. [Google Scholar]
- Wang, J.; Li, Q.Y.; Guan, X. Value assessment of farmland ecosystem service function in Jinshi city in Changde. Hunan Agric. Sci. 2013, 42, 76–78. [Google Scholar]
- Miao, J.Q.; Yang, W.T.; Yang, B.J.; Ma, Y.Q.; Huang, G.Q. Ecosystem service function and value assessment of the Hakkas terrace region in Chongyi county. J. Nat. Resour. 2016, 31, 1817–1831. [Google Scholar]
- Zhang, W.W.; Li, J.; Liu, Y.X. Assessment on farmland ecosystem service value in Guanzhong-Tianshui Economic Zone. Agric. Res. Arid Areas 2012, 30, 201–205. [Google Scholar]
- Sun, Y.Q.; Qiu, Z.Q.; Huo, H.C.; Yin, R.X.; Wen, Z.Z. Assessment on farmland ecosystem economic value of Guanshanhu District in Guiyang city. Guizhou Agric. Sci. 2019, 47, 155–158. [Google Scholar]
- Liu, X.D.; Zhao, Z.B.; Li, K.G. Study on farmland ecosystem service function value calculation of Beidaihe District in Hebei Province. J. Agric. Resour. Environ. 2017, 34, 390–396. [Google Scholar]
- Li, L.W.; Zhang, Y.; Min, G.F. Assessment on ecological benefits value of farmland shelter-belt in Henan Province. For. Resour. Manag. 2005, 34, 38–40. [Google Scholar]
- Lei, N.; Zhang, Y.Q.; Wu, B.; Li, Z.P.; Feng, J.Y.; Chen, Z.Z. Agricultural shelter forest ecosystem service function value accounting in Henan Province. Bull. Soil Water Conserv. 2012, 32, 97–102. [Google Scholar]
- Feng, W.; Zhang, H.N.; Sun, X.S.; Yue, Z.L. Assessment on comprehensive service function value of different crops in Heilonggang region. Ecol. Econ. 2017, 33, 146–150. [Google Scholar]
- Wang, X.X. Study of Oilseed Rape-Paddy Rotation Farmland Ecosystem Service Value in Hunan. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2016. [Google Scholar]
- Wang, K.L.; Huang, G.Q.; Luo, Q.X.; Li, Z.Z. Assessment on ecosystem service value of paddy field multiple cropping system in hilly area of south Yangtze basin. Acta Agric. Jiangxi 2010, 22, 157–160. [Google Scholar]
- Jiang, Z. Study on Economic Value Assessment of Paddy Field Ecosystem Service Function in Jingzhou City. Ph.D. Thesis, Yangtze University, Jingzhou, China, 2016. [Google Scholar]
- Wang, M.; Zhang, J.; Gao, D.P.; Zhai, Y.L. Agricultural shelter forest ecosystem service function value accounting in Liaoning province. J. Northeast For. Univ. 2014, 42, 86–89. [Google Scholar]
- Zhuang, S.H.; Chu, Y.; Bian, F.H.; Wang, Z.Q. Assessment of farmland ecosystem service function value in costal zone of Miaodao Archipelago. J. Yantai Univ. (Nat. Sci. Eng. Ed.) 2008, 21, 273–280. [Google Scholar]
- Li, F.Y.; Wu, F.W. Assessment of farmland ecosystem service function value in Shanghai suburbs. Shanghai Rural Econ. 2006, 13, 22–25. [Google Scholar]
- Wang, X.Y.; Tashpolat, T.; Zhang, F. Changes in farmland ecosystem service value in Ebinur Lake basin and the regression analysis of its impact factors—Take Jinghe county as an example. China Rural Water Hydropower 2016, 41, 103–107. [Google Scholar]
- Nelson, J.P.; Kennedy, P.E. The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment. Environ. Resour. Econ. 2009, 42, 345–377. [Google Scholar] [CrossRef]
- Sundt, S.; Rehdanz, K. Consumers’ willingness to pay for green electricity: A meta-analysis of the literature. Energy Econ. 2015, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chaikumbung, M.; Doucouliagos, H.; Scarborough, H. The economic value of wetlands in developing countries: A meta-regression analysis. Ecol. Econ. 2016, 124, 164–174. [Google Scholar] [CrossRef]
- Kochi, I.; Hubbell, B.; Kramer, R. An Empirical Bayes Approach to Combining and Comparing Estimates of the Value of a Statistical Life for Environmental Policy Analysis. Environ. Resour. Econ. 2006, 34, 385–406. [Google Scholar] [CrossRef] [Green Version]
- Johnston, R.J.; Besedin, E.Y.; Iovanna, R.; Miller, C.J.; Wardwell, R.F.; Ranson, M.H. Systematic Variation in Willingness to Pay for Aquatic Resource Improvements and Implications for Benefit Transfer: A Meta-Analysis. Can. J. Agric. Econ. 2005, 53, 221–248. [Google Scholar] [CrossRef]
- Ghermandi, A.; Bergh, J.V.D.; Brander, L.; de Groot, H.L.; Nunes, P.A.L.D. Values of natural and human-made wetlands: A meta-analysis. Water Resour. Res. 2010, 46, W12516. [Google Scholar] [CrossRef]
- Chen, Q. Advanced Econometrics and Stata Application; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Brander, L.M.; Wagtendonk, A.J.; Hussain, S.; McVittie, A.; Verburg, P.H.; de Groot, R.S.; van der Ploeg, S. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 2012, 1, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Song, X.Y.; Kang, W.H.; Deng, X.H.; Hu, X.Q.; Shi, P.J.; Liu, Y.Q. InVEST model based watershed ecological compensation standards under different perspectives—Take Gansu section of Weihe River as an example. Acta Ecol. Sin. 2018, 38, 2512–2522. [Google Scholar]
- Dobbs, T.L.; Pretty, J. Case study of agri-environmental payments: The United Kingdom. Ecol. Econ. 2008, 65, 765–775. [Google Scholar] [CrossRef]
- Brander, L.; Florax, R.J.G.M.; Vermaat, J. The Empirics of Wetland Valuation: A Comprehensive Summary and a Meta-Analysis of the Literature. Environ. Resour. Econ. 2006, 33, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Woodward, R.T.; Wui, Y.-S. The economic value of wetland services: A meta-analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Brander, L.M.; van Beukering, P.; Cesar, H.S. The recreational value of coral reefs: A meta-analysis. Ecol. Econ. 2007, 63, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Letourneau, A.; Verburg, P.H.; Stehfest, E. A land-use systems approach to represent land-use dynamics at continental and global scales. Environ. Model. Softw. 2012, 33, 61–79. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef]
Variable Names | Variable Description | Mean | SD | N |
---|---|---|---|---|
Dependent variable | ||||
Farmland value | Annual value per hectare in 2015 CNY¥ in logarithmic form | 10.770 | 1.101 | 70 |
Independent variables | ||||
Value evaluation approach | ||||
Surrogate market approach | Baseline category b | 0.143 | 0.352 | 10 |
Opportunity cost approach | If the opportunity cost approach is used for assessment, the value is set as 1, otherwise as 0 | 0.443 | 0.500 | 31 |
Carbon tax approach | If the carbon tax approach is used for assessment, the value is set as 1, otherwise as 0 | 0.143 | 0.352 | 10 |
Shadow project approach | If the shadow project approach is used for assessment, the value is set as 1, otherwise as 0 | 0.457 | 0.502 | 32 |
Market valuation approach | If the market valuation approach is used for assessment, the value is set as 1, otherwise as 0 | 0.529 | 0.503 | 37 |
Farmland ecosystem services | ||||
Water conservation | Baseline category b | 0.500 | 0.504 | 35 |
Crops | If the ecosystem service type is crops, the value is set as 1, otherwise as 0 | 0.786 | 0.413 | 55 |
Gas regulation | If the ecosystem service type is gas regulation, the value is set as 1, otherwise as 0 | 0.600 | 0.493 | 42 |
Soil conservation | If the ecosystem service type is soil conservation, the value is set as 1, otherwise as 0 | 0.457 | 0.502 | 32 |
Recreational tourism | If the ecosystem service type is recreational tourism, the value is set as 1, otherwise as 0 | 0.257 | 0.440 | 18 |
Soil nutrient circulation | If the ecosystem service type is soil nutrient circulation, the value is set as 1, otherwise as 0 | 0.414 | 0.496 | 29 |
Dry land | Baseline category b | 0.643 | 0.483 | 45 |
Paddy field | If the cultivated land type is paddy field, the value is set as 1, otherwise as 0 | 0.371 | 0.487 | 26 |
Non-major crops producing region | Baseline category b | 0.700 | 0.462 | 49 |
Northeast region | If the crops’ geographic region is northeast region, the value is set as 1, otherwise as 0 | 0.043 | 0.204 | 3 |
Huanghai-Huaihai-Haihe region | If the crops’ geographic region is Huanghai-Huaihai-Haihe region, the value is set as 1, otherwise as 0 | 0.257 | 0.440 | 18 |
Yangtze Plain, Middle and Lower | If the crops’ geographic region is Yangtze Plain, Middle and Lower, the value is set as 1, otherwise as 0 | 0.057 | 0.234 | 4 |
Farmland size | Area of Farmland site in logarithmic form | 12.599 | 2.256 | 70 |
Number of beneficiaries | Numerical variables in logarithmic form | 15.476 | 2.485 | 70 |
GDP per capita c | GDP per capita in logarithmic form | 9.896 | 0.961 | 70 |
Variable | Full Model | Reduced Model | |||||
---|---|---|---|---|---|---|---|
Model (A) | Model (B) | Model (C) | Model (D) | Model (E) | Model (F) | Model (G) | |
Opportunity cost approach | −0.462 (0.296) | −0.288 (0.239) | −0.559 *** (0.194) | −0.326 (0.230) | −0.465 ** (0.190) | - | - |
Carbon tax approach | −0.279 (0.318) | −0.170 (0.374) | 0.068 (0.422) | −0.208 (0.395) | 0.116 (0.358) | - | - |
Shadow project approach | 0.344 (0.294) | 0.189 (0.257) | −0.084 (0.209) | 0.262 (0.256) | −0.171 (0.184) | - | - |
Market evaluation approach | 0.870 *** (0.215) | 1.326 *** (0.262) | 0.623 *** (0.134) | 1.338 *** (0.257) | 0.627 *** (0.128) | - | - |
Crops | 0.224 (0.256) | 0.443 * (0.257) | 0.445 ** (0.168) | 0.403 * (0.227) | 0.464 *** (0.168) | 0.164 (0.348) | 0.403 * (0.225) |
Gas regulation | 0.237 (0.297) | 0.212 (0.331) | 0.490 (0.323) | 0.188 (0.336) | 0.495 * (0.284) | 0.417 (0.367) | 0.486 ** (0.189) |
Soil conservation | 0.444* (0.230) | 0.152 (0.222) | 0.872 *** (0.164) | 0.169 (0.216) | 0.923 *** (0.155) | 0.411 (0.397) | 1.577 *** (0.297) |
Recreational tourism | −0.780 *** (0.249) | −0.654 ** (0.273) | −0.989 *** (0.343) | −0.629 ** (0.246) | −1.018 *** (0.301) | −0.540 (0.391) | −0.544 ** (0.240) |
Soil nutrient circulation | 0.255 (0.253) | 0.403 (0.270) | −0.108 (0.230) | 0.409 (0.269) | −0.152 (0.209) | −0.273 (0.294) | −0.419 *** (0.142) |
Paddy field | 0.734 *** (0.240) | 0.996 *** (0.330) | 0.649 *** (0.222) | 1.013 *** (0.323) | 0.590 *** (0.199) | 0.747 * (0.444) | 0.080 (0.315) |
Northeast region | −0.222 (0.453) | −0.268 (0.685) | 0.103 (0.403) | −0.220 (0.665) | −0.073 (0.403) | −0.368 (0.855) | −0.841 * (0.493) |
Yangtze Plain, Middle and Lower | −1.056 *** (0.331) | −1.411 *** (0.360) | −1.147 *** (0.412) | −1.411 *** (0.357) | −1.141 *** (0.371) | −0.921* (0.544) | 0.321 (0.528) |
Huanghai-Huaihai-Haihe region | −0.388 (0.269) | −0.422 (0.418) | −0.189 (0.359) | −0.407 (0.422) | −0.218 (0.303) | −0.407 (0.396) | 0.080 (0.248) |
Farmland area | −0.215 ** (0.082) | −0.166 (0.104) | −0.149 *** (0.053) | −0.135 ** (0.053) | −0.181 *** (0.046) | −0.190 *** (0.067) | −0.298 *** (0.044) |
Number of beneficiaries | −0.014 (0.087) | 0.035 (0.099) | −0.034 *** (0.006) | - | - | - | - |
Per capital GDP | −0.083 (0.090) | −0.149 * (0.075) | −0.106 *** (0.034) | −0.149 * (0.074) | −0.090 ** (0.035) | −0.040 (0.125) | 0.047 (0.052) |
Constant term | 13.620 *** (1.112) | 12.420 *** (0.853) | 13.268 *** (0.357) | 12.570 *** (0.771) | 13.014 *** (0.323) | 13.129 *** (1.669) | 13.108 *** (0.640) |
Number of observations | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
R2 | 0.827 | 0.742 | 0.990 | 0.741 | 0.987 | 0.554 | 0.937 |
Adjusted R2 | 0.775 | 0.664 | 0.986 | 0.670 | 0.983 | 0.469 | 0.925 |
MAPF (%) | In-Sample MAPE | Out-of-Sample MAPE | ||
---|---|---|---|---|
|
|
|
| |
Average MAPE | 47.60 | 36.74 | 94.96 | 88.87 |
Median MAPE | 42.18 | 14.59 | 47.97 | 23.04 |
Maximum | 263.69 | 314.64 | 874.91 | 1802.72 |
Minimum | 0.72 | 0.07 | 0.84 | 0.04 |
Scenarios | Year | Area (108 ha) | Value (1012 CNY) |
---|---|---|---|
Baseline Scenario | 2010 | 1.10 | 8.86 |
A1B Scenario | 2050 | 2.29 | 14.86 |
2100 | 0.96 | 7.92 | |
A2 Scenario | 2050 | 1.93 | 13.44 |
2100 | 2.40 | 15.22 | |
B1 Scenario | 2050 | 1.50 | 11.31 |
2100 | 0.74 | 6.32 | |
B2 Scenario | 2050 | 1.76 | 12.66 |
2100 | 2.31 | 14.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Cai, B.; Luo, Y.; Li, Y.; Xie, N.; Zhang, T.; Yang, Z.; Lin, P.; Ma, J. Study on Chinese Farmland Ecosystem Service Value Transfer Based on Meta Analysis. Int. J. Environ. Res. Public Health 2023, 20, 440. https://doi.org/10.3390/ijerph20010440
Nie L, Cai B, Luo Y, Li Y, Xie N, Zhang T, Yang Z, Lin P, Ma J. Study on Chinese Farmland Ecosystem Service Value Transfer Based on Meta Analysis. International Journal of Environmental Research and Public Health. 2023; 20(1):440. https://doi.org/10.3390/ijerph20010440
Chicago/Turabian StyleNie, Liangzhen, Bifan Cai, Yixin Luo, Yue Li, Neng Xie, Tong Zhang, Zhenlin Yang, Peixin Lin, and Junshan Ma. 2023. "Study on Chinese Farmland Ecosystem Service Value Transfer Based on Meta Analysis" International Journal of Environmental Research and Public Health 20, no. 1: 440. https://doi.org/10.3390/ijerph20010440
APA StyleNie, L., Cai, B., Luo, Y., Li, Y., Xie, N., Zhang, T., Yang, Z., Lin, P., & Ma, J. (2023). Study on Chinese Farmland Ecosystem Service Value Transfer Based on Meta Analysis. International Journal of Environmental Research and Public Health, 20(1), 440. https://doi.org/10.3390/ijerph20010440