Progress of Ecological Restoration Research Based on Bibliometric Analysis
Abstract
:1. Introduction
- To provide an overview of the research and major research forces in the field of ecological restoration from 1990 to 2022 (countries/regions, institutions, publications, journals, among others).
- To analyze the popular research topics in this field and their characteristics.
- To explore potential research directions based on emerging trend analysis.
2. Materials and Methods
2.1. Method
2.2. Data and Processing
3. Results and Analysis
3.1. Analysis of the Publication Volume in the Field of Ecological Restoration
3.2. Analysis of Literature Citations in the Field of Ecological Restoration
3.2.1. Annual Citation Trend Analysis
3.2.2. Analysis of Highly Cited Articles
3.3. Main Countries/Regions Conducting Research in the Field of Ecological Restoration
3.4. Main Institutions Conducting Research in the Field of Ecological Restoration
3.5. Main Research Disciplines in the Field of Ecological Restoration
3.6. Main Journals Publishing Articles in the Field of Ecological Restoration
3.7. Hot Research Topics and Trends in the Field of Ecological Restoration
3.7.1. High-Frequency Keyword Analysis
3.7.2. Cluster Analysis and Multiple Correspondence Analysis of High-Frequency Keywords
3.7.3. Thematic Evolution Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, Y.; Lei, D.; Li, J.; Gao, L.; Mo, J.; Liu, X. Identification of crucial areas of territorial ecological restoration based on ecological security pattern: A case study of the central Yunnan urban agglomeration, China. Ecol. Indic. 2022, 143, 109318. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Hou, M.; Zhong, S.; Xi, Z.; Yao, S. Does large-scale ecological restoration threaten food security in China? A moderated mediation model. Ecol. Indic. 2022, 143, 109372. [Google Scholar] [CrossRef]
- Ming, L.; Chang, J.; Li, C.; Chen, Y.; Li, C. Spatial-Temporal Patterns of Ecosystem Services Supply-Demand and Influencing Factors: A Case Study of Resource-Based Cities in the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 16100. [Google Scholar] [CrossRef]
- Ma, S.; Wang, H.-Y.; Wang, L.-J.; Jiang, J.; Gong, J.-W.; Wu, S.; Luo, G.-Y. Evaluation and simulation of landscape evolution and its ecological effects under vegetation restoration in the northern sand prevention belt, China. Catena 2022, 218, 106555. [Google Scholar] [CrossRef]
- He, J.; Shi, X. Detection of social-ecological drivers and impact thresholds of ecological degradation and ecological restoration in the last three decades. J. Environ. Manag. 2022, 318, 115513. [Google Scholar] [CrossRef]
- Romanelli, J.P.; Fujimoto, J.T.; Ferreira, M.D.; Milanez, D.H. Assessing ecological restoration as a research topic using bibliometric indicators. Ecol. Eng. 2018, 120, 311–320. [Google Scholar] [CrossRef]
- Alves-Pinto, H.; Geldmann, J.; Jonas, H.; Maioli, V.; Balmford, A.; Ewa Latawiec, A.; Crouzeilles, R.; Strassburg, B. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 2021, 19, 115–120. [Google Scholar] [CrossRef]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a Social-Ecological Endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Jordan, W.R.; Jordan, W.R., III; Gilpin, M.E.; Aber, J.D. (Eds.) Restoration Ecology. A Synthetic Approach to Ecological Research; Cambridge University Press: Cambridge, UK, 1990; 342p, ISBN 0-521-33728-3. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, D.; Lu, C.; Xu, X.; Tang, Q. Positive effects of ecological restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China. Ecol. Eng. 2021, 159, 106087. [Google Scholar] [CrossRef]
- Nguyen, N.T.H.; Friess, D.A.; Todd, P.A.; Mazor, T.; Lovelock, C.E.; Lowe, R.; Gilmour, J.; Ming Chou, L.; Bhatia, N.; Jaafar, Z.; et al. Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning. Landsc. Urban Plan. 2022, 221, 104374. [Google Scholar] [CrossRef]
- Sun, S.; Wang, B. Study on ecological restoration technology of Yanxi River wetland in Beijing. Energy Procedia 2018, 153, 330–333. [Google Scholar] [CrossRef]
- Scholes, G.C.; Gerhard, J.I.; Grant, G.P.; Major, D.W.; Vidumsky, J.E.; Switzer, C.; Torero, J.L. Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR. Environ. Sci. Technol. 2015, 49, 14334–14342. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Wang, Z.; Zhao, Y.; Gu, Y.; Wang, Y.; Yu, J.; Xu, H. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. Sci. Total Environ. 2019, 686, 719–728. [Google Scholar] [CrossRef]
- Yurui, L.; Xuanchang, Z.; Zhi, C.; Zhengjia, L.; Zhi, L.; Yansui, L. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar] [CrossRef]
- Katopodis, C.; Aadland, L.P. Effective dam removal and river channel restoration approaches. Int. J. River Basin Manag. 2006, 4, 153–168. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, F.Y.; Wu, W.M. Collaborative establishment of urban water ecological restoration and landscape architecture. Landsc. Archit. Front. 2017, 5, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Mansourian, S. From landscape ecology to forest landscape restoration. Landsc. Ecol. 2021, 36, 2443–2452. [Google Scholar] [CrossRef]
- Berkowitz, J.F. Quantifying Functional Increases Across a Large-Scale Wetland Restoration Chronosequence. Wetlands 2019, 39, 559–573. [Google Scholar] [CrossRef] [Green Version]
- Dixon, K.; MacDonald, V.; D’Agui, H. Advances in mining restoration. Restor. Ecol. 2022, 30, e13776. [Google Scholar] [CrossRef]
- Simmons, E. Restoration of landfill sites for ecological diversity. Waste Manag. Res. 1999, 17, 511–519. [Google Scholar] [CrossRef]
- Liu, L.; Song, W.; Zhang, Y.J.; Han, Z.; Li, H.; Yang, D.Z.; Wang, Z.Y.; Huang, Q. Zoning of Ecological Restoration in the Qilian Mountain Area, China. Int. J. Environ. Res. Public Health 2021, 18, 12417. [Google Scholar] [CrossRef] [PubMed]
- Naiman, R.J. Socio-ecological complexity and the restoration of river ecosystems. Inland Waters 2013, 3, 391–410. [Google Scholar] [CrossRef]
- Tu, C.W.; Lu, Q.Q.; Zhang, Y.; Tian, J.J.; Gao, Y.R.; Liu, Y.; Yang, H.B.; Chen, L.H.; Zhang, J.; Wang, J.; et al. The soil nematode community indicates the soil ecological restoration of the Pinus massoniana plantation gap replanted with Cinnamomum longipaniculatum. Ecol. Indic. 2022, 136, 108678. [Google Scholar] [CrossRef]
- Wallace, K.J.; Clarkson, B.D.; Farnworth, B. Restoration Trajectories and Ecological Thresholds during Planted Urban Forest Successional Development. Forests 2022, 13, 199. [Google Scholar] [CrossRef]
- Toma, T.S.P.; Buisson, E. Taking cultural landscapes into account: Implications for scaling up ecological restoration. Land Use Policy 2022, 120, 106233. [Google Scholar] [CrossRef]
- Jian, Y.; Liu, Z.; Gong, J. Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management. Land Use Policy 2022, 122, 106354. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhang, J.; Guo, Y. Simultaneously tackling ecological degradation and poverty challenges: Evidence from desertified areas in northern China. Sci. Total Environ. 2022, 815, 152927. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [Google Scholar] [CrossRef]
- Yan, H.; Xue, Z.; Niu, Z. Ecological restoration policy should pay more attention to the high productivity grasslands. Ecol. Indic. 2021, 129, 107938. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Yin, L. Responses in ecosystem services to projected land cover changes on the Tibetan Plateau. Ecol. Indic. 2022, 142, 109228. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Huang, T.; Fu, B.; Tang, J.; Zhang, X.; Wu, J. Multi-scale evaluation of ecological restoration effects in the riparian zone using Landsat series images from 1980 to 2019. Ecol. Indic. 2021, 132, 108342. [Google Scholar] [CrossRef]
- Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- He, Z.; Gong, K.; Zhang, Z.; Dong, W.; Feng, H.; Yu, Q.; He, J. What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis. Agric. Water Manag. 2022, 262, 107404. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Xu, J.; Zhou, H.; Li, C.; Wang, W. Global trends and characteristics of ecological security research in the early 21st century: A literature review and bibliometric analysis. Ecol. Indic. 2022, 137, 108734. [Google Scholar] [CrossRef]
- Bao, L.; Kusadokoro, M.; Chitose, A.; Chen, C. Development of socially sustainable transport research: A bibliometric and visualization analysis. Travel Behav. Soc. 2023, 30, 60–73. [Google Scholar] [CrossRef]
- Anand, S.; Gupta, S. Provisioning ecosystem services: Multitier bibliometric analysis and visualisation. Environ. Sustain. Indic. 2020, 8, 100081. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Antrop, M. The language of landscape ecologists and planners: A comparative content analysis of concepts used in landscape ecology. Landsc. Urban Plan. 2001, 55, 163–173. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, C.; Chen, R.; Zhao, S.X. Where are the frontiers of sustainability research? An overview based on Web of Science Database in 2013–2019. Habitat Int. 2021, 116, 102419. [Google Scholar] [CrossRef]
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Fezzi, C.; Ford, D.J.; Oleson, K.L.L. The economic value of coral reefs: Climate change impacts and spatial targeting of restoration measures. Ecol. Econ. 2023, 203, 107628. [Google Scholar] [CrossRef]
- Krueck, N.C.; Tong, C.; Cox, C.; Treml, E.A.; Critchell, K.; Chollett, I.; Adhuri, D.S.; Beger, M.; Muenzel, D.; Holstein, D.; et al. Benefits of measurable population connectivity metrics for area-based marine management. Mar. Policy 2022, 144, 105210. [Google Scholar] [CrossRef]
- Butler, J.; Sharp, W.C.; Hunt, J.H.; Butler, M.J. Setting the foundation for renewal: Restoring sponge communities aids the ecological recovery of Florida Bay. Ecosphere 2021, 12, e03876. [Google Scholar] [CrossRef]
- Donaher, S.E.; Baillie, C.J.; Smith, C.S.; Zhang, Y.S.; Albright, A.; Trackenberg, S.N.; Wellman, E.H.; Woodard, N.; Gittman, R.K. Bivalve facilitation mediates seagrass recovery from physical disturbance in a temperate estuary. Ecosphere 2021, 12, e03804. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Li, J.; Cui, L.J.; Delgado-Baquerizo, M.; Wang, J.T.; Zhu, Y.N.; Wang, R.M.; Li, W.; Lei, Y.R.; Zhai, X.J.; Zhao, X.S.; et al. Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. Sci. Total Environ. 2022, 818, 151673. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Zhao, X.C.; Wang, H.Q.; Xue, Z.G. Are Existing Modeling Tools Useful to Evaluate Outcomes in Mangrove Restoration and Rehabilitation Projects? A Minireview. Forests 2022, 13, 1638. [Google Scholar] [CrossRef]
- Gourgue, O.; van Belzen, J.; Schwarz, C.; Vandenbruwaene, W.; Vanlede, J.; Belliard, J.P.; Fagherazzi, S.; Bouma, T.J.; van de Koppel, J.; Temmerman, S. Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply. Earth Surf. Dyn. 2022, 10, 531–553. [Google Scholar] [CrossRef]
- Heijden, M.V.D.; Klironomos, J.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Lin, L.T.; Jing, X.; Lucas-Borja, M.E.; Shen, C.C.; Wang, Y.G.; Feng, W.T. Rare Taxa Drive the Response of Soil Fungal Guilds to Soil Salinization in the Taklamakan Desert. Front. Microbiol. 2022, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.C.; Mou, X.M.; Zhang, J.H.; Zhang, T.G.; Xia, L.; Yin, S.L.; Wu, L.Y.; Leng, X.; An, S.Q.; Zhao, D.H. Gradual Enhancement of the Assemblage Stability of the Reed Rhizosphere Microbiome with Recovery Time. Microorganisms 2022, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.J.; Dou, Y.X.; Yang, X.; An, S.S. Soil microbial community and their functional genes during grassland restoration. J. Environ. Manag. 2023, 325, 116488. [Google Scholar] [CrossRef]
- Rapport, D.J.; Whitford, W.G. How Ecosystems Respond to Stress: Common properties of arid and aquatic systems. BioScience 1999, 49, 193–203. [Google Scholar] [CrossRef]
- Abafe, E.A.; Bahta, Y.T.; Jordaan, H. Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture. Sustainability 2022, 14, 10651. [Google Scholar] [CrossRef]
- Belaire, J.A.; Higgins, C.; Zoll, D.; Lieberknecht, K.; Bixler, R.P.; Neff, J.L.; Keitt, T.H.; Jha, S. Fine-scale monitoring and mapping of biodiversity and ecosystem services reveals multiple synergies and few tradeoffs in urban green space management. Sci. Total Environ. 2022, 849, 157801. [Google Scholar] [CrossRef]
- Zhen, L.; Ishwaran, N.; Luo, Q.; Wei, Y.; Zhang, Q. Role and significance of restoration technologies for vulnerable ecosystems in building an ecological civilization in China. Environ. Dev. 2020, 34, 100494. [Google Scholar] [CrossRef]
- Rosa, C.M.d.; Marques, M.C.M. How are biodiversity and carbon stock recovered during tropical forest restoration? Supporting the ecological paradigms and political context involved. J. Nat. Conserv. 2022, 65, 126115. [Google Scholar] [CrossRef]
- Ma, T.; Hu, Q.; Wang, C.; Lv, J.; Mi, C.; Shi, R.; Wang, X.; Yang, Y.; Wu, W. Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees. Int. J. Environ. Res. Public Health 2022, 19, 16105. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Lopez-Carr, D.; Chen, W.J. Factors Affecting Migration Intentions in Ecological Restoration Areas and Their Implications for the Sustainability of Ecological Migration Policy in Arid Northwest China. Sustainability 2014, 6, 8639–8660. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Wu, H.P.; Zhang, C.; Zeng, G.M.; Liang, J.; Guo, S.L.; Li, X.D.; Huang, L.; Lu, L.H.; Yuan, Y.J. Responses of soil microbial biomass and bacterial community structure to closed-off management (an ecological natural restoration measures): A case study of Dongting Lake wetland, middle China. J. Biosci. Bioeng. 2016, 122, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.Q.; Cao, W.; Fan, J.W.; Huang, L.; Xu, X.L. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 2017, 27, 183–204. [Google Scholar] [CrossRef]
- Renner, M.; Huntington, H.P. Connecting subsistence harvest and marine ecology: A cluster analysis of communities by fishing and hunting patterns. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 293–299. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Wu, H.-A.; Huang, F. Exploring profiles of varied types of achievement goals, emotions and digital insight problem solving through cluster analysis. Think. Ski. Creat. 2022, 46, 101170. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 2022, 134043. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Mishra, L.C.; Singh, C.K.; Kumar, M. Perspective on the heavy metal pollution and recent remediation strategies. Curr. Res. Microb. Sci. 2022, 2022, 100166. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, M.; Yan, Z.; Yang, Y.; Niklas, K.J.; Huang, H.; Donko Mipam, T.; He, X.; Hu, H.; Joseph Wright, S. Global patterns and predictors of soil microbial biomass carbon, nitrogen, and phosphorus in terrestrial ecosystems. Catena 2022, 211, 106037. [Google Scholar] [CrossRef]
- Babur, E.; Dindaroglu, T.; Danish, S.; Häggblom, M.M.; Ozlu, E.; Gozukara, G.; Uslu, O.S. Spatial responses of soil carbon stocks, total nitrogen, and microbial indices to post-wildfire in the Mediterranean red pine forest. J. Environ. Manag. 2022, 320, 115939. [Google Scholar] [CrossRef]
- Lituma, C.M.; Buckley, B.R.; Keyser, P.D.; Holcomb, E.; Smith, R.; Morgan, J.; Applegate, R.D. Effects of patch-burn grazing and rotational grazing on grassland bird abundance, species richness, and diversity in native grassland pastures of the Midsouth USA. Agric. Ecosyst. Environ. 2022, 324, 107710. [Google Scholar] [CrossRef]
- Yguel, B.; Piponiot, C.; Mirabel, A.; Dourdain, A.; Hérault, B.; Gourlet-Fleury, S.; Forget, P.-M.; Fontaine, C. Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest. For. Ecol. Manag. 2019, 433, 528–534. [Google Scholar] [CrossRef]
- Tao, Q.; Gao, G.; Xi, H.; Wang, F.; Cheng, X.; Ou, W.; Tao, Y. An integrated evaluation framework for multiscale ecological protection and restoration based on multi-scenario trade-offs of ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2022, 140, 108962. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q.; Ning, J.; Liu, S.; Zhang, X.; Zhang, T. The assessment of ecological restoration effects on Beijing-Tianjin Sandstorm Source Control Project area during 2000–2019. Ecol. Eng. 2023, 186, 106831. [Google Scholar] [CrossRef]
- Duan, T.; Feng, J.; Chang, X.; Li, Y. Evaluation of the effectiveness and effects of long-term ecological restoration on watershed water quality dynamics in two eutrophic river catchments in Lake Chaohu Basin, China. Ecol. Indic. 2022, 145, 109592. [Google Scholar] [CrossRef]
- Yadav, V.S.; Yadav, S.S.; Gupta, S.R.; Meena, R.S.; Lal, R.; Sheoran, N.S.; Jhariya, M.K. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol. Eng. 2022, 176, 106541. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, D.; Cao, Y.; Zhang, L.; Peng, H.; Wang, K.; Xie, H.; Wang, C. An integrated remote sensing and model approach for assessing forest carbon fluxes in China. Sci. Total Environ. 2022, 811, 152480. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Kleine, M.; Mansourian, S.; Parrotta, J.; Madsen, P.; Kant, P.; Burns, J.; Bolte, A. Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann. For. Sci. 2019, 76, 50. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Mansourian, S. Forest landscape restoration: State of play. R. Soc. Open Sci. 2020, 7, 201218. [Google Scholar] [CrossRef]
- Song, L.; Qian, J.; Zhang, F.; Kong, X.; Li, H.; Luan, S.; Zhang, Q.; Kang, Z.; Han, Z.; Zhang, Z. An ecological remediation model combining optimal substrate amelioration and native hyperaccumulator colonization in non-ferrous metal tailings pond. J. Environ. Manag. 2022, 322, 116141. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G. Urban watershed ecosystem health assessment and ecological management zoning based on landscape pattern and SWMM simulation: A case study of Yangmei River Basin. Environ. Impact Assess. Rev. 2022, 95, 106794. [Google Scholar] [CrossRef]
- Lin, Q.; Song, Y.; Zhang, Y.; Hao, J.L.; Wu, Z. Strategies for Restoring and Managing Ecological Corridors of Freshwater Ecosystem. Int. J. Environ. Res. Public Health 2022, 19, 15921. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Wang, L.; Xie, H.; Zhang, X.; Zhang, Y. Evolutionary overview of water resource management (1990–2019) based on a bibliometric analysis in Web of Science. Ecol. Inform. 2021, 61, 101218. [Google Scholar] [CrossRef]
- Lin, T.; Wu, D.; Yang, M.; Ma, P.; Liu, Y.; Liu, F.; Gan, Z. Evolution and Simulation of Terrestrial Ecosystem Carbon Storage and Sustainability Assessment in Karst Areas: A Case Study of Guizhou Province. Int. J. Environ. Res. Public Health 2022, 19, 16219. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef]
- Zhang, G.; Higham, J.E.S.; Albrecht, J.N. Ecological restoration in Aotearoa New Zealand: Contrasting tourist conservation narratives. Tour. Manag. Perspect. 2021, 37, 100761. [Google Scholar] [CrossRef]
- Singh, K.; Byun, C.; Bux, F. Ecological restoration of degraded ecosystems in India: Science and practices. Ecol. Eng. 2022, 182, 106708. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef]
- McCook, L.J. Understanding Ecological Community Succession—Causal-Models and theories, a review. Vegetatio 1994, 110, 115–147. [Google Scholar] [CrossRef]
- Corbin, J.D.; D’Antonio, C.M. Can Carbon Addition Increase Competitiveness of Native Grasses? A Case Study from California. Restor. Ecol. 2004, 12, 36–43. [Google Scholar] [CrossRef]
- Kemenade, I.V.; Anderson, W.A.; Scharer, J.M.; Moo-young, M. Chemical Pre-Oxidation for Enhancing Bioremediation of Contaminated Soils. ChemInform 2010, 27, 125–131. [Google Scholar] [CrossRef]
- Luo, S.; Png, G.K.; Ostle, N.J.; Zhou, H.; Hou, X.; Luo, C.; Quinton, J.N.; Schaffner, U.; Sweeney, C.; Wang, D.; et al. Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biol. Biochem. 2023, 176, 108865. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, Y.; Zhang, J.; Hu, X.; Huang, J.; Chang, C.-P.; Guo, Y. Relationship between forest resources and economic growth: Empirical evidence from China. J. Clean. Prod. 2019, 214, 848–859. [Google Scholar] [CrossRef]
- Guan, Y.J.; Kang, R.P.; Liu, J.G. Evolution of the field of ecological restoration over the last three decades: A bibliometric analysis. Restor. Ecol. 2019, 27, 647–660. [Google Scholar] [CrossRef]
- Mohr, J.J.; Metcalf, E.C. The business perspective in ecological restoration: Issues and challenges. Restor. Ecol. 2018, 26, 381–390. [Google Scholar] [CrossRef]
- Baker, S.C.; Eckerberg, K. A policy analysis perspective on ecological restoration. Ecol. Soc. 2013, 18, 17. [Google Scholar] [CrossRef]
- Alba-Patino, D.; Carabassa, V.; Castro, H.; Gutierrez-Briceno, I.; Garcia-Llorente, M.; Giagnocavo, C.; Gomez-Tenorio, M.; Cabello, J.; Aznar-Sanchez, J.A.; Castro, A.J. Social indicators of ecosystem restoration for enhancing human wellbeing. Resour. Conserv. Recycl. 2021, 174, 105782. [Google Scholar] [CrossRef]
- Yuan, M.; Ouyang, J.Y.; Zheng, S.N.; Tian, Y.; Sun, R.; Bao, R.; Li, T.; Yu, T.S.; Li, S.; Wu, D.; et al. Research on Ecological Effect Assessment Method of Ecological Restoration of Open-Pit Coal Mines in Alpine Regions. Int. J. Environ. Res. Public Health 2022, 19, 7682. [Google Scholar] [CrossRef]
- Suding, K.N. Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead. In Annual Review of Ecology, Evolution, and Systematics; Futuyma, D.J., Shaffer, H.B., Simberloff, D., Eds.; Springer: Berlin, Germany, 2011; Volume 42, pp. 465–487. [Google Scholar] [CrossRef]
Rank | Paper | DOI | Year | Journal | TC |
---|---|---|---|---|---|
1 | JACKSON JBC, 2001, SCIENCE | 10.1126/science.1059199 | 2001 | Science | 4346 |
2 | BARBIER EB, 2011, ECOL MONOGR | 10.1890/10-1510.1 | 2011 | Ecological Monographs | 2626 |
3 | VAN DER HEIJDEN MGA, 1998, NATURE | 10.1038/23932 | 1998 | Nature | 2301 |
4 | BELLWOOD DR, 2004, NATURE | 10.1038/nature02691 | 2004 | Nature | 2128 |
5 | BUNN SE, 2002, ENVIRON MANAGE | 10.1007/s00267-002-2737-0 | 2002 | Environmental Management Volume | 2112 |
6 | ORTH RJ, 2006, BIOSCIENCE | 10.1641/0006-3568 | 2006 | BioScience | 1944 |
7 | MYERS RA, 2003, NATURE | 10.1038/nature01610 | 2003 | Nature | 1927 |
8 | WALSH CJ, 2005, J N AM BENTHOL SOC | 10.1899/04-020.1 | 2005 | Journal of the North American Benthological Society | 1903 |
9 | WALSH CJ, 2005, J N AM BENTHOL SOC-a | 10.1899/04-020.1 | 2005 | Journal of the North American Benthological Society | 1903 |
10 | DE GROOT RS, 2010, ECOL COMPLEX | 10.1016/j.ecocom.2009.10.006 | 2010 | Ecological Complexity | 1862 |
Rank | Country | Number of Articles | Single-Country Publications (SCP) | Multiple-Country Publications (MCP) |
---|---|---|---|---|
1 | USA | 5738 | 4940 | 798 |
2 | China | 5662 | 4486 | 1176 |
3 | Australia | 1410 | 1030 | 380 |
4 | United Kingdom | 864 | 543 | 321 |
5 | Brazil | 843 | 587 | 256 |
6 | Canada | 758 | 549 | 209 |
7 | French | 662 | 456 | 206 |
8 | Germany | 650 | 413 | 237 |
9 | Spain | 552 | 358 | 194 |
10 | Italy | 456 | 326 | 130 |
Rank | Research Institution | Country | Number of Articles Published |
---|---|---|---|
1 | University of Chinese Academy of Sciences | China | 602 |
2 | Chinese Academy of Sciences | China | 566 |
3 | Beijing Normal University | China | 561 |
4 | American Forest Service | USA | 452 |
5 | Arizona State University | USA | 415 |
6 | Northwestern University | USA | 390 |
7 | University of Western Australia | Australia | 381 |
8 | University of Queensland | Australia | 358 |
9 | University of Sao Paulo | Canada | 339 |
10 | Institute of Geographic Sciences and Resources Research | China | 329 |
Rank | Journal | Country | Journal Citation Reports (JCR) | Impact Factor (If) | Articles |
---|---|---|---|---|---|
1 | Ecological Engineering | Netherlands | Q2 | 4.739 | 502 |
2 | Ecological Indicators | Netherlands | Q2 | 6.363 | 392 |
3 | Science of the Total Environment | Netherlands | Q2 | 10.753 | 311 |
4 | Sustainability | Switzerland | Q2 | 3.889 | 188 |
5 | Remote Sensing | Switzerland | Q1 | 5.349 | 151 |
6 | Water | Switzerland | Q2 | 3.530 | 133 |
7 | Environmental Science and Pollution Research | Germany | Q2 | 5.190 | 131 |
8 | International Journal of Environmental Research and Public Health | Switzerland | Q1 | 4.614 | 117 |
9 | Land Degradation and Development | England | Q2 | 4.377 | 115 |
10 | Journal of Cleaner Production | USA | Q1 | 11.087 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Song, W.; Shao, Y.; Cai, X. Progress of Ecological Restoration Research Based on Bibliometric Analysis. Int. J. Environ. Res. Public Health 2023, 20, 520. https://doi.org/10.3390/ijerph20010520
Wei X, Song W, Shao Y, Cai X. Progress of Ecological Restoration Research Based on Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2023; 20(1):520. https://doi.org/10.3390/ijerph20010520
Chicago/Turabian StyleWei, Xi, Wei Song, Ya Shao, and Xiangwen Cai. 2023. "Progress of Ecological Restoration Research Based on Bibliometric Analysis" International Journal of Environmental Research and Public Health 20, no. 1: 520. https://doi.org/10.3390/ijerph20010520
APA StyleWei, X., Song, W., Shao, Y., & Cai, X. (2023). Progress of Ecological Restoration Research Based on Bibliometric Analysis. International Journal of Environmental Research and Public Health, 20(1), 520. https://doi.org/10.3390/ijerph20010520