Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Covariates
2.3. Dietary Information
2.4. Adiposity and Biochemical Examinations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, L.; Tan, G.S.; Zhang, K. Relationship of the Serum CRP Level With the Efficacy of Metformin in the Treatment of Type 2 Diabetes Mellitus: A Meta-Analysis. J. Clin. Lab. Anal. 2016, 30, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Hernandez, H.; Simental-Mendia, L.E.; Rodriguez-Ramirez, G.; Reyes-Romero, M.A. Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. Int. J. Endocrinol. 2013, 2013, 678159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickup, J.C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004, 27, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R.; et al. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [Green Version]
- Tamez, M.; Monge, A.; Lopez-Ridaura, R.; Fagherazzi, G.; Rinaldi, S.; Ortiz-Panozo, E.; Yunes, E.; Romieu, I.; Lajous, M. Soda Intake Is Directly Associated with Serum C-Reactive Protein Concentration in Mexican Women. J. Nutr. 2018, 148, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Aeberli, I.; Gerber, P.A.; Hochuli, M.; Kohler, S.; Haile, S.R.; Gouni-Berthold, I.; Berthold, H.K.; Spinas, G.A.; Berneis, K. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Anari, R.; Amani, R.; Veissi, M. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes Metab. Syndr. 2017, 11, S675–S678. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35, S64–S71. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Summary of revisions for the 2010 Clinical Practice Recommendations. Diabetes Care 2010, 33, S3. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017.
- American Diabetes Association. Statistics About Diabetes: Overall Numbers. Available online: https://diabetes.org/about-us/statistics/about-diabetes (accessed on 20 August 2021).
- Mainous, A.G., 3rd; Tanner, R.J.; Jo, A.; Anton, S.D. Prevalence of Prediabetes and Abdominal Obesity Among Healthy-Weight Adults: 18-Year Trend. Ann. Fam. Med. 2016, 14, 304–310. [Google Scholar] [CrossRef]
- Centers for Disease, C. Prevention, Awareness of prediabetes—United States, 2005-2010. MMWR Morb. Mortal Wkly. Rep. 2013, 62, 209–212. [Google Scholar]
- Pouliot, M.C.; Despres, J.P.; Lemieux, S.; Moorjani, S.; Bouchard, C.; Tremblay, A.; Nadeau, A.; Lupien, P.J. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73, 460–468. [Google Scholar] [CrossRef]
- Caspard, H.; Jabbour, S.; Hammar, N.; Fenici, P.; Sheehan, J.J.; Kosiborod, M. Recent trends in the prevalence of type 2 diabetes and the association with abdominal obesity lead to growing health disparities in the USA: An analysis of the NHANES surveys from 1999 to 2014. Diabetes Obes. Metab. 2018, 20, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Ambrosi, J.; Silva, C.; Galofre, J.C.; Escalada, J.; Santos, S.; Gil, M.J.; Valenti, V.; Rotellar, F.; Ramirez, B.; Salvador, J.; et al. Body adiposity and type 2 diabetes: Increased risk with a high body fat percentage even having a normal BMI. Obesity 2011, 19, 1439–1444. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). NHANES Survey. Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx#analytic-guidelines (accessed on 5 March 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). NHANES Survey. Research Ethics Review Board (ERB) approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 12 May 2022).
- The World Health Organization (WHO). Global Strategy on Diet, Physical Activity and Health. Available online: https://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed on 20 June 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). Measuring Guides for the Dietary Recall Interview. Available online: https://www.cdc.gov/nchs/nhanes/measuring_guides_dri/measuringguides.htm (accessed on 5 March 2021).
- Mesirow, M.S.; Welsh, J.A. Changing beverage consumption patterns have resulted in fewer liquid calories in the diets of US children: National Health and Nutrition Examination Survey 2001-2010. J. Acad. Nutr. Diet 2015, 115, 559–566.e4. [Google Scholar] [CrossRef]
- Zhang, C.; Rexrode, K.M.; van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: Sixteen years of follow-up in US women. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Center for Health Statistics NHANES quality control and quality assurance protocols. NHANES Laboratory/Medical Technologists Procedures Manual (LPM). Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2009-2010/manuals/lab.pdf (accessed on 12 May 2022).
- Ridker, P.M. Cardiology Patient Page. C-reactive protein: A simple test to help predict risk of heart attack and stroke. Circulation 2003, 108, e81–e85. [Google Scholar] [CrossRef]
- Hert, K.A.; Fisk, P.S., 2nd; Rhee, Y.S.; Brunt, A.R. Decreased consumption of sugar-sweetened beverages improved selected biomarkers of chronic disease risk among US adults: 1999 to 2010. Nutr. Res. 2014, 34, 58–65. [Google Scholar] [CrossRef]
- Schlecht, I.; Fischer, B.; Behrens, G.; Leitzmann, M.F. Relations of Visceral and Abdominal Subcutaneous Adipose Tissue, Body Mass Index, and Waist Circumference to Serum Concentrations of Parameters of Chronic Inflammation. Obes. Facts 2016, 9, 144–157. [Google Scholar] [CrossRef]
- Unamuno, X.; Gomez-Ambrosi, J.; Rodriguez, A.; Becerril, S.; Fruhbeck, G.; Catalan, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Invest. 2018, 48, e12997. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Sheikh, N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol. 2017, 315, 18–26. [Google Scholar] [CrossRef]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.F., Jr.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Yannakoulia, M.; Chrysohoou, C.; Stefanadis, C. The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis 2005, 183, 308–315. [Google Scholar] [CrossRef]
- Ma, J.; Jacques, P.F.; Meigs, J.B.; Fox, C.S.; Rogers, G.T.; Smith, C.E.; Hruby, A.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes. J. Nutr. 2016, 146, 2544–2550. [Google Scholar] [CrossRef] [Green Version]
- Xiang, A.H.; Kawakubo, M.; Trigo, E.; Kjos, S.L.; Buchanan, T.A. Declining beta-cell compensation for insulin resistance in Hispanic women with recent gestational diabetes mellitus: Association with changes in weight, adiponectin, and C-reactive protein. Diabetes Care 2010, 33, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Schroder, H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J. Nutr. Biochem. 2007, 18, 149–160. [Google Scholar] [CrossRef]
- Bersoux, S.; Cook, C.B.; Wu, Q.; Burritt, M.F.; Hernandez, J.S.; Verona, P.M.; Larson, M.H.; LaRosa, C.S. Hemoglobin A1c testing alone does not sufficiently identify patients with prediabetes. Am. J. Clin. Pathol. 2011, 135, 674–677. [Google Scholar] [CrossRef]
C-Reactive Protein (mg/L) | |||
---|---|---|---|
<3 | ≥3 | p Value | |
Row population a | 3780 | 1470 | |
Survey-weighted b | |||
Demographic factor | |||
Age (year), mean ± se | 45.6 ± 0.4 | 47.9 ± 0.5 | <0.001 |
Gender | <0.001 | ||
male | 51.2% | 38.1% | |
female | 48.8% | 61.9% | |
Race | <0.001 | ||
non-Hispanic white | 89.5% | 84.6% | |
non-Hispanic black | 10.5% | 15.4% | |
PIR | <0.001 | ||
below poverty | 10.1% | 14.9% | |
1–2.9 | 30.4% | 35.9% | |
≥3 | 59.5% | 49.2% | |
Substance use | |||
Cigarette smoking | 0.019 | ||
non-smokers | 54.5% | 50.8% | |
former smokers | 27.8% | 26.5% | |
current smokers | 17.7% | 22.8% | |
Alcohol drinking | 0.802 | ||
non/light drinkers | 92.7% | 92.4% | |
heavy drinkers | 7.3% | 7.6% | |
Physical activity | <0.001 | ||
low | 58.0% | 70.5% | |
high | 42.0% | 29.5% | |
Personal medical conditions c | <0.001 | ||
no | 61.0% | 52.8% | |
yes | 39.0% | 47.2% |
C-Reactive Protein (mg/L) | |||
---|---|---|---|
<3 | ≥3 | p Value | |
Row population a | 3780 | 1470 | |
Survey-weighted b | |||
Dietary pattern | |||
Total energy intake (Kcal/day), mean ± se | 2180 ± 22 | 2046 ± 24 | 0.682 |
Total sugar intake from diet (gram/day), mean ± se | 80 ± 1.3 | 75 ± 2.0 | 0.224 |
SSB-related factor | |||
Sugar intake from SSB (gram/day) | 0.020 | ||
non-intake | 28.3% | 25.9% | |
1–40 g | 38.1% | 35.8% | |
≥41 g | 33.6% | 38.3% | |
Abdominal obesity | <0.001 | ||
no | 57.8% | 26.4% | |
yes | 42.2% | 73.6% | |
HbA1c status | <0.001 | ||
normal (HbA1c < 5.7%) | 80.4% | 69.5% | |
pre-diabetes (HbA1c = 5.7–6.4%) | 19.6% | 30.6% |
CRP, ≥3 mg/L vs. <3 mg/L | ||||||||
---|---|---|---|---|---|---|---|---|
Model 1 a | Model 2 b Abdominal Obesity-Adjusted Model | |||||||
HbA1c | HbA1c | |||||||
<5.7% | 5.7–6.4% | <5.7% | 5.7–6.4% | |||||
aOR | (95%CI) | aOR | (95%CI) | aOR | (95%CI) | aOR | (95%CI) | |
Sugar intake from SSB (gram/day) | ||||||||
non-intake | 1 | 1 | 1 | 1 | ||||
1–40 g | 0.95 | (0.73, 1.25) | 1.30 | (0.91, 1.87) | 1.00 | (0.76, 1.32) | 1.34 | (0.89, 2.03) |
≥41 g | 1.23 | (0.88, 1.71) | 1.50 | (0.99, 2.26) | 1.33 | (0.97, 1.83) | 1.57 | (1.05, 2.34) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-T.; Kao, Y.-H.; Li, M.S.; Luo, T.; Lin, H.-Y.; Lee, C.-H.; Seal, D.W.; Hu, C.-y.; Chen, L.-S.; Tseng, T.-S. Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study. Int. J. Environ. Res. Public Health 2023, 20, 681. https://doi.org/10.3390/ijerph20010681
Lin W-T, Kao Y-H, Li MS, Luo T, Lin H-Y, Lee C-H, Seal DW, Hu C-y, Chen L-S, Tseng T-S. Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study. International Journal of Environmental Research and Public Health. 2023; 20(1):681. https://doi.org/10.3390/ijerph20010681
Chicago/Turabian StyleLin, Wei-Ting, Yu-Hsiang Kao, Mirandy S. Li, Ting Luo, Hui-Yi Lin, Chien-Hung Lee, David W. Seal, Chih-yang Hu, Lei-Shih Chen, and Tung-Sung Tseng. 2023. "Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study" International Journal of Environmental Research and Public Health 20, no. 1: 681. https://doi.org/10.3390/ijerph20010681
APA StyleLin, W. -T., Kao, Y. -H., Li, M. S., Luo, T., Lin, H. -Y., Lee, C. -H., Seal, D. W., Hu, C. -y., Chen, L. -S., & Tseng, T. -S. (2023). Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study. International Journal of Environmental Research and Public Health, 20(1), 681. https://doi.org/10.3390/ijerph20010681