Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. CALUX Assay
3. Results
3.1. AR-CALUX Assay for Antiandrogenic Activity
3.2. ER-CALUX Assay for Estrogenic Activity
4. Discussion
4.1. Antiandrogenic Activity in the CALUX Assay
Antiandrogenic Activity | Estrogenic Activity | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Present Study | Previous Study | Present Study | Previous Study | |||||||||||||||
IC25 (μM) | REPmol (IC25) | IC50 (μM) | REPmol (IC50) | REPmol | IC25 (μM) | EC50 (μM) | REPmol (EC50) | REPmol | REPmol | REPmol | REPmol | |||||||
Compound a | U2OS | CHOg | PC3 h | Yeast i | U2OS e | T47D l | VM7 n | MVLN o | ||||||||||
Standard | ||||||||||||||||||
Flutamide | 0.11 | 1 | 0.26 | 1 | 1 | |||||||||||||
E2 | 1 × 10−5 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Oxy-PAHs | ||||||||||||||||||
PhO | 0.84 | 0.12 | 2.0 | 0.11 | U j | U | ||||||||||||
BAO | 0.20 | 0.64 | 0.71 | 0.37 | 0.014 c | 16 | 7.5 × 10−7 | 3.0 × 10−6 | ||||||||||
B[a]FO | 0.30 | 0.43 | 0.67 | 0.46 | 4.8 | 2.1 × 10−6 | ||||||||||||
B[b]FO | 0.15 | 0.81 | 0.53 | 0.43 | 4.8 | 2.1 × 10−6 | ||||||||||||
BPO | nd b | nd | nd | nd | U | U | ||||||||||||
NphQ | nd | nd | nd | nd | nd | nd | ||||||||||||
PhQ | 0.18 | 0.63 | 0.39 | 0.59 | nd | nd | ||||||||||||
BAQ | 2.5 | 0.056 | 6.4 | 0.049 | 18% activation at 8 μM | 1.4 × 10−6 | ||||||||||||
NCQ | nd | nd | nd | nd | U | U | ||||||||||||
Nitro-PAHs | ||||||||||||||||||
3-NFA | 0.0053 | 32 | 0.014 | 21 | + | U | U | |||||||||||
increase at > 0.3 μM | ||||||||||||||||||
8-NFA | 0.098 | 1.3 | 0.27 | 0.91 | nd | nd | ||||||||||||
1-NPy | 0.094 | 1.4 | 0.22 | 1.1 | 0.3 < IC25 ≤1 | + | 14% activation at 10 μM | |||||||||||
1,3-DNPy | 0.13 | 0.88 | 0.21 | 1.3 | U | U | ||||||||||||
1,6-DNPy | >20% inhibition at 0.1 μM | + | U | U | ||||||||||||||
1,8-DNPy | 0.17 | 0.91 | 0.72 | 0.39 | U | U | ||||||||||||
6-NChr | 0.039 | 3.2 | 0.088 | 3.3 | NA k | NA | ||||||||||||
3-NBAO | 0.0051 | 23 | 0.018 | 15 | + | NA | NA | |||||||||||
PAHs | ||||||||||||||||||
Ant | 0.2 d | 3 < IC25 ≤10 | 8.3 × 10−7 | |||||||||||||||
Phe | 0.1 e | nd | <3 × 10−9 | 1.2 × 10−6 | ||||||||||||||
FA | 0.14 | 1.0 | 0.30 | 1.1 | 0.96 f | 1 < IC25 ≤3 | ND m | 4.1 × 10−7 | ||||||||||
Py | 0.41 f, 0.03 e | 3 < IC25 ≤10 | + | 5.3 × 10−7 | nd | |||||||||||||
B[a]A | 1.3 f, 0.4 d | 1 < IC25 ≤3 | + | <2 × 10−9 | 1.6 × 10−6 | 7.9 × 10−7 | ||||||||||||
B[c]Phe | 0.11 | 1.0 | 0.37 | 0.62 | 27% activation at 8 μM | |||||||||||||
Chr | 0.084 | 1.8 | 0.33 | 0.99 | nd f | 3 < IC25 ≤10 | + | 15% activation at 8 μM | U | nd | ||||||||
B[b]FA | nd | + | ||||||||||||||||
B[k]FA | 2.6 f | 0.3 < IC25 ≤1 | + | nd | ||||||||||||||
B[j]FA | 0.13 | 0.84 | 0.29 | 0.81 | 1 < IC25 ≤3 | + | 13% activation at 3 μM | |||||||||||
CPP | 0.58 | 0.14 | 1.3 | 0.16 | nd | nd | ||||||||||||
B[a]P | 0.4 d, 0.1 e | 3 < IC25 ≤10 | + | 2 × 10−6 | 3.1 × 10−6 | 5.3 × 10−6 | 2.6 × 10−7 | |||||||||||
B[e]P | >15% inhibition at 10 μM | + | U | U | ||||||||||||||
DB[a,h]A | nd d | |||||||||||||||||
IdP | 0.35 f | + | ||||||||||||||||
BPe | nd | nd | nd | nd | nd f | + | nd | nd | nd | |||||||||
DB[a,h]P | nd | nd | nd | nd | <0.003 e | nd | nd | 2 × 10−5 | ||||||||||
DB[a,i]P | nd | nd | nd | nd | 14% activation at 3 μM | |||||||||||||
DB[a,l]P | 3.6 | 0.037 | 8.9 | 0.030 | U | U |
4.2. Estrogenic Activity in the CALUX Assay
4.3. Endocrinological Risk Implications of Oxy-PAHs and Nitro-PAHs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, J.G.; Dybing, E.; Greim, H.A.; Ladefoged, O.; Lambre, C.; Terazona, J.V.; Brandt, I.; Vethaak, A.D. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit. Rev. Toxicol. 2000, 30, 71–133. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, I.N.; Main, K.M.; Toppari, J.; Skakkebæk, N.E. Impact of exposure to endocrine disrupters in utero and in childhood on adult reproduction. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 289–309. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, G.; Tue, N.M.; van der Linden, S.; Brouwer, A.; van der Burg, B.; Lamoree, M.; van Velzen, M.; Someya, M.; Takahashi, S.; Isobe, T.; et al. Identification of major dioxin-like compounds and androgen receptor antagonist in acid-treated tissue extracts of high trophic-level animals. Environ. Sci. Technol. 2011, 42, 5814–5820. [Google Scholar] [CrossRef] [Green Version]
- Misaki, K.; Suzuki, G.; Tue, N.M.; Takahashi, S.; Someya, M.; Takigami, H.; Tajima, Y.; Yamada, T.K.; Amano, M.; Isobe, T.; et al. Toxic identification and evaluation of androgen receptor antagonistic activities in acid-treated liver extracts of high-trophic level wild animals from Japan. Environ. Sci. Technol. 2015, 49, 11840–11848. [Google Scholar] [CrossRef]
- Suzuki, G.; Tue, N.M.; Malarvannan, G.; Sudaryanto, A.; Takahashi, S.; Tanabe, S.; Sakai, S.; Brouwer, A.; Uramaru, N.; Kitamura, S.; et al. Similarities in the endocrine-disrupting potencies of indoor dust and flame retardants by using human osteosarcoma (U2OS) cell-based reporter gene assays. Environ. Sci. Technol. 2013, 47, 2898–2908. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, L.H.; Tue, N.M.; Suzuki, G.; Misaki, K.; Viet, P.H.; Takahashi, S.; Tanabe, S. Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: Contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. Sci. Total Environ. 2014, 491–492, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Hannigan, M.P.; Cass, G.R.; Penman, B.W.; Crespi, C.L.; Lafleur, A.L.; Busby, W.F., Jr.; Thilly, W.G.; Simoneit, B.R.T. Bioassay-directed chemical analysis of Los Angeles airborne particulate matter using a human cell mutagenicity assay. Environ. Sci. Technol. 1998, 32, 3502–3514. [Google Scholar] [CrossRef]
- Fernandez, P.; Bayona, J.M. Use of off-line gel permeation chromatography-normal-phase liquid chromatography for the determination of polycyclic aromatic compounds in environmental samples and standard reference materials (air particulate matter and marine sediment). J. Chromatogr. 1992, 625, 141–149. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Tokiwa, H.; Ohnishi, Y. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit. Rev. Toxicol. 1986, 17, 23–60. [Google Scholar] [CrossRef]
- Enya, T.; Suzuki, H.; Watanabe, T.; Hirayama, T.; Hisamatsu, Y. 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ. Sci. Technol. 1997, 31, 2772–2776. [Google Scholar] [CrossRef]
- Ramos, K.S.; Moorthy, B. Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: Implications for human atherogenesis. Drug Metab. Rev. 2005, 37, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Kim, K.-H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Misaki, K.; Takamura-Enya, T.; Ogawa, H.; Takamori, K.; Yanagida, M. Tumor-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2016, 31, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef]
- Idowu, O.; Semple, K.T.; Ramadass, K.; O’Connor, W.; Hansbro, P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019, 123, 543–557. [Google Scholar] [CrossRef]
- Perera, F.P.; Chang, H.W.; Tang, D.; Roen, E.L.; Herbstman, J.; Margolis, A.; Huang, T.-Z.; Miller, R.L.; Wang, S.; Rauh, V. Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS ONE 2014, 9, e111670. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Kashimoto, T. Embryotoxicity of organic extracts from airborne particulates in ambient air in the chicken embryo. Arch. Environ. Contam. Toxicol. 1986, 15, 447–452. [Google Scholar] [CrossRef]
- Shanker, P.; Geier, M.C.; Truong, L.; McClure, R.S.; Pande, P.; Waters, K.M.; Tanguay, R.L. Coupling genome-wide transcriptomics and developmental toxicity profiles in zebrafish to characterize polycyclic aromatic hydrocarbon (PAH) hazard. Int. J. Mol. Sci. 2019, 20, 2570. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Sagai, M.; Oshio, S.; Umeda, T.; Ihara, T.; Sugamata, M.; Sugawara, I.; Takeda, K. Exposure to diesel exhaust affects the male reproductive system of mice. Int. J. Androl. 1999, 22, 307–315. [Google Scholar] [CrossRef]
- Selevan, S.G.; Borkovec, L.; Slott, V.L.; Zudová, Z.; Rubes, J.; Evenson, D.P.; Perreault, S.D. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ. Health Perspect. 2000, 108, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Kizu, R.; Toriba, A.; Murahashi, T.; Mizokami, A.; Burnstein, K.L.; Klinge, C.M.; Hayakawa, K. Antiandrogenic activity of extracts of diesel exhaust particles emitted from diesel-engine truck under different engine loads and speeds. Toxicology 2004, 195, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Pěnčíková, K.; Ciganek, M.; Neča, J.; Illés, P.; Dvořák, Z.; Vondráček, J.; Machala, M. Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesl exhaust particles. Sci. Total Environ. 2019, 677, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Nadal, A.; Alonso-Magdalena, P.; Ripoll, C.; Fuentes, E. Disentangling the molecular mechanisms of action of endogenous and environmental estrogens. Pflugers Arch. 2005, 449, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, F.; Baba, K.; Fujii-Kuriyama, Y.; Kato, S. Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem. Biophys. Res. Commun. 2008, 370, 541–546. [Google Scholar] [CrossRef]
- Kelce, W.R.; Wilson, E.M. Environmental antiandrogens: Developmental effects, molecular mechanisms, and clinical implications. J. Mol. Med. 1997, 75, 198–207. [Google Scholar] [CrossRef]
- Kizu, R.; Okamura, K.; Toriba, A.; Kakishima, H.; Mizokami, A.; Burnstein, K.L.; Hayakawa, K. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch. Toxicol. 2003, 77, 335–343. [Google Scholar] [CrossRef]
- Alvarez-Muñoz, D.; Indiveri, P.; Rostkowski, P.; Horwood, J.; Greer, E.; Minier, C.; Pope, N.; Langston, W.J.; Hill, E.M. Widespread contamination of coastal sediments in the Transmanche Channel with anti-androgenic compounds. Mar. Pollut. Bull. 2015, 95, 590–597. [Google Scholar] [CrossRef]
- Marin-Kuan, M.; Fussell, K.C.; Riederer, N.; Latado, H.; Serrant, P.; Mollergues, J.; Coulet, M.; Schilter, B. Differentiating true androgen receptor inhibition from cytotoxicity-mediated reduction of reporter-gene transactivation in-vitro. Toxicol. Vitr. 2017, 45, 359–365. [Google Scholar] [CrossRef]
- Pieterse, B.; Rijk, I.J.C.; Simon, E.; van Vugt-Lussenburg, B.M.A.; Fokke, B.F.H.; van der Wijk, M.; Besselink, H.; Weber, R.; van der Burg, B. Effect-based assessment of persistent organic pollutant and pesticide dumpsite using mammalian CALUX reporter cell lines. Environ. Sci. Pollut. Res. 2015, 22, 14442–14454. [Google Scholar] [CrossRef]
- Vinggaard, A.M.; Niemelä, J.; Wedebye, E.B.; Jensen, G.E. Screening of 397 chemicals and development of a quantitative structure-activity relationship model for androgen receptor antagonism. Chem. Res. Toxicol. 2008, 21, 813–823. [Google Scholar] [CrossRef] [PubMed]
- van Lipzig, M.M.H.; Vermeulen, N.P.E.; Gusinu, R.; Legler, J.; Frabk, H.; Seidel, A.; Meerman, J.H.N. Formation of estrogenic metabolites of benzo[a]pyrene and chrysene by cytochrome P450 activity and their combined and supra-maximal estrogenic activity. Environ. Toxicol. Pharmacol. 2005, 19, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Boonen, I.; van Heyst, A.; van Langenhove, K.; van Hoeck, E.; Mertens, B.; Denison, M.S.; Elskens, M.; Demaegdt, H. Assessing the receptor-mediated activity of PAHs using AhR-, ERα- and PPARγ- CALUX bioassays. Food Chem. Toxicol. 2020, 145, 111602. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Simon, E.; Stroomberg, G.J.; de Boer, R.; de Boer, J.; van der Linden, S.C.; Leonards, P.E.G.; Lamoree, M.H. Identification strategy for unknown pollutants using high-resolution mass spectrometry: Androgen-disrupting compounds identified through effect-directed analysis. Anal. Bioanal. Chem. 2011, 400, 3141–3149. [Google Scholar] [CrossRef] [Green Version]
- Araki, N.; Ohno, K.; Takeyoshi, M.; Iida, M. Evaluation of a rapid in vitro androgen receptor transcriptional activation assay using AR-EcoScreenTM cells. Toxicol. Vitr. 2005, 19, 335–352. [Google Scholar] [CrossRef]
- Machala, M.; Ciganek, M.; Bláha, L.; Minksová, K.; Vondráčk, J. Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. Environ. Toxicol. Chem. 2001, 20, 2736–2743. [Google Scholar]
- Hayakawa, K.; Bekki, K.; Yoshida, M.; Tachikawa, C.; Kameda, T.; Tang, N.; Toriba, A.; Hosoi, S. Estrogenic/Antiestrogenic activities of quinoid polycyclic aromatic hydrocarbons. J. Health Sci. 2011, 57, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, N.; Kizu, R.; Tang, N.; Toriba, A.; Hayakawa, K. Androgenic and antiandrogenic activities of nitropolycyclic aromatic hydrocarbons and their reductive metabolites. In Proceedings of the The 8th Annual Meeting of Japan Society of Endocrine Disruptors Research (JSEDR), Tokyo, Japan, 28 September 2005; p. 84. [Google Scholar]
- Schmitt, C.; Lamoree, M.; Leonards, P.; Weiss, J.M.; de Deckere, E. In vivo effect confirmation of anti-androgenic compounds in sediment contact tests with Potamopyrgus antipodarum. J. Environ. Sci. Health A 2013, 48, 475–480. [Google Scholar] [CrossRef]
- Sonneveld, E.; Jansen, H.J.; Riteco, J.A.C.; Brouwer, A.; van der Burg, B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol. Sci. 2005, 83, 136–148. [Google Scholar] [CrossRef]
- Misaki, K.; Kawami, H.; Tanaka, T.; Handa, H.; Nakamura, M.; Matsui, S.; Matsuda, T. Aryl hydrocarbon receptor ligand activity of polycyclic aromatic ketones and polycyclic aromatic quinones. Environ. Toxicol. Chem. 2007, 26, 1370–1379. [Google Scholar] [CrossRef]
- Kamelia, L.; Louisse, J.; de Haan, L.; Maslowska-Gornicz, A.; Ketelslegers, H.B.; Brouwer, A.; Rietjens, I.M.C.M.; Boogaard, P.J. The role of endocrine and dioxin-like activity of extracts of petroleum substances in developmental toxicity as detected in a panel of CALUX reporter gene assays. Toxicol. Sci. 2018, 164, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Mollergues, J.; van Vugt-Lussenburg, B.; Kirchnawy, C.; Bandi, R.A.; van der Lee, R.B.; Marin-Kuan, M.; Schilter, B.; Fussell, K.C. Incorporation of a metabolizing system in biodetection assays for endocrine active substances. ALTEX 2017, 34, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimečková, P.; Pěnčíková, K.; Kováč, O.; Slavík, J.; Pařenicová, M.; Vondráček, J.; Machala, M. In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress. Sci. Total Environ. 2022, 815, 151967. [Google Scholar] [CrossRef] [PubMed]
- Vinggaard, A.M.; Hnida, C.; Larsen, J.C. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro. Toxicology 2000, 145, 173–183. [Google Scholar] [CrossRef]
- Bain, P.A.; Kumar, A. In vitro nuclear receptor inhibition and cytotoxicity of hydraulic fracturing chemicals and their binary mixtures. Chemosphere 2018, 198, 565–573. [Google Scholar] [CrossRef]
- Wetherill, Y.B.; Fisher, N.L.; Staubach, A.; Danielsen, M.; de Vere White, R.W.; Knudsen, K.E. Xenoestrogen action in prostate cancer: Pleiotropic effects dependent on androgen receptor status. Cancer Res. 2005, 65, 54–65. [Google Scholar] [CrossRef]
- Reers, A.R.; Eng, M.L.; Williams, T.D.; Elliott, J.E.; Cox, M.E.; Beischlag, T.V. The flame-retardant tris(1,3-dichloro-2-propyl) phosphate represses androgen signaling in human prostate cancer cell lines. J. Biochem. Mol. Toxicol. 2016, 30, 249–257. [Google Scholar] [CrossRef]
- Dellal, H.; Boulahtouf, A.; Alaterre, E.; Cuenant, A.; Grimaldi, M.; Bourguet, W.; Gongora, C.; Balaguer, P.; Pourquier, P. High content screening using new U2OS report cell models identifies harmol hydrochloride as a selective and competitive antagonist of the androgen receptor. Cells 2020, 9, 1469. [Google Scholar] [CrossRef]
- Branchini, B.R.; Murtiashaw, M.H.; Magyar, R.A.; Portier, N.C.; Ruggiero, M.C.; Stroh, J.G. Yellow-green and red firefly bioluminescence from 5,5-dimethyloxyluciferin. J. Am. Chem. Soc. 2002, 124, 2112–2113. [Google Scholar] [CrossRef]
- Catalfo, A.; Serrentino, M.E.; Librando, V.; Perrini, G.; de Guidi, G. Spectroscopic properties of some derivatives of polycyclic aromatic hydrocarbons. Appl. Spectr. 2008, 62, 1233–1237. [Google Scholar] [CrossRef]
- Kumar Konidala, K.; Bommu, U.; Rabbaraju, N. Integration of in silico methods to determine endocrine-disrupting tobacco pollutants binding potency with steroidogenic genes: Comprehensive QSAR modeling and ensemble docking strategies. Environ. Sci. Pollut. Res. 2022, 29, 65806–65825. [Google Scholar] [CrossRef] [PubMed]
- Sanada, N.; Gotoh, Y.; Shimazawa, R.; Klinge, C.M.; Kizu, R. Repression of activated aryl hydrocarbon receptor-induced transcriptional activation by 5α-dihydrotestosterone in human prostate cancer LNCaP and human breast cancer T47D cells. J. Pharmacol. Sci. 2009, 109, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghotbaddini, M.; Powell, J.B. The AhR ligand, TCDD, regulate androgen receptor activity differently in androgen-sensitive versus castration-resistant human prostate cancer cells. Int. J. Environ. Public Health 2015, 12, 7506–7518. [Google Scholar] [CrossRef] [PubMed]
- Watzky, M.; Huard, S.; Juricek, L.; Dairou, J.; Chauvet, C.; Coumoul, X.; Letessier, A.; Miotto, B. Hexokinase 2 is a transcriptional target and a positive modulator of AHR signalling. Nucleic Acids Res. 2022, 50, 5545–5564. [Google Scholar] [CrossRef] [PubMed]
- Yoshinouchi, Y.; Shimizu, S.; Lee, J.-S.; Hirano, M.; Suzuki, K.T.; Kim, E.-Y.; Iwata, H. In vitro assessment of effects of persistent organic pollutants on the transactivation of estrogen receptor α and β (ERα and ERβ) from the Baikal seal (Pusa sibirica). Environ. Ecotoxicol. Safe. 2019, 181, 463–471. [Google Scholar] [CrossRef]
- Van Lipzig, M.M.H.; ter Laak, A.M.; Jongejan, A.; Vermeulen, N.P.E.; Wamelink, M.; Geerke, D.; Meerman, J.H.N. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. J. Med. Chem. 2004, 47, 1018–1030. [Google Scholar] [CrossRef]
- Li, F.; Wu, H.; Li, l.; Li, X.; Zhao, J.; Peijnenburg, W.J.G.M. Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotoxicol. Environ. Safe 2012, 80, 273–279. [Google Scholar] [CrossRef]
- Misaki, K.; Suzuki, M.; Nakamura, M.; Handa, H.; Iida, M.; Kato, T.; Matsui, S.; Matsuda, T. Aryl hydrocarbon receptor and estrogen receptor ligand activity of organic extracts from road dust and diesel exhaust particulates. Arch. Environ. Contam. Toxicol. 2008, 55, 199–209. [Google Scholar] [CrossRef]
- Lübcke-von Varel, U.; Machala, M.; Ciganek, M.; Neca, J.; Pencikova, K.; Palkova, L.; Vondracek, J.; Löffler, I.; Streck, G.; Reinfferscheid, G.; et al. Polar compounds dominate in vitro effects of sediment extracts. Environ. Sci. Technol. 2011, 45, 2384–2390. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, M.; Toriba, A.; Onoda, Y.; Kizu, R.; Hayakawa, K. Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate. Food Chem. Toxicol. 2005, 43, 1017–1027. [Google Scholar] [CrossRef]
- Šrám, R.J.; Binková, B.; Rössner, P.; Rubeš, J.; Topinka, J.; Dejmek, J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res. 1999, 428, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Dejmek, J.; Solanský, I.; Beneš, I.; Leníček, J.; Šrám, R.J. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ. Health Perspect. 2000, 108, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xia, Y.; Zhu, P.; Qiao, S.; Zhao, R.; Jin, N.; Wang, S.; Song, L.; Fu, G.; Wang, X. Reproductive hormones in relation to polycyclic aromatic hydrocarbon (PAH) metabolites among non-occupational exposure of males. Sci. Total Environ. 2010, 408, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Luderer, U.; Christensen, F.; Johnson, W.O.; She, J.; Ip, H.S.S.; Zhou, J.; Alvaran, J.; Krieg, E.F., Jr.; Kesner, J.S. Association between urinary biomarkers of polycyclic aromatic hydrocarbon exposure and reproductive function during menstrual cycles in women. Environ. Int. 2017, 100, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Oonuki, Y. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats. Environ. Health Perspect. 1999, 107, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-Y.; Kim, Y.-J.; Kim, J.Y.; Lee, S.G.; Park, J.-E.; Kim, W.R.; Yoon, Y.-D.; Yoo, K.S.; Yoo, Y.H.; Kim, J.-M. Benzo[a]pyrene reduces testosterone production in rat Leydig cells via a direct disturbance of testicular steroidogenic machinery. Environ. Health Perspect. 2011, 119, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Park, M.; Yoon, T.K.; Lee, W.S.; Ko, J.-J.; Lee, K.; Bae, J. Maternal exposure to benzo[b]fluoranthene disturbs reproductive performance in male offspring mice. Toxicol. Lett. 2011, 203, 54–61. [Google Scholar] [CrossRef]
- Huang, J.; Fang, L.; Zhang, S.; Zhang, Y.; Ou, K.; Wang, C. Long-term exposure to environmental levels of phenanthrene disrupts spermatogenesis in male mice. Environ. Pollut. 2021, 285, 117488. [Google Scholar] [CrossRef]
- Kummer, V.; Mašková, J.; Zralý, Z.; Neča, J.; ŠimečkoKová, P.; Vondráček, J.; Machala, M. Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett. 2008, 180, 212–221. [Google Scholar] [CrossRef]
- Kennedy, C.J.; Smyth, K.R. Disruption of the rainbow trout reproductive endocrine axis by the polycyclic aromatic hydrocarbon benzo[a]pyrene. Gen. Comp. Endocrinol. 2015, 219, 102–111. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Yu, Z.; Guan, Y.; Chen, R.; Wang, C. Early-life phenanthrene exposure inhibits reproductive ability in adult zebrafish and the mechanism of action. Chemosphere 2021, 272, 129635. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zuo, Z.; Luo, H.; Chen, M.; Zhong, Y.; Chen, Y.; Wang, C. Chronic exposure to phenanthrene influences the spermatogenesis of male Sebastiscus marmoratus: U-shaped effects and the reason for them. Environ. Sci. Technol. 2011, 45, 10212–10218. [Google Scholar] [CrossRef]
- Diamante, G.; do Amaral e Silva Müller, G.; Menjivar-Cervantes, N.; Xu, E.G.; Volz, D.C.; Dias Bainy, A.C.; Schlenk, D. Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. Aquat. Toxicol. 2017, 189, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Rostkowski, P.; Horwood, J.; Shears, J.A.; Lange, A.; Oladapo, F.O.; Besselink, H.T.; Tyler, C.R.; Hill, E.M. Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents. Environ. Sci. Technol. 2011, 45, 10660–10667. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.-H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Perera, F.P.; Whyatt, R.M.; Jedrychowski, W.; Rauh, V.; Manchester, D.; Santella, R.M.; Ottman, R. Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am. J. Epidemiol. 1998, 147, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Knecht, A.L.; Goodale, B.C.; Truong, L.; Simonich, M.T.; Swanson, A.J.; Matzke, M.M.; Anderson, K.A.; Waters, K.M.; Tanguay, R.L. Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol. Appl. Pharmacol. 2013, 271, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Wincent, E.; Jönsson, M.; Bottai, M.; Lundstedt, S.; Dreij, K. Aryl hydrocarbon receptor activation and developmental toxicity in zebrafish in response to soil extracts containing unsubstituted and oxygenated PAHs. Environ. Sci. Technol. 2016, 49, 3869–3877. [Google Scholar] [CrossRef]
- Chlebowski, A.C.; Garcia, G.R.; la Du, J.K.; Bisson, W.H.; Truong, L.; Simonich, S.L.M.; Tanguay, R.L. Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicol. Sci. 2017, 157, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Bekki, K.; Takigami, H.; Suzuki, G.; Tang, N.; Hayakawa, K. Evaluation of toxic activities of polycyclic aromatic hydrocarbon derivatives using in vitro bioassays. J. Health Sci. 2009, 55, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, D.U.; Durant, J.L.; Taghizadeh, K.; Hemond, H.F.; Lafleur, A.L.; Cass, G.R. Human cell mutagens in respirable airborne particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds. Environ. Sci. Technol. 2005, 39, 9547–9560. [Google Scholar] [CrossRef] [PubMed]
- Alsberg, T.; Strandell, M.; Westerholm, R.; Stenberg, U. Fractionation and chemical analysis of gasoline exhaust particulate extracts in connection with biological testing. Environ. Int. 1985, 11, 249–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misaki, K.; Tue, N.M.; Takamura-Enya, T.; Takigami, H.; Suzuki, G.; Tuyen, L.H.; Takahashi, S.; Tanabe, S. Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays. Int. J. Environ. Res. Public Health 2023, 20, 80. https://doi.org/10.3390/ijerph20010080
Misaki K, Tue NM, Takamura-Enya T, Takigami H, Suzuki G, Tuyen LH, Takahashi S, Tanabe S. Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays. International Journal of Environmental Research and Public Health. 2023; 20(1):80. https://doi.org/10.3390/ijerph20010080
Chicago/Turabian StyleMisaki, Kentaro, Nguyen Minh Tue, Takeji Takamura-Enya, Hidetaka Takigami, Go Suzuki, Le Huu Tuyen, Shin Takahashi, and Shinsuke Tanabe. 2023. "Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays" International Journal of Environmental Research and Public Health 20, no. 1: 80. https://doi.org/10.3390/ijerph20010080
APA StyleMisaki, K., Tue, N. M., Takamura-Enya, T., Takigami, H., Suzuki, G., Tuyen, L. H., Takahashi, S., & Tanabe, S. (2023). Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays. International Journal of Environmental Research and Public Health, 20(1), 80. https://doi.org/10.3390/ijerph20010080