Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Inoculum
2.2. Setup of the Anaerobic Digestion Experiments
2.3. Analysis Methods
2.4. Co-Anaerobic Digestion Synergy
2.5. Kinetic Model Analysis
3. Results and Discussions
3.1. The Effect of Mixing Ratio on the AD Performance
3.2. The Effect of TS on the AD Performance
3.3. The Effect of Inoculum on the AD Performance
3.4. Model Fitting Analysis of Anaerobic Digestion System
3.5. Characteristic of Cooperative Index of Co-Anaerobic Digestion of Pig Manure and Rice Straw
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lyu, T. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Lu, T.; Liu, J.; Wang, Y.; Shen, P.; Wei, Y. Response and mechanisms of the performance and fate of antibiotic resistance genes to nano-magnetite during anaerobic digestion of swine manure. J. Hazard. Mater. 2019, 366, 192–201. [Google Scholar] [CrossRef]
- Sukhesh, M.J.; Rao, P.V. Synergistic effect in anaerobic co-digestion of rice straw and dairy manure—a batch kinetic study. Energy Sources, Part A: Recover. Util. Environ. Eff. 2019, 41, 2145–2156. [Google Scholar] [CrossRef]
- Ye, J.; Li, D.; Sun, Y.; Wang, G.; Yuan, Z.; Zhen, F.; Wang, Y. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 2013, 33, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Hao, Y.; Yang, T.; Xiao, W.; Pan, M.; Huo, S.; Lyu, T. Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering 2022, 9, 637. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, X.; Zhang, W.; Zhang, K.; Yang, T.; Han, Y.; Liu, J. Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture. Energy 2022, 239, 122021. [Google Scholar] [CrossRef]
- Wang, X.; Muhmood, A.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes. Chem. Eng. J. 2021, 408, 127322. [Google Scholar] [CrossRef]
- Yekta, S.S.; Hedenström, M.; Stehr, J.E.; Dario, M.; Hertkorn, N.; Björn, A. Pretreatment of anaerobic digester samples by hydrochloric acid for solution-state 1H and 13C NMR spectroscopic characterization of organic matter. Chemosphere 2018, 199, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Nasir, I.M.; Ghazi, T.I.M.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Mussoline, W.; Esposito, G.; Giordano, A.; Lens, P.N.L. The Anaerobic Digestion of Rice Straw: A Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 895–915. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Anaerobic digestion of organic fraction combinations from food waste, for an optimal dynamic release of biogas, using H2 as an indicator. Sci. Total Environ. 2023, 857, 159727. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, Y.; Liu, M.; Bin, S.; Liu, Y.; Huan, C.; Ji, G.; Wang, X.; Yan, Z.; Lyu, Q. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable waste: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. Bioresour. Technol. 2022, 347, 126748. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.N.I.; Wahid, Z. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Mehariya, S.; Patel, A.K.; Obulisamy, P.K.; Punniyakotti, E.; Wong, J.W. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresour. Technol. 2018, 265, 519–531. [Google Scholar] [CrossRef]
- Jiménez, J.; Guardia-Puebla, Y.; Cisneros-Ortiz, M.; Morgan-Sagastume, J.; Guerra, G.; Noyola, A. Optimization of the specific methanogenic activity during the anaerobic co-digestion of pig manure and rice straw, using industrial clay residues as inorganic additive. Chem. Eng. J. 2015, 259, 703–714. [Google Scholar] [CrossRef]
- VDL. VDI standard procedures 4630. In Fermentation of Organic Materials Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verein Deutscher Ingenieure, Beuth Verlag: Berlin, Germany, 2006; p. 92. [Google Scholar]
- Sikora, F.; Moore, K. Soil Test Methods from the South-Eastern United States; Chapter 5, SERA-IEG-6; Southern Cooperative Series Bulletin: Lexington, KY, USA, 2014. [Google Scholar]
- DiLallo, R.; Albertson, O. Volatile acids by direct titration. J. Water Poll. Control Fed. 1961, 33, 356–365. [Google Scholar]
- Ning, Z.; Zhang, H.; Li, W.; Zhang, R.; Liu, G.; Chen, C. Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methane production performance, long-chain fatty acids profile and predominant microorganisms. Bioresour. Technol. 2018, 269, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, D.; Luo, Z.; Zeng, W. Influence of reflux ratio on the anaerobic digestion of pig manure in leach beds coupled with continuous stirred tank reactors. Waste Manag. 2019, 97, 115–122. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.R. Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 2020, 255, 126805. [Google Scholar] [CrossRef]
- Kleyböcker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Würdemann, H. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability. Waste Manag. 2012, 32, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, D.-M.; Mahboubi, A.; Wainaina, S.; Qiao, W.; Taherzadeh, M.J. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. Bioresour. Technol. 2021, 330, 124992. [Google Scholar] [CrossRef] [PubMed]
- Canan, A.; Calhan, R.; Ozkaymak, M. Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield. Biomass- Convers. Biorefinery 2021, 11, 1395–1406. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Si, B.; Watson, J.; Zhang, Y. Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer. Renew. Sustain. Energy Rev. 2021, 145, 111069. [Google Scholar] [CrossRef]
- Qi, Q.; Sun, C.; Cristhian, C.; Zhang, T.; Zhang, J.; Tian, H.; He, Y.; Tong, Y.W. Enhancement of methanogenic performance by gasification biochar on anaerobic digestion. Bioresour. Technol. 2021, 330, 124993. [Google Scholar] [CrossRef]
- An, D.; Wang, T.; Zhou, Q.; Wang, C.; Yang, Q.; Xu, B.; Zhang, Q. Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Manag. 2017, 62, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Heo, N.H.; Park, S.C.; Lee, J.S.; Kang, H.; Park, D.H. Single-Stage Anaerobic Codigestion for Mixture Wastes of Simulated Korean Food Waste and Waste Activated Sludge. Appl. Biochem. Biotechnol. 2003, 107, 567–580. [Google Scholar] [CrossRef]
- Parra-Orobio, B.A.; Rotavisky-Sinisterra, M.P.; Pérez-Vidal, A.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Physicochemical, microbiological characterization and phytotoxicity of digestates produced on single-stage and two-stage anaerobic digestion of food waste. Sustain. Environ. Res. 2021, 31, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Caldwell, G.; Zealand, A.; Sallis, P.J. Anaerobic co-digestion of microalgae Chlorella vulgaris and potato processing waste: Effect of mixing ratio, waste type and substrate to inoculum ratio. Biochem. Eng. J. 2019, 143, 91–100. [Google Scholar] [CrossRef]
- Luo, L.; Wong, J.W. Enhanced food waste degradation in integrated two-phase anaerobic digestion: Effect of leachate recirculation ratio. Bioresour. Technol. 2019, 291, 121813. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.M.M.; Hai, F.I.; Lu, W.; Al-Mamun, A.; Dhar, B.R. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, B.; Zhang, K.; Chen, H.; Guo, X. Effects of mixing ratios on anaerobic co-digestion of swine manure and rice straw: Methane production and kinetics. Biomass- Convers. Biorefinery 2021, 1–11. [Google Scholar] [CrossRef]
- Sounni, F.; Elgnaoui, Y.; El Bari, H.; Merzouki, M.; Benlemlih, M. Effect of mixture ratio and organic loading rate during anaerobic co-digestion of olive mill wastewater and agro-industrial wastes. Biomass- Convers. Biorefinery 2021, 1–7. [Google Scholar] [CrossRef]
- Zhong, B.; An, X.; Shen, F.; An, W.; Zhang, Q. Anaerobic Co-digestion of Rice Straw and Pig Manure Pretreated With a Cellulolytic Microflora: Methane Yield Evaluation and Kinetics Analysis. Front. Bioeng. Biotechnol. 2021, 8, 579405. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Jiang, X.; Fang, J.; Lyu, Q.; Wang, X.; Yan, Z. Multi-omics reveal the structure and function of microbial community in co-digestion of corn straw and pig manure. J. Clean. Prod. 2021, 322, 129150. [Google Scholar] [CrossRef]
Parameters | Pig Manure | Rice Straw | Inoculum |
---|---|---|---|
TS (%) | 31.93 ± 1.03 | 94.79 ± 1.12 | 13.57 ± 0.13 |
VS (%) | 25.03 ± 4.34 | 81.80 ± 0.97 | 5.33 ± 0.15 |
VS/TS (%) | 78.37 ± 1.05 | 86.29 ± 0.24 | 39.26 ± 1.73 |
pH | 7.86 ± 0.11 | / | 7.58 ± 0.05 |
TC (%/TS) | 37.91 ± 0.43 | 47.25 ± 0.55 | 21.23 ± 0.84 |
TN (%/TS) | 4.63 ± 0.56 | 1.18 ± 0.76 | 4.15 ± 0.47 |
C/N | 8.18 ± 0.19 | 40.04 ± 0.15 | 5.12 ± 0.26 |
Cellulose (%/TS) | / | 36.15 ± 1.27 | / |
Hemicellulose (%/TS) | / | 24.13 ± 1.62 | / |
Lignin (%/TS) | / | 21.38 ± 0.93 | / |
Ash content (%/TS) | 9.56 ± 1.32 | 10.12 ± 1.18 | / |
P (mL/g VS) | Rmax (mL/d·g VS) | T80 | λ (d) | R2 | |
---|---|---|---|---|---|
Mixing ratio | |||||
1:0 | 181.71 | 14.75 | 14.13 | 2.96 | 0.998 |
1:1 | 354.61 | 23.55 | 16.51 | 3.69 | 0.999 |
1:5 | 515.90 | 30.46 | 19.11 | 5.58 | 0.999 |
1:10 | 389.26 | 27.29 | 19.69 | 4.69 | 0.997 |
0:1 | 248.40 | 13.75 | 20.94 | 6.83 | 0.998 |
TS content | |||||
6% | 335.25 | 28.45 | 15.43 | 3.88 | 0.999 |
8% | 412.65 | 28.93 | 17.86 | 4.14 | 0.998 |
10% | 442.71 | 31.04 | 17.52 | 4.51 | 0.997 |
12% | 476.35 | 31.64 | 16.74 | 5.43 | 0.997 |
14% | 265.11 | 14.67 | 18.85 | 5.86 | 0.999 |
Inoculum amounts | |||||
5% | 260.85 | 17.33 | 18.56 | 6.15 | 0.998 |
10% | 480.44 | 28.36 | 19.64 | 5.67 | 0.999 |
15% | 587.52 | 36.85 | 18.84 | 5.56 | 0.999 |
20% | 406.08 | 25.47 | 18.64 | 3.64 | 0.996 |
25% | 368.52 | 21.75 | 18.81 | 3.33 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Gong, B.; Bi, K.; Liu, Y.; Ma, J.; Wang, X.; Ouyang, Z.; Cui, X. Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability. Int. J. Environ. Res. Public Health 2023, 20, 804. https://doi.org/10.3390/ijerph20010804
Tian P, Gong B, Bi K, Liu Y, Ma J, Wang X, Ouyang Z, Cui X. Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability. International Journal of Environmental Research and Public Health. 2023; 20(1):804. https://doi.org/10.3390/ijerph20010804
Chicago/Turabian StyleTian, Pengjiao, Binbin Gong, Kaijian Bi, Yuxin Liu, Jing Ma, Xiqing Wang, Zhangsun Ouyang, and Xian Cui. 2023. "Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability" International Journal of Environmental Research and Public Health 20, no. 1: 804. https://doi.org/10.3390/ijerph20010804
APA StyleTian, P., Gong, B., Bi, K., Liu, Y., Ma, J., Wang, X., Ouyang, Z., & Cui, X. (2023). Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability. International Journal of Environmental Research and Public Health, 20(1), 804. https://doi.org/10.3390/ijerph20010804