Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. ES Quantification
2.3.1. ES Selection
2.3.2. Water Yield
2.3.3. Nitrogen Export
2.3.4. Soil Retention
2.3.5. Carbon Storage
2.3.6. Habitat Quality
2.4. Trade-Off Analysis
2.5. Hotspot Analysis
2.6. Simulation of Changes in Land Use
3. Results
3.1. Changes in Land Use
3.2. ES Distribution and Changes
3.3. Trade-Offs and Synergies among ESs
3.3.1. Correlation Analysis
3.3.2. Hotspot Analysis
3.4. ES simulation and Prediction
4. Discussion
4.1. Analysis of Spatiotemporal ES Changes
4.2. Trade-Off Analysis
4.3. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d′Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Angélica, V.T.; Chetan, T.; Samuel, F.A. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst. Serv. 2021, 49, 101267. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Xu, G.L.; Li, A.J.; Liu, Y.T.; Hu, C.S. Evaluation and trade-off of ecosystem services in the Qingyijiang River Basin. Acta Ecol. Sin. 2021, 41, 9315–9327. [Google Scholar] [CrossRef]
- Li, J.H.; Bai, Y.; Juha, M.A. Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Tang, L.P.; Ke, X.L.; Zhou, T.; Zheng, W.W.; Wang, L.Y. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, R.S.; Ji, G.X.; Wang, C.; Yang, Y.D.; Xu, J.H. Assessment of future water yield and water purification services in data scarce region of Northwest China. Int. J. Environ. Res. Public Health 2021, 18, 8960. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Panachuki, E.; de Oliveira, P.T.S.; de Souza Oliveira, N.; dos Santos Falcão, K. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Sci. Total Environ. 2022, 818, 151811. [Google Scholar] [CrossRef]
- Yang, Y.W.; Tian, Y.C.; Zhang, Q.; Tao, J.; Huang, Y.J.; Gao, C.P.; Lin, J.Z.; Wang, D.H. Impact of current and future land use change on biodiversity in Nanliu River Basin, Beibu Gulf of South China. Ecol. Indic. 2022, 141, 109093. [Google Scholar] [CrossRef]
- Xie, Z.L.; Li, X.Z.; Chi, Y.; Jiang, D.G.; Zhang, Y.Q.; Ma, Y.X.; Chen, S.L. Ecosystem service value decreases more rapidly under the dual pressures of land use change and ecological vulnerability: A case study in Zhujiajian Island. Ocean Coast. Manag. 2021, 201, 105493. [Google Scholar] [CrossRef]
- Xu, X.B.; Yang, G.S.; Tan, Y.; Liu, J.P.; Hu, H.Z. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.H.; Chen, J.Y.; Xue, S.; Zhou, Q.; Wang, Y.D.; Wang, Y.X.; Huang, Z.D.; Yang, S.L. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Gao, Y.; Wang, X.R.; Lin, Q.; Li, L. A new approach to land use optimization and simulation considering urban development sustainability: A case study of Bortala, China. Sustain. Cities Soc. 2022, 87, 104135. [Google Scholar] [CrossRef]
- Long, H.L.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhou, S.J.; Ouyang, S.Y. The spatial prediction and optimization of production-living-ecological space based on Markov–PLUS model: A case study of Yunnan Province. Open Geosci. 2022, 14, 481–493. [Google Scholar] [CrossRef]
- Cassia, B.C.; Anderson, R.; Trent, B. Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Sci. Total Environ. 2022, 808, 152134. [Google Scholar] [CrossRef]
- Cao, X.F.; Liu, Z.S.; Li, S.J.; Gao, Z.J. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.Y.; Jiang, D.; Lin, G.; Cao, C.L. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Guo, M.; Ma, S.; Wang, L.J.; Lin, C. Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China. Ecol. Indic. 2021, 127, 107732. [Google Scholar] [CrossRef]
- Cai, W.B.; Peng, W.T. Exploring spatiotemporal variation of carbon storage driven by land use policy in the Yangtze River Delta Region. Land 2021, 10, 1120. [Google Scholar] [CrossRef]
- Arjan, S.G.; Paul, M.E.; James, M.B.; John, R.; Matthew, B.C.; Anna, F.C.; Andrew, J.; Guy, Z. Understanding the accuracy of modelled changes in freshwater provision over time. Sci. Total Environ. 2022, 833, 155042. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, J.H. Ecosystem service trade-offs and spatial non-stationary responses to influencing factors in the Loess hilly-gully region: Lanzhou City, China. Sci. Total Environ. 2022, 846, 157422. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhuang, C.W.; Ouyang, Z.Y.; Zheng, H.; Jiang, B. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecol. Complex. 2011, 8, 177–183. [Google Scholar] [CrossRef]
- Benis, N.E.; Belinda, R.; Mathieu, R.; David, M.R. Identifying priority areas for ecosystem service management in South African grasslands. J. Environ. Manag. 2011, 92, 1642–1650. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Li, Y.F.; Robinson, B.E.; Liu, G.; Ma, D.C.; Wang, F.C.; Lu, F.; Ouyang, Z.Y.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Shao, S.; Yang, Y. Effects of precipitation and land use/cover changes on the spatio-temporal distribution of the water yield in the Huang-Huai-Hai basin, China. Environ. Earth Sci. 2021, 80, 812. [Google Scholar] [CrossRef]
- Capriolo, A.; Boschetto, R.G.; Mascolo, R.A.; Balbi, S.; Villa, F. Biophysical and economic assessment of four ecosystem services for natural capital accounting in Italy. Ecosyst. Serv. 2020, 46, 101207. [Google Scholar] [CrossRef]
- Zhang, K.L.; Tang, X.H.; Zhao, Y.T.; Huang, B.W.; Huang, L.J.; Liu, M.Y.; Luo, E.D.; Li, Y.X.; Jiang, T.; Zhang, L.Q.; et al. Differing perceptions of the youth and the elderly regarding cultural ecosystem services in urban parks: An exploration of the tour experience. Sci. Total Environ. 2022, 821, 153388. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.R.; Xu, Y.D.; Zhao, J.Y.; Zhao, H.L.; Zhang, G.L.; Peng, D.L.; Gong, P. Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Sci. Total Environ. 2022, 825, 153938. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.H.; Yin, G.D. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Wang, B.X.; Cheng, W.M. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.S.; Zhang, J.T. Quantitative assessment for the spatiotemporal changes of ecosystem services, tradeoff–synergy relationships and drivers in the Semi-Arid Regions of China. Remote Sens. 2022, 14, 239. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Peter, H.V.; Welmode, S.A.V.; Ramil, L.V.E.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Gao, L.N.; Tao, F.; Liu, R.R.; Wang, Z.L.; Leng, H.J.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Wang, C.Y.; Li, T.Z.; Guo, X.H.; Xia, L.L.; Lu, C.D.; Wang, C.B. Plus-InVEST Study of the Chengdu-Chongqing urban agglomeration’s land-use change and carbon storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Yang, H.F.; Hu, D.D.; Xu, H.; Zhong, X.N. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [Google Scholar] [CrossRef]
- Zuo, S.D.; Yang, L.P.; Dou, P.F.; Ho, H.C.; Dai, S.Q.; Ma, W.J.; Ren, Y.; Huang, C.R. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in central China. Sci. Total Environ. 2021, 764, 144609. [Google Scholar] [CrossRef]
- Cao, W.D.; Zeng, G.; Zhu, S.J.; Cao, Y.H.; Sun, B.D.; Cao, B.R.; Cui, C.; Duan, X.J.; Zhang, J.X.; Sun, W.; et al. High-quality integrated development in the Yangtze River Delta region: Problems and solutions. J. Nat. Resour. 2022, 37, 1385–1402. [Google Scholar] [CrossRef]
- Shi, X.; Nie, S.; Ju, W.; Yu, L. Application and impacts of the GlobeLand30 land cover dataset on the Beijing Climate Center Climate Model. IOP Conf. Ser. Earth Environ. Sci. 2016, 34, 012032. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ban, Y.F.; Li, S.N. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Liu, B.Y. Graphs of Rainfall Erosivity with 90m Resolution on the Loess Plateau (1981–2010). Data Sharing Infrastructure of Earth System Science_Data Sharing Infrastructure of Loess Plateau, 2013. Available online: http://loess.geodata.cn/data/datadetails.html?dataguid=10201049275608&docid=28 (accessed on 11 May 2022).
- Liu, B.Y.; Liang, Y.; Cao, L.X.; Guo, Q.K. Grid Data on Soil Erodibility in China, 2018. Available online: http://www.geodata.cn/data/datadetails.html?dataguid=265474997507274 (accessed on 10 May 2022).
- Feng, J.Y.; Chen, F.S.; Tang, F.R.; Wang, F.C.; Liang, K.; He, L.Y.; Huang, C. The Trade-Offs and Synergies of Ecosystem Services in Jiulianshan National Nature Reserve in Jiangxi Province, China. Forests 2022, 13, 416. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wu, J.Z.; Liu, Y.L.; Hai, X.Y.; Shanguan, Z.P.; Deng, L. Driving factors of ecosystem services and their spatiotemporal change assessment based on land use types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Ma, X.S.; Qi, G.H.; Wu, Y.L. Studies on water retention function of Anhui Province based on InVEST model of parameter localization. Resour. Environ. Yangtze Basin 2022, 31, 313–325. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.S.; Long, X.; Zhang, Q.; Liu, D.S.; Wu, H.J.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, L.C.; Chen, W.X.; Sun, J.; Cao, Q.; Wang, S.Q.; Wang, L.Z. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Wang, Y.N.; Yang, G.S.; Li, B.; Wang, C.; Su, W.Z. Measuring the zonal responses of nitrogen output to landscape pattern in a flatland with river network: A case study in Taihu Lake Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 34624–34636. [Google Scholar] [CrossRef]
- Liu, Y.N.; Kong, L.Q.; Xiao, Y.; Zheng, H. Effects of landscape pattern changes on ecosystem water purification service in the Yangtze River Basin. Environ. Prot. Sci. 2018, 44, 6–13. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F.; Fang, Z.; Chen, J.Y. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Ma, B.R.; Zeng, W.H.; Xie, Y.X.; Wang, Z.Z.; Hu, G.Z.; Li, Q.; Cao, R.X.; Zhuo, Y.; Zhang, T. Boundary delineation and grading functional zoning of Sanjiangyuan National Park based on biodiversity importance evaluations. Sci. Total Environ. 2022, 825, 154068. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Y.; Lin, N.F.; Ye, X.; Xu, M.J.; Qiu, J.; Zhang, K.; Zou, C.X.; Qiao, X.N.; Xu, D.L. Assessing the impacts of human disturbance on ecosystem services under multiple scenarios in karst areas of China: Insight from ecological conservation red lines effectiveness. Ecol. Indic. 2022, 142, 109202. [Google Scholar] [CrossRef]
- Li, X.Y.; Huang, C.S.; Jin, H.J.; Han, Y.L.; Kang, S.Q.; Liu, J.; Cai, H.Y.; Hu, T.X.; Yang, G.; Yu, H.Z.; et al. Spatio-Temporal Patterns of Carbon Storage Derived Using the InVEST Model in Heilongjiang Province, Northeast China. Front. Earth Sci. 2022, 10, 846456. [Google Scholar] [CrossRef]
- Li, H.Y.; Mao, D.H.; Li, X.Y.; Wang, Z.M.; Jia, M.M.; Huang, X.; Xiao, Y.H.; Xiang, H.X. Understanding the contrasting effects of policy-driven ecosystem conservation projects in northeastern China. Ecol. Indic. 2022, 135, 108578. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.F.; Xie, Y. Spatial distribution of soil organic carbon density in Anhui Province based on GIS. Sci. Geogr. Sin. 2009, 29, 540–544. [Google Scholar] [CrossRef]
- Lyu, R.F.; Zhang, J.M.; Xu, M.Q.; Li, J.J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Wu, N.; Chen, H.F.; Feng, C.Y.; Jiang, H.Q.; Wu, W.J.; Li, D.Q.; Zhao, Y.C. Spatio-temporal evolution characteristics of habitat quality based on land cover change in Anhui Province. Resour. Environ. Yangtze Basin 2020, 29, 1119–1127. [Google Scholar] [CrossRef]
- Yang, S.L.; Bai, Y.; Juha, M.A.; Wang, H.M.; Jiang, B.; Liu, G.; Chen, J.Y. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. J. Clean. Prod. 2021, 286, 125316. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Bode, M.; Richardsona, D.M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 2009, 142, 553–562. [Google Scholar] [CrossRef]
- Yang, J.L.; Dong, J.W.; Xiao, X.M.; Dai, J.H.; Wu, C.Y.; Xia, J.Y.; Zhao, G.S.; Zhao, M.M.; Li, Z.L.; Zhang, Y.; et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Lin, Z.Q.; Peng, S.Y. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Fu, B.J.; Wei, Y.P. Editorial overview: Keeping fit in the dynamics of coupled natural and human systems. Curr. Opin. Environ. Sustain. 2018, 33, A1–A4. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Yan, H.M.; Zhang, F.; Wei, X.Q. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.X.; Li, T.; Ren, F.; Li, M.Y. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Elbrecht, V.; Beermann, A.J.; Goessler, G.; Neumann, J.; Tollrian, R.; Wagner, R.; Wlecklik, A.; Piggott, J.J.; Matthaei, C.D.; Leese, F. Multiple-stressor effects on stream invertebrates: A mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshw. Biol. 2016, 61, 362–375. [Google Scholar] [CrossRef]
- Xia, H.J.; Kong, W.J.; Zhou, G.; Sun, O.J.X. Impacts of landscape patterns on water-related ecosystem services under natural restoration in Liaohe River Reserve, China. Sci. Total Environ. 2021, 792, 148290. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, L.N.; Fu, X.; Yang, Q.H.; Wu, G.; Guo, M.J.; Zhang, S.Q.; Wu, D.; Zhu, Y.; Deng, H.B. Spatial-temporal pattern of ecosystem service supply-demand and coordination in the Ulansuhai Basin, China. Ecol. Indic. 2022, 143, 109406. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W.X. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.N.; Peng, J.; Liu, Y.X.; Tian, L. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China. Sci. Total Environ. 2018, 625, 849–860. [Google Scholar] [CrossRef]
- Guo, P.F.; Zhang, F.F.; Wang, H.Y. The response of ecosystem service value to land use change in the middle and lower Yellow River: A case study of the Henan section. Ecol. Indic. 2022, 140, 109019. [Google Scholar] [CrossRef]
- Ronald, C.; Francisco, J.E.; Daniel, M.; Amr, A.-E. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in Pinus elliotii Forests in Southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.J.; Chen, Y.; David, S.M.; Fan, J.; Liu, J.G.; Dong, J.W.; Tan, K.; Cheng, X.F.; Fuller, R.A.; Xiao, X.M.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Zhao, H.; Ma, G.Q.; Li, J.; Chen, L. Tracking area loss of China’s Nature Reserves from 2003 to 2015. Glob. Ecol. Conserv. 2020, 24, e01224. [Google Scholar] [CrossRef]
LULC | Cultivated Land | Forest Land | Grassland | Wetland | Water Body | Construction Land | Bare Land |
---|---|---|---|---|---|---|---|
Kc | 0.6 | 1 | 0.65 | 0.8 | 1 | 0.3 | 0.5 |
root_depth | 2000 | 7000 | 2600 | 1000 | 100 | 500 | 500 |
LULC_veg | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
load_n | 100 | 2.8 | 8 | 2.8 | 2.8 | 100 | 4 |
eff_n | 0.2 | 0.8 | 0.75 | 0.8 | 0.8 | 0.05 | 0.01 |
crit_len_n | 25 | 300 | 100 | 10 | 10 | 10 | 10 |
usle_c | 0.35 | 0.003 | 0.01 | 0.001 | 0.001 | 0.001 | 0.01 |
usle_p | 0.4 | 0.2 | 0.2 | 0.001 | 0.001 | 0.001 | 0.2 |
C_above | 15.8 | 44.6 | 17.7 | 10.83 | 8.2 | 1.2 | 10.36 |
C_below | 40.3 | 11.1 | 44.2 | 19.18 | 39.5 | 27.6 | 32.4 |
C_soil | 78.2 | 124.3 | 124.7 | 106.7 | 40.6 | 43.2 | 53.8 |
C_dead | 5 | 1.9 | 0.08 | 3.98 | 0 | 0 | 0.96 |
MAX_DIST | 4 | - | - | - | - | 8 | 6 |
WEIGHT | 0.6 | - | - | - | - | 0.4 | 0.5 |
DECAY | linear | - | - | - | - | exponential | linear |
HABITAT | 0.3 | 1 | 0.8 | 0.7 | 0.7 | 0 | 0.6 |
Cultivated land | 0 | 0.6 | 0.8 | 0.55 | 0.5 | 0 | 0.6 |
Construction land | 0.8 | 0.75 | 0.6 | 0.7 | 0.4 | 0 | 0.4 |
Bare land | 0.4 | 0.2 | 0.6 | 0.55 | 0.2 | 0.1 | 0 |
Land Use Type | Cultivated Land | Forest Land | Grassland | Wetland | Water Body | Construction Land | Bare Land |
---|---|---|---|---|---|---|---|
weight | 0.319021357 | 0.154824223 | 0.077717415 | 0.02203639 | 0.085903028 | 0.338678453 | 0.001819133 |
ND | CLP | EP | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | a | b | c | d | e | f | g | a | b | c | d | e | f | g | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
e | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Type of ES | 2000 | 2010 | 2020 | Changes (2000–2020) |
---|---|---|---|---|
Water yield (109 m3) | 58.97 | 50.86 | 66.47 | 7.50 |
Nitrogen export (103 t) | 301.02 | 302.18 | 299.78 | −1.24 |
Soil retention (107 t) | 184.47 | 184.46 | 184.57 | 0.10 |
Carbon storage (106 t) | 2024.46 | 2012.02 | 1990.62 | −33.84 |
Habitat quality | 0.454 | 0.453 | 0.440 | −0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhang, P.; Qiu, X.; Xu, G.; Chi, J. Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. Int. J. Environ. Res. Public Health 2023, 20, 855. https://doi.org/10.3390/ijerph20010855
Yang Q, Zhang P, Qiu X, Xu G, Chi J. Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. International Journal of Environmental Research and Public Health. 2023; 20(1):855. https://doi.org/10.3390/ijerph20010855
Chicago/Turabian StyleYang, Qiangqiang, Pian Zhang, Xiaocong Qiu, Guanglai Xu, and Jianyu Chi. 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China" International Journal of Environmental Research and Public Health 20, no. 1: 855. https://doi.org/10.3390/ijerph20010855
APA StyleYang, Q., Zhang, P., Qiu, X., Xu, G., & Chi, J. (2023). Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. International Journal of Environmental Research and Public Health, 20(1), 855. https://doi.org/10.3390/ijerph20010855