Lower Limb Anthropometric Profiling in Professional Female Soccer Players: A Proof of Concept for Asymmetry Assessment Using Video Analysis
Abstract
:1. Introduction
2. Objectives
3. Methodology
3.1. Design
3.2. Participants
3.3. Procedures
3.4. Statistical Analyses
4. Results
5. Discussion
5.1. Range of Motion
5.2. Ligament Stability
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UEFA. Women’s Football Across National Associations 2016/17. Available online: https://img.fifa.com/image/upload/nq3ensohyxpuxovcovj0.pdf (accessed on 1 February 2017).
- Gwinn, D.E.; Wilckens, J.H.; McDevitt, E.R.; Ross, G.; Kao, T.-C. The Relative Incidence of Anterior Cruciate Ligament Injury in Men and Women at the United States Naval Academy*. Am. J. Sport. Med. 2000, 28, 98–102. [Google Scholar]
- Arendt, E.; Dick, R. Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. Am. J. Sport. Med. 1995, 23, 694–701. [Google Scholar]
- Ireland, M. Anterior cruciate ligament injury in female athletes: Epidemiology. J. Athl. Train. 1999, 34, 150–154. [Google Scholar]
- Waldén, M.; Hägglund, M.; Werner, J.; Ekstrand, J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sport. Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar]
- Fuller, C.W.; Dick, R.W.; Corlette, J.; Schmalz, R. Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 2: Training injuries. Br. J. Sport. Med. 2007, 41, i27–i32. [Google Scholar]
- Gribble, P.A.; Bleakley, C.M.; Caulfield, B.M.; Docherty, C.L.; Fourchet, F.; Fong, D.T.-P.; Hertel, J.; E Hiller, C.; Kaminski, T.W.; O McKeon, P.; et al. 2016 consensus statement of the International Ankle Consortium: Prevalence, impact and long-term consequences of lateral ankle sprains. Br. J. Sport. Med. 2016, 50, 1493–1495. [Google Scholar]
- Renstrom, P.; Ljungqvist, A.; A Arendt, E.; Beynnon, B.D.; Fukubayashi, T.; E Garrett, W.; Georgoulis, T.; E Hewett, T.; Johnson, R.P.; Krosshaug, T.; et al. Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. Br. J. Sport. Med. 2008, 42, 394–412. [Google Scholar]
- Chiaia, T.A.; Maschi, R.A.; Stuhr, R.M.; Rogers, J.R.; Sheridan, M.A.; Callahan, L.R.; Hannafin, J.A. A Musculoskeletal Profile of Elite Female Soccer Players. HSS J. 2009, 5, 186–195. [Google Scholar]
- Renström, P.A. Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: Recent evidence and a personal reflection. Br. J. Sport. Med. 2012, 47, 367–372. [Google Scholar]
- Zebis, M.K.; Andersen, L.L.; Brandt, M.D.; Myklebust, G.; Bencke, J.; Lauridsen, H.B.; Bandholm, T.; Thorborg, K.; Hölmich, P.; Aagaard, P. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: A randomised controlled trial. Br. J. Sport. Med. 2016, 50, 552–557. [Google Scholar]
- Awan, R.; Smith, J.; Boon, A.J. Measuring shoulder internal rotation range of motion: A comparison of 3 techniques. Arch. Phys. Med. Rehab. 2002, 83, 1229–1234. [Google Scholar]
- Melian, A.; Laguarta, S.; Varillas, D. Reliability and Concurrent Validity of the Goniometer-Pro App vs a Universal Goniometer in determining Passive Flexion of Knee. Int. J. Comput. Appl. 2017, 173, 30–34. [Google Scholar]
- Griffin, L.Y.; Albohm, M.J.; Arendt, E.A.; Bahr, R.; Beynnon, B.D.; DeMaio, M.; Dick, R.W.; Engebretsen, L.; Garrett, W.E.; Hannafin, J.A.; et al. Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries. Am. J. Sport. Med. 2006, 34, 1512–1532. [Google Scholar]
- Orchard, J.; Seward, H.; McGivern, J.; Hood, S. Intrinsic and Extrinsic Risk Factors for Anterior Cruciate Ligament Injury in Australian Footballers*. Am. J. Sport. Med. 2001, 29, 196–200. [Google Scholar]
- Huston, L.J.; Greenfield, M.V.; Wojtys, E.M. Anterior Cruciate Ligament Injuries in the Female Athlete. Clin. Orthop. Relat. Res. 2000, 372, 50–63. [Google Scholar]
- Malousaris, G.G.; Bergeles, N.K.; Barzouka, K.G.; Bayios, I.A.; Nassis, G.P.; Koskolou, M.D. Somatotype, size and body composition of competitive female volleyball players. J. Sci. Med. Sport 2008, 11, 337–344. [Google Scholar]
- Sánchez-García, S.; García-Peña, C.; Duque-López, M.X.; Cortés-Núñez, A.R.; Reyes-Beaman, S. Anthropometric measures and nutritional status in a healthy elderly population. BMC Public Health 2007, 7, 1–9. [Google Scholar]
- Brooks, J.; Fuller, C.; Kemp, S.; Reddin, D. A prospective study of injuries and training amongst the England 2003 Rugby World Cup squad. Br. J. Sport. Med. 2005, 39, 288–293. [Google Scholar]
- Quarrie, K.L.; Alsop, J.C.; Waller, A.E.; Bird, Y.N.; Marshall, S.; Chalmers, D.J. The New Zealand rugby injury and performance project. VI. A prospective cohort study of risk factors for injury in rugby union football. Br. J. Sport. Med. 2001, 35, 157–166. [Google Scholar]
- Scaramussa, K.; Castro, J.; de Gomes, J. Does decrease in hip range of motion interfere in frontal plane leg alignment in teenage soccer players? Eur. J. Orthop. Surg. Traumatol. 2018, 28, 477–483. [Google Scholar]
- Buchheit, M. The 30-15 Intermittent Fitness Test: Accuracy for Individualizing Interval Training of Young Intermittent Sport Players. J. Strength Cond. Res. 2008, 22, 365. [Google Scholar]
- King, D.A.; Cummins, C.; Hume, P.A.; Clark, T.N. Physical Demands of Amateur Domestic and Representative Netball in One Season in New Zealand Assessed Using Heart Rate and Movement Analysis. J. Strength Cond. Res. 2018, 34, 2062–2070. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sport. Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Lockie, R.G.; Moreno, M.R.; Lazar, A.; Orjalo, A.J.; Giuliano, D.V.; Risso, F.G.; Davis, D.L.; Crelling, J.B.; Lockwood, J.R.; Jalilvand, F. The Physical and Athletic Performance Characteristics of Division I Collegiate Female Soccer Players by Position. J. Strength Cond. Res. 2018, 32, 334–343. [Google Scholar]
- Krustrup, P.; Mohr, M.; Nybo, L.; Jensen, J.M.; Nielsen, J.J.; Bangsbo, J. The Yo-Yo IR2 Test&colon Physiological Response, Reliability, and Application to Elite Soccer. Med. Sci. Sports Exerc. 2006, 38, 1666–1673. [Google Scholar]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness Profiling in Soccer: Physical and Physiologic Characteristics of Elite Players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar]
- Hogg, J.A.; Schmitz, R.J.; Nguyen, A.-D.; Shultz, S.J. Passive Hip Range-of-Motion Values Across Sex and Sport. J. Athl. Train. 2018, 53, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Wik, E.H.; Auliffe, S.M.; Read, P.J. Examination of Physical Characteristics and Positional Differences in Professional Soccer Players in Qatar. Sports 2018, 7, 9. [Google Scholar]
- Galhoum, A.E.; Wiewiorski, M.; Valderrabano, V. Ankle instability: Anatomy, mechanics, management and sequelae. Sport. Orthop. Traumatol. 2017, 33, 47–56. [Google Scholar]
- Guillodo, Y.; Simon, T.; Goff, A.L.; Saraux, A. Interest of rehabilitation in healing and preventing recurrence of ankle sprains. Ann. Phys. Rehabil. Med. 2013, 56, 503–514. [Google Scholar]
- Fradkin, A.J.; Zazryn, T.R.; Smoliga, J.M. Effects of Warming-up on Physical Performance: A Systematic Review With Meta-analysis. J. Strength Cond. Res. 2010, 24, 140. [Google Scholar]
- Khamis, S.; Carmeli, E. A new concept for measuring leg length discrepancy. J Orthop. 2017, 14, 276–280. [Google Scholar]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sport. Phys. Ther. 2012, 7, 279–287. [Google Scholar]
- Milanese, S.; Gordon, S.; Buettner, P.; Flavell, C.; Ruston, S.; Coe, D.; O’Sullivan, W.; McCormack, S. Reliability and concurrent validity of knee angle measurement: Smart phone app versus universal goniometer used by experienced and novice clinicians. Man. Ther. 2014, 19, 569–574. [Google Scholar]
- Reese, N.B.; Bandy, W. Joint Range of Motion and Muscle Length Testing, 2nd ed.; Saunders/Elsevier: St. Louis, Mo, USA, 2010. [Google Scholar]
- Nussbaumer, S.; Leunig, M.; Glatthorn, J.F.; Stauffacher, S.; Gerber, H.; Maffiuletti, N.A. Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskelet. Disord. 2010, 11, 194. [Google Scholar]
- Neto, M.G.; Da Silva, M.M.; Araujo, A.D.; De Jesus, F.L.A.; Carvalho, V.O.; Conceição, C.S. Effects of the FIFA 11 training program on injury prevention and performance in football players: A systematic review with meta-analysis. Phys. Ther. Sport 2016, 18, e9. [Google Scholar]
- Barbosa, G.D.M.; Dantas, G.A.D.F.; da Silva, B.R.; Pinheiro, S.M.; dos Santos, H.H.; Vieira, W.H.D.B. Intra-rater and Inter-instrument Reliability on Range of Movement of Active Knee Extension. Mot. Rev. De Educ. Física 2017, 23, 53–59. [Google Scholar]
- Reiman, M.P. Orthopedic Clinical Examination; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Guillo, S.; Bauer, T.; Lee, J.; Takao, M.; Kong, S.; Stone, J.; Mangone, P.; Molloy, A.; Perera, A.; Pearce, C.; et al. Consensus in chronic ankle instability: Aetiology, assessment, surgical indications and place for arthroscopy. Orthop. Traumatol. Surg. Res. 2013, 99, S411–S419. [Google Scholar]
- Martinez-Lagunas, V.; Niessen, M.; Hartmann, U. Women’s football: Player characteristics and demands of the game. J. Sport Health Sci. 2014, 3, 258–272. [Google Scholar]
- Bedi, A.; Warren, R.F.; Wojtys, E.M.; Oh, Y.K.; Ashton-Miller, J.A.; Oltean, H.; Kelly, B.T. Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 2024–2031. [Google Scholar]
- Cejudo, A.; Baranda, P.; de Ayala, F.; Santonja, F. A simplified version of the weight-bearing ankle lunge test: Description and test–retest reliability. Man. Ther. 2014, 19, 355–359. [Google Scholar]
- Cibulka, M.T.; Sinacore, D.R.; Cromer, G.S.; Delitto, A. Unilateral Hip Rotation Range of Motion Asymmetry in Patients With Sacroiliac Joint Regional Pain. Spine 1998, 23, 1009. [Google Scholar]
- Feeley, B.T.; Powell, J.W.; Muller, M.S.; Barnes, R.P.; Warren, R.F.; Kelly, B.T. Hip Injuries and Labral Tears in the National Football League. Am. J. Sport. Med. 2008, 36, 2187–2195. [Google Scholar]
- Verrall, G.M.; Slavotinek, J.P.; Barnes, P.G.; Fon, G.T. Description of pain provocation tests used for the diagnosis of sports-related chronic groin pain: Relationship of tests to defined clinical (pain and tenderness) and MRI (pubic bone marrow oedema) criteria. Scand. J. Med. Sci. Sport. 2005, 15, 36–42. [Google Scholar]
- Williams, J.G. Limitation of hip joint movement as a factor in traumatic osteitis pubis. Br. J. Sport. Med. 1978, 12, 129–133. [Google Scholar]
- Larson, C.M. Sports Hernia/Athletic Pubalgia. Sport. Health A Multidiscip. Approach 2014, 6, 139–144. [Google Scholar]
- Gomes, J.L.; Palma, H.M.; Ruthner, R. Influence of hip restriction on noncontact ACL rerupture. Knee Surg. Sport. Traumatol. Arthrosc. 2014, 22, 188–191. [Google Scholar]
- Wahlstedt, C.; Rasmussen-Barr, E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surg. Sport. Traumatol. Arthrosc. 2014, 23, 3202–3207. [Google Scholar]
- Malloy, P.; Morgan, A.; Meinerz, C.; Geiser, C.; Kipp, K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 3550–3555. [Google Scholar]
- Malliaras, P.; Cook, J.L.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport. 2006, 9, 304–309. [Google Scholar]
- Pope, R.; Herbert, R.; Kirwan, J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust. J. Physiother. 1998, 44, 165–172. [Google Scholar]
- Noronha, M.; de Refshauge, K.; Herbert, R.; Kilbreath, S.; Hertel, J. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? Br. J. Sport. Med. 2006, 40, 824. [Google Scholar]
- Barker, H.B.; Beynnon, B.D.; Renström, P. Ankle Injury Risk Factors in Sports. Sport. Med. 1997, 23, 69–74. [Google Scholar]
- Beynnon, B.D.; Murphy, D.F.; Alosa, D.M. Predictive Factors for Lateral Ankle Sprains: A Literature Review. J. Athl. Train. 2002, 37, 376–380. [Google Scholar]
- Ashton-Miller, J.A.; Ottaviani, R.A.; Hutchinson, C.; Wojtys, E.M. What Best Protects the Inverted Weightbearing Ankle Against Further Inversion? Am. J. Sport. Med. 1996, 24, 800–809. [Google Scholar]
- Jung, H.-G.; Kim, N.-R.; Kim, T.-H.; Eom, J.-S.; Lee, D.-O. Magnetic Resonance Imaging and Stress Radiography in Chronic Lateral Ankle Instability. Foot Ankle Int. 2017, 38, 621–626. [Google Scholar]
- Giannini, S.; Ruffilli, A.; Pagliazzi, G.; Mazzotti, A.; Evangelisti, G.; Buda, R.; Faldini, C. Treatment algorithm for chronic lateral ankle instability. Muscles Ligaments Tendons J. 2015, 4, 455–460. [Google Scholar]
- Webster, K.A.; Pietrosimone, B.G.; Gribble, P.A. Muscle Activation During Landing Before and After Fatigue in Individuals with or Without Chronic Ankle Instability. J. Athl. Train. 2016, 51, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, G.M.; Preiss, S.; Zenobi-Wong, M.; Harder, L.P.; Maier, D.; Dvorák, J. Osteoarthritis in Football. Cartilage 2017, 8, 162–172. [Google Scholar]
- Ding, L.; Guo, D.; Homandberg, G.A.; Buckwalter, J.A.; Martin, J.A. A single blunt impact on cartilage promotes fibronectin fragmentation and upregulates cartilage degrading stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model. J. Orthop. Res. 2014, 32, 811–818. [Google Scholar]
- Wong, P.; Hong, Y. Soccer injury in the lower extremities. Br. J. Sport. Med. 2005, 39, 473. [Google Scholar]
- Bahr, R.; Lian, Ø.; Bahr, I. A twofold reduction in the incidence of acute ankle sprains in volleyball after the introduction of an injury prevention program: A prospective cohort study. Scand. J. Med. Sci. Sport. 1997, 7, 172–177. [Google Scholar]
- Grimm, N.L.; Jacobs, J.C.; Kim, J.; Amendola, A.; Shea, K.G. Ankle Injury Prevention Programs for Soccer Athletes Are Protective. J. Bone Jt. Surg. Am. 2016, 98, 1436–1443. [Google Scholar]
- Read, P.J.; Oliver, J.L.; Croix, M.B.; Myer, G.D.; Lloyd, R.S. Neuromuscular Risk Factors for Knee and Ankle Ligament Injuries in Male Youth Soccer Players. Sport. Med. 2016, 46, 1059–1066. [Google Scholar]
Measurement | Procedure |
---|---|
True limb length | Measured using a tape measure from the anterior superior iliac spine to the medial malleolus whilst supine [33]. |
Ankle dorsiflexion | Measured using a tape measure for the knee-to-wall test, measuring the distance from the wall to the great toe without the heel raising [34]. |
Knee flexion and extension | Measured between the greater trochanter of the femur, lateral epicondyle of the femur (fulcrum), and the lateral malleolus of the fibula, with the patient supine [35]. During knee flexion, the participant was instructed to maintain foot contact with the plinth [36]. |
Hip flexion | Measured with the participant supine between the midline of the torso, greater trochanter of the femur (fulcrum), and the lateral epicondyle of the femur, with the maintenance of a flexed knee [37]. |
Hip extension | Measured with the participant prone between the midline of the torso, greater trochanter of the femur (fulcrum), and the lateral epicondyle of the femur [37]. |
Hip internal and external rotation | Measured with the participant supine and the hip in 90 degrees of flexion. The angle was calculated between a transverse line across the anterior superior iliac spine, with the fulcrum at the midpoint of the patella, and the deviation away from the neutral position of the tibia [37]. |
Straight leg raise | Measured with the patient lying supine and maintaining an extended knee, with the contralateral limb in contact with the plinth. The angle was measured from the midline of the torso, greater trochanter of the femur (fulcrum), and lateral malleolus of the fibula [38]. |
Test | Dominant Leg | Nondominant Leg | MANOVA Results | |
---|---|---|---|---|
Analysis | p Value & | |||
True limb length (cm) | 88.6 [87.0 to 90.2] | 88.7 [87.0 to 90.3] | Main effect for leg dominance | p = 0.621 |
Ankle dorsiflexion (cm) | 10.1 [9.0 to 11.1] | 10.1 [9.2 to 11.2] | ||
Knee flexion (°) | 123.0 [120.1 to 125.0] | 122.7 [120.3 to 125.0] | ||
Knee extension (°) | −0.2 [−1.5 to 1.0] | −1 [−2.2 to 0.1] | Main effect for position | p = 0.030 |
Hip flexion (°) | 109.8 [105.8 to 113.8] | 112.8 [109.8 to 115.8] | ||
Hip extension (°) | 20.2 [17.9 to 22.6] | 20.7 [18.2 to 23.1] | ||
Hip internal rotation (°) | 22.8 19.9 to 25.6] | 25.9 [23.0 to 29.0] | Leg dominance X position interaction | p > 0.05 |
Hip external rotation (°) | 20.2 [17.9 to 22.6] | 20.7 [18.2 to 23.1] | ||
Straight leg raise (°) | 87.1 [80.1 to 94.0] | 87.5 [80.9 to 94.1] |
Test | Defender # (n = 16 Limbs) | Midfielder # | Attacker # | |
---|---|---|---|---|
(n= 27 Limbs) | (n = 10 Limbs) | ηp2 | ||
Age (years) | 22.3 [20.2 to 24.6] | 23.0 [21.2 to 24.8] | 22.0 [18.1 to 26.0] | NS |
Height (cm) | 165.1 [158.8 to 171.4] | 167.8 [164.1 to 171.5] | 165.7 [158.9 to 172.5] | NS |
Weight (kg) | 61.1 [55.9 to 66.4] | 60.7 [57.9 to 63.5] | 61.9 [55.1 to 68.8] | NS |
Ankle dorsiflexion (cm) * | 8.5 [7.0 to 10.1] | 10.7 [9.7 to 11.7] | 11.2 [9.3 to 13.0] | 0.146 |
Knee flexion (°) | 123.6 [119.2 to 128.0] | 121.5 [118.6 to 124.4] | 123.5 [118.9 to 128.1] | NS |
Knee extension (°) | −0.1 [−2.0 to 1.8] | −1.2 [−2.4 to 0.05] | −0.7 [−2.5 to 1.1] | NS |
Hip flexion (°) | 110.2 [105.4 to 115.0] | 112.4 [109.5 to 115.3] | 112.5 [104.4 to 120.6] | NS |
Hip extension (°) | 20.5 [16.4 to 24.6] | 19.9 [17.2 to 22.7] | 21.8 [18.0 to 25.6] | NS |
Hip internal rotation (°) ** | 22.7 [19.0 to 16.4] | 23.2 [20.3 to 26.2] | 32.3 [27.9 to 36.7] | 0.236 |
Hip external rotation (°) | 29.7 [24.0 to 35.4] | 28.4 [24.4 to 32.4] | 34.5 [29.5 to 39.5] | NS |
Straight leg raise (°) | 91.1 [79.3 to 102.9] | 86.7 [79.5 to 93.8] | 79.4 [67.9 to 90.9] | NS |
Limb Dominance | ||||
---|---|---|---|---|
Dominant Side | Nondominant Side | Total | ||
Talar Inversion | Unstable | 12 | 11 | 23 |
Stable | 18 | 19 | 37 | |
Total | 30 | 30 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weaver, K.J.; Relph, N. Lower Limb Anthropometric Profiling in Professional Female Soccer Players: A Proof of Concept for Asymmetry Assessment Using Video Analysis. Int. J. Environ. Res. Public Health 2023, 20, 6124. https://doi.org/10.3390/ijerph20126124
Weaver KJ, Relph N. Lower Limb Anthropometric Profiling in Professional Female Soccer Players: A Proof of Concept for Asymmetry Assessment Using Video Analysis. International Journal of Environmental Research and Public Health. 2023; 20(12):6124. https://doi.org/10.3390/ijerph20126124
Chicago/Turabian StyleWeaver, Kristian J., and Nicola Relph. 2023. "Lower Limb Anthropometric Profiling in Professional Female Soccer Players: A Proof of Concept for Asymmetry Assessment Using Video Analysis" International Journal of Environmental Research and Public Health 20, no. 12: 6124. https://doi.org/10.3390/ijerph20126124
APA StyleWeaver, K. J., & Relph, N. (2023). Lower Limb Anthropometric Profiling in Professional Female Soccer Players: A Proof of Concept for Asymmetry Assessment Using Video Analysis. International Journal of Environmental Research and Public Health, 20(12), 6124. https://doi.org/10.3390/ijerph20126124