Framing Effects of Cognitive Behavioural Therapy for Depression on Perceptions of Believability, Acceptability, and Credibility
Abstract
:1. Introduction
Current Investigation
- Participants receiving either one of two biology-focused descriptions will report a significantly greater believability of CBT’s ability to disrupt biological mechanisms in depression compared to those in the control condition (Study 1).
- Participants receiving either one of two stress-focused descriptions of CBT will report a significantly greater believability of CBT’s ability to disrupt stress mechanisms in depression compared to those in the control condition (Study 1).
- Participants receiving either one of two interpersonally focused descriptions of CBT will report a significantly greater believability of CBT’s ability to disrupt relationship-based mechanisms in depression compared to those in the control condition (Study 1).
- Participants receiving complex descriptions will rate the matching explanatory models as significantly more believable than those receiving simple descriptions (Study 1).
- Participants in the tailored condition will rate CBT’s acceptability, credibility, and expectancy significantly more favourably than participants in the generic condition (Study 2).
2. Study 1 Method
2.1. Participants and Recruitment
2.2. Materials
2.2.1. CBT Descriptions
2.2.2. Depression/CBT Beliefs Scale
2.2.3. Procedure
2.2.4. Data Screening and Statistical Analyses
2.2.5. Deviations from Pre-Registration
2.3. Results
2.3.1. Effect of Treatment Description on Beliefs
2.3.2. Demographic Predictors and Treatment Descriptions
3. Study 2 Method
3.1. Participants and Recruitment
3.2. Materials
3.2.1. CBT Descriptions
3.2.2. Modified Treatment Acceptability/Adherence Scale (TAAS)
3.2.3. Modified Credibility/Expectancy Questionnaire (CEQ)
3.3. Procedure
3.4. Data Screening and Analysis Plan
3.5. Results
4. General Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Total (n = 425) | Generic (n = 59) | Simple | Complex | |||||
---|---|---|---|---|---|---|---|---|
Biology (n = 58) | Stress (n = 59) | Relationship (n = 66) | Biology (n = 60) | Stress (n = 60) | Relationship (n = 63) | |||
Age: M(SD) | 35.8 (11.2) | 36.5 (11.5) | 36.9 (12.0) | 36.1 (11.0) | 34.3 (11.0) | 35.3 (11.9) | 35.4 (9.7) | 36.7 (11.4) |
Race/Ethnicity a: n (%) | ||||||||
White | 323 (76) | 51 (86.4) | 45 (77.6) | 45 (76.3) | 46 (69.7) | 44 (73.3) | 51 (85) | 42 (66.7) |
Black | 56 (13.2) | 5 (8.5) | 5 (8.6) | 8 (13.6) | 7 (10.6) | 8 (13.3) | 7 (11.7) | 17 (27.0) |
Asian | 35 (8.2) | 6 (10.2) | 6 (10.3) | 6 (10.2) | 8 (12.1) | 4 (6.7) | 3 (5.0) | 5 (7.9) |
Hispanic/Latino | 29 (6.8) | 1 (1.7) | 5 (8.6) | 4 (6.8) | 5 (7.6) | 7 (11.7) | 4 (6.7) | 3 (4.8) |
Indigenous | 4 (0.9) | 0 (0) | 1 (1.7) | 1 (1.7) | 0 (0) | 0 (0) | 1 (1.7) | 1 (1.6) |
Middle Eastern/North African | 3 (0.7) | 0 (0) | 1 (1.7) | 1 (1.7) | 1 (1.5) | 0 (0) | 0 (0) | 0 (0) |
Other | 3 (0.7) | 0 (0) | 0 (0) | 0 (0) | 2 (3.0) | 0 (0) | 1 (1.7) | |
Gender | ||||||||
Male | 226 (53.2) | 28 (47.5) | 30 (51.7) | 27 (45.8) | 40 (60.6) | 32 (53.3) | 31 (51.7) | 38 (60.3) |
Female | 198 (46.6) | 31 (52.5) | 28 (48.3) | 32 (54.2) | 25 (37.9) | 28 (46.7) | 29 (48.3) | 25 (39.7) |
Non-binary | 1 (0.2) | 0 (0) | 0 (0) | 0 (0) | 1 (1.5) | 0 (0) | 0 (0) | 0 (0) |
Country | ||||||||
Canada | 2 (0.5) | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) | 1 (1.7) | 0 (0) | 0 (0) |
USA | 423 (99.5) | 59 (100) | 58 (100) | 58 (98.3) | 66 (100) | 59 (98.3) | 60 (100) | 63 (100) |
Education | ||||||||
High school or below | 133 (31.3) | 15 (25.4) | 15 (25.9) | 14 (23.7) | 24 (36.4) | 27 (45.0) | 18 (30.0) | 20 (31.7) |
College | 230 (54.1) | 37 (62.7) | 35 (60.3) | 37 (62.7) | 33 (50) | 25 (41.7) | 33 (55.0) | 30 (47.6) |
Postgraduate | 62 (14.6) | 7 (11.9) | 8(13.8) | 8 (13.6) | 9 (13.6) | 8 (13.3) | 9 (15.0) | 13 (20.6) |
Marital Status | ||||||||
Single | 167 (39.3) | 25 (42.4) | 28 (48.3) | 11 (18.6) | 27 (40.9) | 28 (46.7) | 18 (30.0) | 30 (47.6) |
Dating | 35 (8.2) | 7 (11.9) | 2 (3.4) | 8 (13.6) | 6 (9.1) | 2 (3.3) | 6 (10.0) | 4 (6.3) |
Married/cohabitating | 199 (46.8) | 27 (45.8) | 22 (37.9) | 39 (66.1) | 27 (40.9) | 26 (43.3) | 30 (50.0) | 28 (44.4) |
Divorced/separated | 23 (5.4) | 0 (0) | 5 (8.6) | 1 (1.7) | 6 (9.1) | 4 (6.7) | 6 (10) | 1 (1.6) |
Widowed | 1 (0.2) | 0 (0) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Employment | ||||||||
Full-time | 313 (73.6) | 45 (76.3) | 43 (74.1) | 46 (78.0) | 44 (66.7) | 45 (75.0) | 45 (75) | 45 (71.4) |
Part-time | 51 (12) | 7 (11.9) | 6 (10.3) | 6 (10.2) | 11 (16.7) | 6 (10.0) | 8 (13.3) | 7 (11.1) |
Unemployed | 22 (5.2) | 2 (3.4) | 4 (6.9) | 6 (10.2) | 2 (3.0) | 2 (3.3) | 2 (3.3) | 4 (6.3) |
Not looking for work | 21 (4.9) | 3 (5.1) | 1 (1.7) | 1 (1.7) | 0 (0) | 3 (5.0) | 2 (2.2) | 4 (6.3) |
Never employed | 6 (1.4) | 1 (1.7) | 0 (0) | 0 (0) | 1 (1.5) | 2 (3.3) | 1 (1.7) | 1 (1.6) |
Retired | 12 (2.8) | 1 (1.7) | 4 (6.9) | 0 (0) | 1 (1.5) | 2 (3.3) | 2 (3.3) | 2 (3.2) |
Previously familiar with the term “CBT” | 203 (47.8) | 27 (45.8) | 28 (48.3) | 30 (50.8) | 32 (48.5) | 30 (50) | 24 (40) | 32 (50.8) |
Previously treated for depression | 128 (30.1) | 18 (30.5) | 15 (25.9) | 16 (27.1) | 23 (34.8) | 20 (33.3) | 16 (26.7) | 20 (31.7) |
Previoussly treated with CBT for depression b | 52 (40.6) | 4 (22.2) | 6 (40) | 8 (50) | 11 (47.8) | 11 (55) | 4 (25) | 8 (40) |
Biological Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Description | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Generic | 12.29 | 4.72 | <0.001 | <0.001 | 0.096 | 0.341 | 0.005 | 0.430 | |
Biological, simple | 15.93 | 3.41 | 0.826 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Biological, complex | 15.77 | 3.56 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Relationship, simple | 11.08 | 4.17 | 0.475 | 0.214 | 0.389 | ||||
Relationship, complex | 11.59 | 4.49 | 0.055 | 0.878 | |||||
Stress, simple | 10.17 | 4.20 | 0.041 | ||||||
Stress, complex | 11.70 | 3.67 | |||||||
Stress-oriented Model | |||||||||
Treatment description | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Generic | 17.81 | 2.26 | 0.401 | 0.059 | 0.039 | 0.237 | 0.355 | 0.844 | |
Biological, simple | 17.40 | 2.69 | 0.300 | 0.232 | 0.746 | 0.079 | 0.517 | ||
Biological, complex | 16.88 | 2.36 | 0.892 | 0.464 | 0.005 | 0.090 | |||
Relationship, simple | 16.82 | 3.32 | 0.375 | 0.003 | 0.061 | ||||
Relationship, complex | 17.24 | 2.39 | 0.034 | 0.323 | |||||
Stress, simple | 18.27 | 2.68 | 0.260 | ||||||
Stress, complex | 17.72 | 2.86 | |||||||
Relationship-oriented Model | |||||||||
Treatment description | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Generic | 16.88 | 2.92 | 0.712 | 0.031 | 0.469 | 0.247 | 0.763 | 0.086 | |
Biological, simple | 16.67 | 2.75 | 0.075 | 0.733 | 0.127 | 0.944 | 0.180 | ||
Biological, complex | 15.67 | 3.16 | 0.134 | 0.001 | 0.063 | 0.654 | |||
Relationship, simple | 16.48 | 3.51 | 0.054 | 0.679 | 0.298 | ||||
Relationship, complex | 17.52 | 2.55 | 0.143 | 0.004 | |||||
Stress, simple | 16.71 | 3.25 | 0.157 | ||||||
Stress, complex | 15.92 | 3.11 |
Total (n = 449) | Generic (n = 219) | Tailored | |||
---|---|---|---|---|---|
Biology (n = 103) | Stress (n = 105) | Relationship (n = 22) | |||
Age: M(SD) | 38.1 (12) | 37.79 (12.3) | 40.0 (12.2) | 36.9 (11.3) | 37.5 (10.1) |
Race/Ethnicity a: n (%) | |||||
White | 361 (80.4) | 174 (79.5) | 93 (90.3) | 80 (76.2) | 13 (59.1) |
Black | 40 (8.9) | 24 (11.0) | 4 (3.9) | 10 (9.5) | 2 (9.1) |
Asian | 44 (9.8) | 16 (7.3) | 7 (6.8) | 14 (13.3) | 6 (27.3) |
Hispanic/Latino | 19 (4.2) | 11 (5.0) | 1 (1.0) | 7 (6.7) | 0 (0) |
Indigenous | 4 (0.9) | 1 (0.5) | 1 (1.0) | 0 (0) | 1 (4.5) |
Middle Eastern/North African | 2 (0.4) | 0 (0) | 0 (0) | 1 (1.0) | 1 (4.5) |
Other | 1 (0.2) | 1 (0.5) | 2 (1.9) | 2 (1.9) | 0 (0) |
Gender | |||||
Male | 216 (48.1) | 107 (48.9) | 39 (37.9) | 62 (59.0) | 8 (36.4) |
Female | 232 (51.7) | 111 (50.7) | 64 (62.1) | 43 (41.0) | 14 (63.6) |
Non-binary | 1 (0.2) | 1 (0.5) | 0 (0) | 0 (0) | 0 (0) |
Country | |||||
Canada | 10 (2.2) | 4 (1.8) | 2 (1.9) | 4 (3.8) | 0 (0) |
UK | 2 (0.4) | 2 (0.9) | 0 (0) | 0 (0) | 0 (0) |
USA | 437 (97.3) | 213 (97.3) | 101 (98.1) | 101 (96.2) | 22 (100) |
Education | |||||
High school or below | 125 (27.8) | 15 (25.4) | 26 (25.2) | 27 (25.7) | 8 (36.4) |
College | 260 (57.9) | 37 (62.7) | 61 (59.2) | 59 (56.2) | 10 (45.5) |
Postgraduate | 64 (14.3) | 7 (11.9) | 16 (15.5) | 19 (18.1) | 4 (18.2) |
Marital Status | |||||
Single | 165 (36.7) | 88 (40.2) | 32 (31.1) | 41 (39.0) | 4 (18.2) |
Dating | 43 (9.6) | 27 (12.3) | 6 (5.8) | 7 (6.7) | 3 (13.6) |
Married/cohabitating | 199 (44.3) | 83 (37.9) | 53 (51.5) | 48 (45.7) | 15 (68.2) |
Divorced/separated | 38 (8.5) | 19 (8.7) | 11 (10.7) | 8 (7.6) | 0 (0) |
Widowed | 4 (0.9) | 2 (0.9) | 1 (1.0) | 1 (1.0) | 0 (0) |
Employment | |||||
Full-time | 287 (63.9) | 141 (64.4) | 63 (61.2) | 74 (70.5) | 9 (40.9) |
Part-time | 79 (17.6) | 36 (16.4) | 23 (22.3) | 14 (13.3) | 6 (27.3) |
Unemployed | 26 (5.8) | 13 (5.9) | 3 (2.9) | 9 (8.6) | 1 (4.5) |
Not looking for work | 35 (7.8) | 19 (8.7) | 7 (6.8) | 4 (3.8) | 5 (22.7) |
Never employed | 1 (0.2) | 0 (0) | 0 (0) | 1 (1.0) | 0 (0) |
Retired | 21 (4.7) | 10 (4.6) | 7 (6.8) | 3 (2.9) | 1 (4.5) |
Previously familiar with the term ‘CBT’ | 204 (45.4) | 102 (46.6) | 46 (44.7) | 48 (45.7) | 8 (36.4) |
Previously treated for depression | 167 (37.2) | 82 (37.4) | 39 (37.9) | 39 (37.1) | 7 (31.8) |
Previously treated with CBT for depression b | 52 (31.1) | 23 (28.0) | 12 (30.8) | 13 (33.3) | 4 (57.1) |
CEQ | TAAS | |||||||
---|---|---|---|---|---|---|---|---|
Tailored | Control | Tailored | Control | |||||
M | SD | M | SD | M | SD | M | SD | |
Biochemical | 36.30 | 9.24 | 35.90 | 10.70 | 36.60 | 8.22 | 36.48 | 9.10 |
Stress/Environmental | 38.87 | 8.02 | 37.94 | 9.14 | 38.23 | 7.39 | 38.24 | 7.96 |
Relationship/Interpersonal | 36.68 | 10.72 | 41.45 | 9.64 | 37.49 | 6.63 | 39.30 | 7.67 |
References
- Friedrich, M.J. Depression is the leading cause of disability around the world. JAMA 2017, 317, 1517. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.E.; Kessler, R.C.; Birnbaum, H.G.; Leong, S.A.; Lowe, S.W.; Berglund, P.A.; Corey-Lisle, P.K. The economic burden of depression in the United States: How Did it change between 1990 and 2000? J. Clin. Psychiatry 2003, 64, 1465–1475. [Google Scholar] [CrossRef]
- Kessler, R.C. The costs of depression. Psychiatr. Clin. N. Am. 2012, 35, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuijpers, P.; Quero, S.; Noma, H.; Ciharova, M.; Miguel, C.; Karyotaki, E.; Cipriani, A.; Cristea, I.A.; Furukawa, T.A. Psychotherapies for depression: A network meta-analysis covering efficacy, acceptability and long-term outcomes of all main treatment types. World Psychiatry 2021, 20, 283–293. [Google Scholar] [CrossRef]
- Dobson, K.; Beshai, S. The theory-practice gap in cognitive behavioral therapy: Reflections and a modest proposal to bridge the gap. Behav. Ther. 2013, 44, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Salem, D.; Swift, J.K.; Ramtahal, N. Meta-analysis of dropout from cognitive behavioral therapy: Magnitude, timing, and moderators. J. Consult. Clin. Psychol. 2015, 83, 1108. [Google Scholar] [CrossRef]
- Hans, E.; Hiller, W. Effectiveness of and dropout from outpatient cognitive behavioral therapy for adult unipolar depression: A meta-analysis of nonrandomized effectiveness studies. J. Consult. Clin. Psychol. 2013, 81, 75. [Google Scholar] [CrossRef] [Green Version]
- Kegel, A.F.; Flückiger, C. Predicting psychotherapy dropouts: A multilevel approach. Clin. Psychol. Psychother. 2015, 22, 377–386. [Google Scholar] [CrossRef]
- Zieve, G.G.; Persons, J.B.; Yu, L.A.D. The relationship between dropout and outcome in naturalistic cognitive behavior therapy. Behav. Ther. 2019, 50, 189–199. [Google Scholar] [CrossRef]
- Andrade, L.H.; Alonso, J.; Mneimneh, Z.; Wells, J.E.; Al-Hamzawi, A.; Borges, G.; Bromet, E.; Bruffaerts, R.; De Girolamo, G.; De Graaf, R.; et al. Barriers to mental health treatment: Results from the WHO World Mental Health surveys. Psychol. Med. 2014, 44, 1303–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojtabai, R.; Olfson, M.; Sampson, N.A.; Jin, R.; Druss, B.; Wang, P.S.; Wells, K.B.; Pincus, H.A.; Kessler, R.C. Barriers to mental health treatment: Results from the National Comorbidity Survey Replication. Psychol. Med. 2011, 41, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Chekroud, A.M.; Foster, D.; Zheutlin, A.B.; Gerhard, D.M.; Roy, B.; Koutsouleris, N.; Chandra, A.; Esposti, M.D.; Subramanyan, G.; Gueorguieva, R.; et al. Predicting barriers to treatment for depression in a U.S. national sample: A cross-sectional, proof-of-concept study. Psychiatr. Serv. 2018, 69, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, D.C.; Hart, S.L.; Howard, I.; Julian, L.; Vella, L.; Catledge, C.; Feldman, M.D. Barriers to psychotherapy among depressed and nondepressed primary care patients. Ann. Behav. Med. 2006, 32, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Kazdin, A.E. Acceptability of alternative treatments for deviant child behavior. J. Appl. Behav. Anal. 1980, 13, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.M. Social validity: The case for subjective measurement or how applied behavior analysis is finding its heart. J. Appl. Behav. Anal. 1978, 11, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Devilly, G.J.; Borkovec, T.D. Psychometric properties of the credibility/ expectancy questionnaire. J. Behav. Ther. Exp. Psychiatry 2000, 31, 73–86. [Google Scholar] [CrossRef]
- Meyer, B.; Pilkonis, P.A.; Krupnick, J.L.; Egan, M.K.; Simmens, S.J.; Sotsky, S.M. Treatment expectancies, patient alliance and outcome: Further analyses from the National Institute of Mental Health Treatment of Depression Collaborative Research Program. J. Consult. Clin. Psychol. 2002, 70, 1051. [Google Scholar] [CrossRef]
- Connolly Gibbons, M.B.; Crits-Christoph, P.; de la Cruz, C.; Barber, J.P.; Siqueland, L.; Gladis, M. Pretreatment expectations, interpersonal functioning, and symptoms in the prediction of the therapeutic alliance across supportive-expressive psychotherapy and cognitive therapy. Psychother. Res. 2003, 13, 59–76. [Google Scholar] [CrossRef]
- Edlund, M.J.; Wang, P.S.; Berglund, P.A.; Katz, S.J.; Lin, E.; Kessler, R.C. Dropping out of mental health treatment: Patterns and predictors among epidemiological survey respondents in the United States and Ontario. Am. J. Psychiatry 2002, 159, 845–851. [Google Scholar] [CrossRef]
- Constantino, M.J.; Coyne, A.E.; Boswell, J.F.; Iles, B.R.; Vîslă, A. A meta-analysis of the association between patients’ early perception of treatment credibility and their posttreatment outcomes. Psychotherapy 2018, 55, 486. [Google Scholar] [CrossRef] [PubMed]
- Constantino, M.J.; Vîslă, A.; Coyne, A.E.; Boswell, J.F. A meta-analysis of the association between patients’ early treatment outcome expectation and their posttreatment outcomes. Psychotherapy 2018, 55, 473. [Google Scholar] [CrossRef]
- Soucy, J.N.; Owens, V.A.; Hadjistavropoulos, H.D.; Dirkse, D.A.; Dear, B.F. Educating patients about Internet-delivered cognitive behaviour therapy: Perceptions among treatment seekers and non-treatment seekers before and after viewing an educational video. Internet Interv. 2016, 6, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, C.A.; Weis, H.; Ponzini, G.; McHugh, R.K. Improving perceptions of cognitive-behavioral therapy with brief website exposure: Does neuroscientific allure impact attitudes? J. Behav. Ther. Exp. Psychiatry 2017, 57, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Beshai, S.; Watson, L.M.; Meadows TJ, S.; Soucy, J.N. Perceptions of cognitive-behavioral therapy and antidepressant medication for depression after brief psychoeducation: Examining shifts in attitudes. Behav. Ther. 2019, 50, 851–863. [Google Scholar] [CrossRef]
- Addis, M.E.; Jacobson, N.S. Reasons for depression and the process and outcome of cognitive–behavioral psychotherapies. J. Consult. Clin. Psychol. 1996, 64, 1417–1424. [Google Scholar] [CrossRef]
- Watson, L.M.; Beshai, S. Causal explanations of depression on perceptions of and likelihood to choose cognitive behavioural therapy and antidepressant medications as depression treatments. Psychol. Psychother. Theory Res. Pract. 2021, 94, 201–216. [Google Scholar] [CrossRef]
- Adewuya, A.O.; Makanjuola, R.O.A. Lay beliefs regarding causes of mental illness in Nigeria: Pattern and correlates. Soc. Psychiatry Psychiatr. Epidemiol. 2008, 43, 336–341. [Google Scholar] [CrossRef]
- Razali, S.M.; Khan, U.A.; Hasanah, C.I. Belief in supernatural causes of mental illness among Malay patients: Impact on treatment. Acta Psychiatr. Scand. 1996, 94, 229–233. [Google Scholar] [CrossRef]
- Jimenez, D.E.; Bartels, S.J.; Cardenas, V.; Dhaliwal, S.S.; Alegría, M. Cultural beliefs and mental health treatment preferences of ethnically diverse older adult consumers in primary care. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2012, 20, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, S.; Peeters, F.; Huibers, M.; Roelofs, J.; Van, O.J.; Arntz, A. Does illness attribution affect treatment assignment in depression? Clin. Psychol. Psychother. 2010, 17, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.-R.; McCarthy, K.S.; Sharpless, B.A.; Barrett, M.S.; Barber, J.P. Beliefs about the causes of depression and treatment preferences. J. Clin. Psychol. 2011, 67, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, M.W.; Strecher, V.J.; Glassman, B. One size does not fit all: The case for tailoring print materials1. Ann. Behav. Med. 1999, 21, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Noar, S.M.; Benac, C.N.; Harris, M.S. Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychol. Bull. 2007, 133, 673–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, R.; Cacioppo, J. The elaboration likelihood model of persuasion. Adv. Exp. Soc. Psychol. 1986, 19, 123–205. [Google Scholar] [CrossRef]
- Petty, R.; Barden, J.; Wheeler, S. The elaboration likelihood model of persuasion: Health promotions that yield sustained behavioral change. In Emerging Theories in Health Promotion Practice and Research, 2nd ed.; DiClemente, R.J., Crosby, R.A., Kegler, M.C., Eds.; Jossey-Bass: Hoboken, NJ, USA, 2009; pp. 186–214. [Google Scholar]
- Prins, M.A.; Verhaak PF, M.; Bensing, J.M.; van der Meer, K. Health beliefs and perceived need for mental health care of anxiety and depression—The patients’ perspective explored. Clin. Psychol. Rev. 2008, 28, 1038–1058. [Google Scholar] [CrossRef] [Green Version]
- Vogel, D.L.; Wade, N.G.; Wester, S.R.; Larson, L.; Hackler, A.H. Seeking help from a mental health professional: The influence of one’s social network. J. Clin. Psychol. 2007, 63, 233–245. [Google Scholar] [CrossRef]
- Litman, L.; Robinson, J.; Abberbock, T. TurkPrime.com: A versatile crowdsourcing data acquisition platform for the behavioral sciences. Behav. Res. Methods 2017, 49, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Chandler, J.; Shapiro, D. Conducting clinical research using crowdsourced convenience samples. Annu. Rev. Clin. Psychol. 2016, 12, 53–81. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Schofield, C.A.; Ponzini, G.T.; Becker, S.J. Evaluating approaches to marketing cognitive behavioral therapy: Does evidence matter to consumers? Cogn. Behav. Ther. 2020, 49, 257–269. [Google Scholar] [CrossRef]
- Kennedy, R.; Clifford, S.; Burleigh, T.; Waggoner, P.D.; Jewell, R.; Winter, N.J.G. The shape of and solutions to the MTurk quality crisis. Political Sci. Res. Methods 2020, 8, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Hames, J.L.; Hagan, C.R.; Joiner, T.E. Interpersonal processes in depression. Annu. Rev. Clin. Psychol. 2013, 9, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol. 1997, 48, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Maletic, V.; Robinson, M.; Oakes, T.; Iyengar, S.; Ball, S.G.; Russell, J. Neurobiology of depression: An integrated view of key findings. Int. J. Clin. Pract. 2007, 61, 2030–2040. [Google Scholar] [CrossRef] [Green Version]
- DeRubeis, R.J.; Siegle, G.J.; Hollon, S.D. Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 2008, 9, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Hundt, N.E.; Mignogna, J.; Underhill, C.; Cully, J.A. The relationship between use of cbt skills and depression treatment outcome: A theoretical and methodological review of the literature. Behav. Ther. 2013, 44, 12–26. [Google Scholar] [CrossRef]
- Resseguier, N.; Verdoux, H.; Giorgi, R.; Clavel-Chapelon, F.; Paoletti, X. Dealing with missing data in the Center for Epidemiologic Studies Depression self-report scale: A study based on the French E3N cohort. BMC Med. Res. Methodol. 2013, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Driessen, E.; Hollon, S.D. Cognitive behavioral therapy for mood disorders: Efficacy, moderators and mediators. Psychiatr. Clin. North Am. 2010, 33, 537–555. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, I.; Levy, H.C.; Alcolado, G.M.; Radomsky, A.S. The treatment acceptability/adherence scale: Moving beyond the assessment of treatment effectiveness. Cogn. Behav. Ther. 2015, 44, 456–469. [Google Scholar] [CrossRef]
- Pescosolido, B.A.; Martin, J.K.; Long, J.S.; Medina, T.R.; Phelan, J.C.; Link, B.G. “A disease like any other”? A Decade of change in public reactions to schizophrenia, depression, and alcohol dependence. Am. J. Psychiatry 2010, 167, 1321–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebowitz, M.S.; Ahn, W.; Nolen-Hoeksema, S. Fixable or fate? Perceptions of the biology of depression. J. Consult. Clin. Psychol. 2013, 81, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T. The evolution of the cognitive model of depression and its neurobiological correlates. Am. J. Psychiatry 2008, 165, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Beck, A.T. Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends Cogn. Sci. 2010, 14, 418–424. [Google Scholar] [CrossRef]
- Siegle, G.J.; Carter, C.S.; Thase, M.E. Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am. J. Psychiatry 2006, 163, 735–738. [Google Scholar] [CrossRef]
- Jokić-Begić, N. Cognitive-Behavioral Therapy and neuroscience: Towards closer integration. Psihol. Teme 2010, 19, 235–254. [Google Scholar]
- Cuccolo, K.; Irgens, M.S.; Zlokovich, M.S.; Grahe, J.; Edlund, J.E. What crowdsourcing can offer to cross-cultural psychological science. Cross-Cult. Res. 2021, 55, 3–28. [Google Scholar] [CrossRef]
- Goldstein, B.; Rosselli, F. Etiological paradigms of depression: The relationship between perceived causes, empowerment, treatment preferences, and stigma. J. Ment. Health 2003, 12, 551–563. [Google Scholar] [CrossRef]
- Lebowitz, M.S. Biological conceptualizations of mental disorders among affected individuals: A review of correlates and consequences. Clin. Psychol. Sci. Pract. 2014, 21, 67–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimuddin, S.; Beshai, S.; Iskric, A.; Watson, L. Framing Effects of Cognitive Behavioural Therapy for Depression on Perceptions of Believability, Acceptability, and Credibility. Int. J. Environ. Res. Public Health 2023, 20, 6330. https://doi.org/10.3390/ijerph20146330
Salimuddin S, Beshai S, Iskric A, Watson L. Framing Effects of Cognitive Behavioural Therapy for Depression on Perceptions of Believability, Acceptability, and Credibility. International Journal of Environmental Research and Public Health. 2023; 20(14):6330. https://doi.org/10.3390/ijerph20146330
Chicago/Turabian StyleSalimuddin, Saba, Shadi Beshai, Adam Iskric, and Lisa Watson. 2023. "Framing Effects of Cognitive Behavioural Therapy for Depression on Perceptions of Believability, Acceptability, and Credibility" International Journal of Environmental Research and Public Health 20, no. 14: 6330. https://doi.org/10.3390/ijerph20146330
APA StyleSalimuddin, S., Beshai, S., Iskric, A., & Watson, L. (2023). Framing Effects of Cognitive Behavioural Therapy for Depression on Perceptions of Believability, Acceptability, and Credibility. International Journal of Environmental Research and Public Health, 20(14), 6330. https://doi.org/10.3390/ijerph20146330