Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk
Abstract
:1. Introduction
2. Methods
2.1. The South African Leg of the PURE Study
2.2. Data Collection
2.3. Statistical Methods
3. Results
Analysis of Death Determinants and Model Comparisons
4. Discussion
4.1. Strengths and Limitations
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Downey, L.; Rao, N.; Guinness, L.; Asaria, M.; Prinja, S.; Sinha, A.; Kant, R.; Pandey, A.; Cluzeau, F.; Chalkidou, K. Identification of Publicly Available Data Sources to Inform the Conduct of Health Technology Assessment in India. F1000Research 2018, 7, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Williams, C.; Liu, Z.H.; Croghan, J. Big Data Management Challenges in Health Research—A Literature Review. Brief. Bioinform. 2019, 20, 156–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. Can Mobile Health Technologies Transform Health Care? Jama 2013, 310, 2395–2396. [Google Scholar] [CrossRef] [PubMed]
- Magruder, C.; Burke, M.; Hann, N.E.; Ludovic, J.A. Using Information Technology to Improve the Public Health System. J. Public Health Manag. Pract. 2005, 11, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Budd, J.; Miller, B.S.; Manning, E.M.; Lampos, V.; Zhuang, M.; Edelstein, M.; Rees, G.; Emery, V.C.; Stevens, M.M.; Keegan, N. Digital Technologies in the Public-Health Response to COVID-19. Nat. Med. 2020, 26, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G. Survival Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-118-03106-3. [Google Scholar]
- Breslow, N.E. Analysis of Survival Data under the Proportional Hazards Model. Int. Stat. Rev. Rev. Int. Stat. 1975, 43, 45. [Google Scholar] [CrossRef]
- Kirch, W. (Ed.) Encyclopedia of Public Health; Springer: New York, NY, USA, 2008; ISBN 978-1-4020-5613-0. [Google Scholar]
- Bruzzi, P.; Green, S.B.; Byar, D.P.; Brinton, L.A.; Schairer, C. Estimating the Population Attributable Risk for Multiple Risk Factors Using Case-Control Data. Am. J. Epidemiol. 1985, 122, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Canchola, A.J.; Stewart, S.L.; Bernstein, L.; West, D.W.; Ross, R.K.; Deapen, D.; Pinder, R.; Reynolds, P.; Wright, W.; Anton-Culver, H. Cox Regression Using Different Time-Scales. Western Users of SAS Software. 2003. Available online: https://www.lexjansen.com/wuss/2003/DataAnalysis/i-cox_time_scales.pdf (accessed on 15 May 2023).
- Griffin, B.A.; Anderson, G.L.; Shih, R.A.; Whitsel, E.A. Use of Alternative Time Scales in Cox Proportional Hazard Models: Implications for Time-Varying Environmental Exposures. Stat. Med. 2012, 31, 3320–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, M.V.; Fang, J.; Kapral, M.K.; Austin, P.C. Choice of Time-Scale in Time-to-Event Analysis: Evaluating Age-Dependent Associations. Ann. Epidemiol. 2021, 62, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Baecke, J.A.; Burema, J.; Frijters, J.E. A Short Questionnaire for the Measurement of Habitual Physical Activity in Epidemiological Studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics South Africa. Mortality and Causes of Death in South Africa: Findings from Death Notification; Statistics South Africa: Pretoria, South Africa, 2017. Available online: https://www.statssa.gov.za/publications/P03093/P030932017.pdf (accessed on 18 June 2023).
- Nojilana, B.; Bradshaw, D.; Pillay-van Wyk, V.; Msemburi, W.; Laubscher, R.; Somdyala, N.I.; Joubert, J.D.; Groenewald, P.; Dorrington, R.E. Emerging Trends in Non-Communicable Disease Mortality in South Africa, 1997–2010. S. Afr. Med. J. 2016, 106, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Elsevier: Amsterdam, The Netherlands, 2011; pp. 583–605. ISBN 978-0-444-51862-0. [Google Scholar]
- Bozdogan, H. Model Selection and Akaike’s Information Criterion (AIC): The General Theory and Its Analytical Extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Bantan, R.A.R.; Chesneau, C.; Jamal, F.; Elbatal, I.; Elgarhy, M. The Truncated Burr X-G Family of Distributions: Properties and Applications to Actuarial and Financial Data. Entropy 2021, 23, 1088. [Google Scholar] [CrossRef] [PubMed]
- ZeinEldin, R.A.; Chesneau, C.; Jamal, F.; Elgarhy, M.; Almarashi, A.M.; Al-Marzouki, S. Generalized Truncated Fréchet Generated Family Distributions and Their Applications. Comput. Model. Eng. Sci. 2021, 126, 791–819. [Google Scholar] [CrossRef]
- Aldahlan, M.A.; Jamal, F.; Chesneau, C.; Elbatal, I.; Elgarhy, M. Exponentiated Power Generalized Weibull Power Series Family of Distributions: Properties, Estimation and Applications. PLoS ONE 2020, 15, e0230004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Marzouki, S.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II Topp Leone Power Lomax Distribution with Applications. Mathematics 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Bantan, R.A.R.; Chesneau, C.; Jamal, F.; Elgarhy, M.; Tahir, M.H.; Ali, A.; Zubair, M.; Anam, S. Some New Facts about the Unit-Rayleigh Distribution with Applications. Mathematics 2020, 8, 1954. [Google Scholar] [CrossRef]
- Hertzmark, E.; Wand, H.; Spiegelman, D. The SAS PAR Macro. Yale.edu Internet 2012. Available online: https://ysph.yale.edu/cmips/research/software/par_documentation-_march_2012_340188_284_47911_v2.pdf (accessed on 18 June 2023).
- Robinson, G.K. Conservative Statistical Inference. J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 381–386. [Google Scholar] [CrossRef]
- Di Leo, G.; Sardanelli, F. Statistical Significance: P Value, 0.05 Threshold, and Applications to Radiomics—Reasons for a Conservative Approach. Eur. Radiol. Exp. 2020, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All (N = 1921) | Survivors (N = 1344) | Deceased (N = 577) | * p-Value | |
---|---|---|---|---|
Person-year | 21,532 | 17,711 | 3821 | Not Applied |
Median Fu (years) | 13.0 (2.5, 13.6) | 13.2 (12.7, 13.6) | 6.6 (0.7, 12.4) | Not Applied |
Age (years) | 48.0 (36.0, 69.0) | 47.0 (36.0, 67.0) | 52.0 (37.0, 74.0) | <0.0001 |
<45 years (N, %) | 700 (36.4) | 558 (41.5) | 142 (24.6) | <0.0001 |
45 to 54 years (N, %) | 643 (33.5) | 449 (33.4) | 194 (33.6) | 0.9321 |
55 to 64 years (N, %) | 389 (20.3) | 245 (18.2) | 144 (25.0) | 0.0007 |
65 to 74 years (N, %) | 148 (7.7) | 77 (5.7) | 71 (12.3) | <0.0001 |
≥75 years (N, %) | 41 (2.1) | 15 (1.1) | 26 (4.5) | <0.0001 |
Men (N, %) | 719 (37.4) | 436 (32.4) | 283 (49.1) | <0.0001 |
Smokers (N, %) | 1261 (65.8) | 849 (63.3) | 412 (71.5) | 0.0005 |
Alcohol users (N, %) | 984 (51.4) | 630 (47.0) | 354 (61.7) | <0.0001 |
Physical activity score | 7.3 (4.6, 10.1) | 7.6 (4.7, 10.2) | 6.4 (4.3, 9.7) | <0.0001 |
Physically inactive (N, %) | 481 (25.0) | 275 (20.5) | 206 (35.7) | <0.0001 |
Hypertension (N, %) | 907 (47.2) | 589 (43.8) | 318 (55.1) | <0.0001 |
Model | Exposure | HR (95% CI) | PAR% (95% CI) | * p-Value | ‡ AIC |
---|---|---|---|---|---|
Univariate model1 | 1.34 (1.12, 1.61) | 18.3% (7.5, 28.6) | 0.0002 | 8490.7 | |
Univariate model2 | 1.44 (1.20, 1.72) | 22.3% (11.7, 32.3) | 0.9247 | 7563.2 | |
Univariate model3 | Smoking | 1.27 (1.05, 1.52) | 14.9% (3.6, 25.8) | 0.8118 | 5666.0 |
Multivariate model1 | 1.12 (0.91, 1.37) | 7.1% (−5.8, 19.8) | <0.0001 | 8378.9 | |
Multivariate model2 | 1.13 (0.92, 1.39) | 8.0% (−4.8, 20.6) | 0.8251 | 7495.6 | |
Multivariate model3 | 1.13 (0.92, 1.39) | 7.8% (−5.2, 20.5) | 0.1222 | 5619.3 | |
Univariate model1 | 1.64 (1.38, 1.94) | 24.0% (16.0, 31.8) | 0.0815 | 8436.5 | |
Univariate model2 | 1.77 (1.49, 2.09) | 28.0% (20.0, 35.7) | 0.8647 | 7507.3 | |
Univariate model3 | Alcohol use | 1.44 (1.20, 1.72) | 18.1% (9.1, 26.8) | 0.4436 | 5637.7 |
Multivariate model1 | 1.28 (1.04, 1.57) | 12.4% (2.2, 22.4) | 0.0204 | 8378.9 | |
Multivariate model2 | 1.28 (1.04, 1.57) | 12.5% (2.2, 22.4) | 0.5916 | 7495.6 | |
Multivariate model3 | 1.28 (1.05, 1.58) | 12.6% (2.3, 22.6) | 0.4785 | 5619.3 | |
Univariate model1 | 1.88 (1.58, 2.23) | 16.8% (11.6, 21.9) | 0.9373 | 8470.8 | |
Univariate model2 | 1.11 (0.93, 1.32) | 2.7% (−2.1, 7.5) | 0.3788 | 7595.6 | |
Univariate model3 | Sedentariness | 1.41 (1.17, 1.68) | 9.7% (4.2, 15.1) | 0.3818 | 5673.6 |
Multivariate model1 | 1.42 (1.18, 1.70) | 10.0% (4.4, 15.4) | 0.0709 | 8378.9 | |
Multivariate model2 | 1.44 (1.20, 1.72) | 10.4% (4.8, 15.9) | 0.9466 | 7495.6 | |
Multivariate model3 | 1.34 (1.11, 1.60) | 8.2% (2.7, 13.5) | 0.3915 | 5619.3 | |
Univariate model1 | 1.47 (1.25, 1.74) | 17.8% (10.2, 25.3) | 0.0723 | 8499.4 | |
Univariate model2 | 0.94 (0.79, 1.10) | Not-estimable | 0.0026 | 7596.2 | |
Univariate model3 | Hypertension | 1.22 (1.03, 1.44) | 9.7% (1.3, 17.9) | 0.1436 | 5681.8 |
Multivariate model1 | 1.20 (1.01, 1.42) | 8.8% (0.3, 17.1) | 0.0359 | 8378.9 | |
Multivariate model2 | 1.19 (1.00, 1.42) | 8.7% (0.2, 17.0) | 0.1003 | 7495.6 | |
Multivariate model3 | 1.15 (0.97, 1.36) | 6.8% (−1.7, 15.2) | 0.1222 | 5619.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieters, M.; Kruger, I.M.; Kruger, H.S.; Breet, Y.; Moss, S.J.; van Oort, A.; Bester, P.; Ricci, C. Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk. Int. J. Environ. Res. Public Health 2023, 20, 6417. https://doi.org/10.3390/ijerph20146417
Pieters M, Kruger IM, Kruger HS, Breet Y, Moss SJ, van Oort A, Bester P, Ricci C. Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk. International Journal of Environmental Research and Public Health. 2023; 20(14):6417. https://doi.org/10.3390/ijerph20146417
Chicago/Turabian StylePieters, Marlien, Iolanthe M. Kruger, Herculina S. Kruger, Yolandi Breet, Sarah J. Moss, Andries van Oort, Petra Bester, and Cristian Ricci. 2023. "Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk" International Journal of Environmental Research and Public Health 20, no. 14: 6417. https://doi.org/10.3390/ijerph20146417
APA StylePieters, M., Kruger, I. M., Kruger, H. S., Breet, Y., Moss, S. J., van Oort, A., Bester, P., & Ricci, C. (2023). Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk. International Journal of Environmental Research and Public Health, 20(14), 6417. https://doi.org/10.3390/ijerph20146417