Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa
Abstract
:1. Introduction
2. Methods
2.1. Design and Setting
2.2. Diagnosis of DR-TB
2.3. Standard of Care for DR-TB in the Study Setting
2.4. Participants and Sample Size
2.5. Study Procedure
2.6. Data Collection
2.7. Outcome Measures
2.8. Covariates
2.9. Statistical Analysis
2.10. Ethical Considerations
3. Results
4. Discussions
5. Strengths and Limitations
6. Conclusions
7. Recommendation
- I.
- Decentralise the WHO rapid diagnostics, e.g., Xpert MTB/Rif, including the Xpert MTB/XDR testing, to peripheral and decentralised facilities. This may shorten the time from diagnosis to treatment initiation as the Xpert MTB/XDR assay offers DSTs for isoniazid, rifampicin, fluoroquinolones and second-line injectables. This assay can be deployed to decentralised sites to provide faster, near-patient access to second-line DSTs.
- II.
- Have more required resources (human and equipment) to effectively manage and monitor adverse events of DR-TB at decentralised levels. This should be complemented with mechanisms for early referrals to specialist care at central facilities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- World Health Organization. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2020; pp. 1–232. Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 23 January 2022).
- Dye, C.; Williams, B.G.; Espinal, M.A.; Raviglione, M.C. Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science 2002, 295, 2042–2046. [Google Scholar] [CrossRef] [Green Version]
- Dharmadhikari, A.S.; Mphahlele, M.; Venter, K.; Stoltz, A.; Mathebula, R.; Masotla, T.; Van der Walt, M.; Pagano, M.; Jensen, P.; Nardell, E. Rapid impact of effective treatment on transmission of multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2014, 18, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Daru, P.; Matji, R.; AlMossawi, H.J.; Chakraborty, K.; Kak, N. Decentralized, community-based treatment for drug-resistant tuberculosis: Bangladesh program experience. Glob. Health Sci. Pract. 2018, 6, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, C.F.; Dorman, S.E.; Erasmus, L.; Koornhof, H.; Coetzee, G.; Golub, J.E. The impact of expanded testing for multidrug resistant tuberculosis using geontype MTBDRplus in South Africa: An observational cohort study. PLoS ONE 2012, 7, e49898. [Google Scholar] [CrossRef]
- Kipiani, M.; Mirtskhulava, V.; Tukvadze, N.; Magee, M.; Blumberg, H.M.; Kempker, R.R. Significant clinical impact of a rapid molecular diagnostic test (genotype MTBDRplus assay) to detect multidrug-resistant tuberculosis. Clin. Infect. Dis. 2014, 59, 1559–1566. [Google Scholar] [CrossRef]
- National Institute for Communicable Diseases. South African Tuberculosis Drug Resistance Survey 2012–14; Department of Health, Ed.; NICD: Cape Town, South Africa, 2016; pp. 1–56. [Google Scholar]
- Jacobson, K.R.; Theron, D.; Kendall, E.A.; Franke, M.F.; Barnard, M.; van Helden, P.D.; Victor, T.C.; Streicher, E.M.; Murray, M.B.; Warren, R.M. Implementation of genotype MTBDRplus reduces time to multidrug-resistant tuberculosis therapy initiation in South Africa. Clin. Infect. Dis. 2013, 56, 503–508. [Google Scholar] [CrossRef]
- Iruedo, J.; O’Mahony, D.; Mabunda, S.; Wright, G.; Cawe, B. The effect of the Xpert MTB/RIF test on the time to MDR-TB treatment initiation in a rural setting: A cohort study in South Africa’s Eastern Cape Province. BMC Infect. Dis. 2017, 17, 91. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yuan, Z.; Shen, X.; Wu, J.; Wu, Z.; Xu, B. Time to Multidrug-Resistant Tuberculosis Treatment Initiation in Association with Treatment Outcomes in Shanghai, China. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, P.; Du Toit, E.; Dunbar, R.; Lombard, C.; Caldwell, J.; Detjen, A.; Squire, S.B.; Enarson, D.A.; Beyers, N. A comparison of multidrug-resistant tuberculosis treatment commencement times in MDRTBPlus line probe assay and Xpert® MTB/RIF-based algorithms in a routine operational setting in Cape Town. PLoS ONE 2014, 9, e103328. [Google Scholar] [CrossRef]
- Cox, H.; Dickson-Hall, L.; Ndjeka, N.; van’t Hoog, A.; Grant, A.; Cobelens, F.; Stevens, W.; Nicol, M. Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation of Xpert MTB/RIF in South Africa: A retrospective cohort study. PLoS Med. 2017, 14, e1002238. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.S.; Auld, S.C.; Brust, J.C.; Mathema, B.; Ismail, N.; Moodley, P.; Mlisana, K.; Allana, S.; Campbell, A.; Mthiyane, T. Transmission of extensively drug-resistant tuberculosis in South Africa. N. Engl. J. Med. 2017, 376, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Dheda, K.; Limberis, J.D.; Pietersen, E.; Phelan, J.; Esmail, A.; Lesosky, M.; Fennelly, K.P.; te Riele, J.; Mastrapa, B.; Streicher, E.M. Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: A prospective cohort study. Lancet Respir. Med. 2017, 5, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Muller, M. An overview of the new rifampicin-resistant tuberculosis regimens available at decentralised drug-resistant tuberculosis sites for persons older than six years. S. Afr. Family Pract. 2020, 62. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. A Patient-Centred Approach to Tb Care; Department of Health, Ed.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Loveday, M.; Wallengren, K.; Reddy, T.; Besada, D.; Brust, J.C.; Voce, A.; Desai, H.; Ngozo, J.; Radebe, Z.; Master, I. MDR-TB patients in KwaZulu-Natal, South Africa: Cost-effectiveness of 5 models of care. PLoS ONE 2018, 13, e0196003. [Google Scholar] [CrossRef] [Green Version]
- Masuku, S.; Berhanu, R.; Van Rensburg, C.; Ndjeka, N.; Rosen, S.; Long, L.; Evans, D.; Nichols, B. Managing multidrug-resistant tuberculosis in South Africa: A budget impact analysis. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2020, 24, 376. [Google Scholar] [CrossRef]
- Ndjeka, N.; Hughes, J.; Reuter, A.; Conradie, F.; Enwerem, M.; Ferreira, H.; Ismail, N.; Kock, Y.; Master, I.; Meintjes, G. Implementing novel regimens for drug-resistant TB in South Africa: What can the world learn? Int. J. Tuberc. Lung Dis. 2020, 24, 1073–1080. [Google Scholar] [CrossRef]
- Massyn Naomi, N.P.; René, E.; Ashnie, P.; Peter, B.; Candy, D. District Health Barometer 2015/16; Health Systems Trust: Durban, South Africa, 2016. [Google Scholar]
- Mwaanga, P.; Silondwa, M.; Kasali, G.; Banda, P.M. Preliminary review of mine air pollution in Zambia. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef]
- Khan, P.Y.; Yates, T.A.; Osman, M.; Warren, R.M.; van der Heijden, Y.; Padayatchi, N.; Nardell, E.A.; Moore, D.; Mathema, B.; Gandhi, N. Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet. Infect. Dis. 2019, 19, e77. [Google Scholar] [CrossRef] [Green Version]
- Katende, B.; Esterhuizen, T.M.; Dippenaar, A.; Warren, R.M. Rifampicin Resistant Tuberculosis in Lesotho: Diagnosis, Treatment Initiation and Outcomes. Sci. Rep. 2020, 10, 1917. [Google Scholar] [CrossRef] [Green Version]
- Lanzafame, M.; Vento, S. Mini-review: Silico-tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 23, 100218. [Google Scholar] [CrossRef]
- Monde, N.; Zulu, M.; Tembo, M.; Handema, R.; Munyeme, M.; Malama, S. Drug Resistant Tuberculosis in the Northern Region of Zambia: A Retrospective Study. Front. Trop. Dis. 2021, 2, 735028. [Google Scholar] [CrossRef]
- Andargie, A.; Molla, A.; Tadese, F.; Zewdie, S. Lost to follow-up and associated factors among patients with drug resistant tuberculosis in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0248687. [Google Scholar] [CrossRef]
- Cannon, L.-A.L.; Oladimeji, K.E.; Goon, D.T. Socio-economic drivers of drug-resistant tuberculosis in Africa: A scoping review. BMC Public Health 2021, 21, 811. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report; World Health Organisation: Geneva, Switzerland, 2021; pp. 1–57. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 2 February 2022).
- van Cutsem, G.; Isaakidis, P.; Farley, J.; Nardell, E.; Volchenkov, G.; Cox, H. Infection Control for Drug-Resistant Tuberculosis: Early Diagnosis and Treatment Is the Key. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, S238. [Google Scholar] [CrossRef] [Green Version]
- Mitrani, L.; Dickson-Hall, L.; Le Roux, S.; Grant, A.D.; Kielmann, K.; Mlisana, K.; Moshabela, M.; Nicol, M.P.; Black, J.; Cox, H. Diverse clinical and social circumstances: Developing patient-centred care for DR-TB patients in South Africa. Public Health Action 2021, 11, 120–125. [Google Scholar] [CrossRef]
- World Health Organisation. Global Tuberculosis Report; World Health Organisation: Geneva, Switzerland, 2022. [Google Scholar]
- Schnippel, K.; Firnhaber, C.; Ndjeka, N.; Conradie, F.; Page-Shipp, L.; Berhanu, R.; Sinanovic, E. Persistently high early mortality despite rapid diagnostics for drug-resistant tuberculosis cases in South Africa. Int. J. Tuberc. Lung Dis. 2017, 21, 1106–1111. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Nutritional Care and Support for Patients with Tuberculosis; World Health Organization: Geneva, Switzerland, 2013; pp. 1–65. [Google Scholar]
- Deshmukh, R.; Dhande, D.; Sachdeva, K.; Sreenivas, A.; Parmar, M. Social support a key factor for adherence to multidrug-resistant tuberculosis treatment. Indian J. Tuberc. 2018, 65, 41–47. [Google Scholar] [CrossRef]
- Laxmeshwar, C.; Stewart, A.; Dalal, A.; Kumar, A. Beyond ‘cure’ and ‘treatment success’: Quality of life of patients with multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2019, 23, 73–81. [Google Scholar] [CrossRef] [Green Version]
- De Vos, E.; Scott, L.; Voss De Lima, Y.; Warren, R.; Stevens, W.; Hayes, C.; da Silva, P.; Van Rie, A. Management of rifampicin-resistant TB: Programme indicators and care cascade analysis in South Africa. Int. J. Tuberc. Lung Dis. 2021, 25, 134–141. [Google Scholar] [CrossRef]
- Sharma, M.; Malhotra, B.; Tiwari, J.; Bhargava, S. Profile of nontuberculous mycobacteria in patients suspected of tuberculosis and drug-resistant tuberculosis. J. Lab. Physicians 2020, 12, 203–211. [Google Scholar] [CrossRef]
- Rashid, O.; Farhana, A.; Bali, N.; Peer, M.; Kour, R.; Nasir, R.; Bashir, Y. Early Detection of Multi-drug Resistant Tuberculosis and Mutations in Mycobacterium tuberculosis Isolates using Line Probe Assay from a Tertiary Care Centre in Northern India. J. Clin. Diagn. Res. 2020, 14, 19–24. [Google Scholar] [CrossRef]
- Oga-Omenka, C.; Tseja-Akinrin, A.; Sen, P.; Mac-Seing, M.; Agbaje, A.; Menzies, D.; Zarowsky, C. Factors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: A mixed-methods systematic review. BMJ Glob. Health 2020, 5, e002280. [Google Scholar] [CrossRef]
- Ngabonziza, J.S.; Habimana, Y.; Decroo, T.; Migambi, P.; Dushime, A.; Mazarati, J.; Rigouts, L.; Affolabi, D.; Ivan, E.; Meehan, C. Reduction of diagnostic and treatment delays reduces rifampicin-resistant tuberculosis mortality in Rwanda. Int. J. Tuberc. Lung Dis. 2020, 24, 329–339. [Google Scholar] [CrossRef]
- Evans, D.; Sineke, T.; Schnippel, K.; Berhanu, R.; Govathson, C.; Black, A.; Long, L.; Rosen, S. Impact of Xpert MTB/RIF and decentralized care on linkage to care and drug-resistant tuberculosis treatment outcomes in Johannesburg, South Africa. BMC Health Serv. Res. 2018, 18, 973. [Google Scholar] [CrossRef] [Green Version]
- Putra, O.; N.H., A.; Hidayat, F.; Sagitha, I. Ototoxicity in Multidrug-Resistant Tuberculosis: A Scoping Review of the Indonesian Studies. J. Pharm. Sci. 2022, 5, 62–73. [Google Scholar] [CrossRef]
- Dillard, L.K.; Martinez, R.X.; Perez, L.L.; Fullerton, A.M.; Chadha, S.; McMahon, C.M. Prevalence of aminoglycoside-induced hearing loss in drug-resistant tuberculosis patients: A systematic review. J. Infect. 2021, 83, 27–36. [Google Scholar] [CrossRef]
- Mirzayev, F.; Viney, K.; Linh, N.N.; Gonzalez-Angulo, L.; Gegia, M.; Jaramillo, E.; Zignol, M.; Kasaeva, T. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur. Respir. J. 2021, 57, 2003300. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, R.; Yunivita, V.; Santoso, P.; Aarnoutse, R.; Ruslami, R. Clofazimine as a Treatment for Multidrug-Resistant Tuberculosis: A Review. Sci. Pharm. 2021, 89, 19. [Google Scholar] [CrossRef]
- Department of Health (Ed.) Management of Drug-Resistant Tuberculosis, Policy Guideline; Department of Health: Pretoria, South Africa, 2013; pp. 1–172. [Google Scholar]
- World Health Organization. Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis, Emergency Update 2008; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Demers, A.-M.; Kim, S.; McCallum, S.; Eisenach, K.; Hughes, M.; Naini, L.; Mendoza-Ticona, A.; Pradhan, N.; Narunsky, K.; Poongulali, S. Drug susceptibility patterns of Mycobacterium tuberculosis from adults with multidrug-resistant tuberculosis and implications for a household contact preventive therapy trial. BMC Infect. Dis. 2021, 21, 205. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sinha, P.; Nema, V.; Gupta, P.K.; Chakraborty, P.; Kulkarni, S.; Rastogi, N.; Anupurba, S. Detection of Beijing strains of MDR M. tuberculosis and their association with drug resistance mutations in kat G, rpo B, and emb B genes. BMC Infect. Dis. 2020, 20, 752. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Srivastava, G.; Tripathi, R.; Mishra, M.N.; Anupurba, S. Detection of mutations in the rpoB gene of rifampicin-resistant Mycobacterium tuberculosis strains inhibiting wild type probe hybridization in the MTBDR plus assay by DNA sequencing directly from clinical specimens. BMC Microbiol. 2020, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- Lempens, P.; Meehan, C.J.; Vandelannoote, K.; Fissette, K.; de Rijk, P.; Van Deun, A.; Rigouts, L.; de Jong, B.C. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci. Rep. 2018, 8, 3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment-Drug-Resistant Tuberculosis Treatment, 2022 Update; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
Variables | Frequency | Percent |
---|---|---|
Age (N = 454) | ||
1–17 | 26 | 5.7 |
18–24 | 57 | 12.6 |
25–34 | 128 | 28.2 |
35–44 | 121 | 26.7 |
45–54 | 53 | 11.7 |
55–86 | 69 | 15.2 |
Gender (N = 454) | ||
Female | 199 | 43.8 |
Male | 255 | 56.2 |
Education (N = 453) | ||
No education | 91 | 20.1 |
Primary | 104 | 23.0 |
Secondary | 217 | 47.9 |
Tertiary | 41 | 9.1 |
Income (N = 434) | ||
Salary | 38 | 8.8 |
Casual | 2 | 0.5 |
UIF | 2 | 0.5 |
Grant | 28 | 6.5 |
No income | 357 | 82.3 |
Self-employed | 7 | 1.6 |
Occupation (N = 433) | ||
Unemployed | 328 | 75.8 |
Student | 35 | 8.1 |
Pensioner | 20 | 4.6 |
Grant | 8 | 1.9 |
Government department | 15 | 3.5 |
Private sector | 19 | 4.4 |
Minor | 6 | 1.4 |
Prisoner | 2 | 0.5 |
Model of care (N = 454) | ||
Decentralised (District) | 412 | 90.7 |
Centralised | 42 | 9.3 |
Exposure Environment (N = 436) | ||
Prison | 45 | 10.3 |
Mines | 26 | 6.0 |
HCW | 1 | 0.2 |
Both Prison and Mine | 16 | 3.7 |
None | 348 | 79.8 |
Variables | Frequency | Percent |
---|---|---|
Comorbidities (N= 68) | ||
HTN | 21 | 4.6 |
Type2DM | 11 | 2.4 |
Epilepsy | 10 | 2.2 |
Mental | 3 | 0.7 |
Hearing | 26 | 5.7 |
Allergies | 2 | 0.4 |
Asthma | 1 | 0.2 |
Clinic Names (N = 454) | ||
Mthatha Gateway (KSD) | 187 | 41.2 |
Holy Cross (Inquza Hill) | 63 | 13.9 |
Barnabas Gateway (Nyandeni) | 60 | 13.2 |
Zithulele (KSD) | 85 | 18.7 |
Bambisana (PSJ) | 17 | 3.7 |
Nkqubela Chest Hospital (BCM) | 42 | 9.3 |
Social History—Cigarette (N = 430) | ||
Users | 143 | 33.3 |
Non users | 287 | 66.7 |
Previous drug history (N = 448) | ||
New | 226 | 50.5 |
Previously treated with 1st line drug | 178 | 39.7 |
Previously treated with 2nd line drug | 43 | 9.6 |
Unknown | 1 | 0.2 |
Patient Category (N = 448) | ||
New | 231 | 51.6 |
Relapse | 146 | 32.6 |
After Loss to follow up | 55 | 12.3 |
After Failure 1st line | 13 | 2.9 |
After Failure 2nd line | 3 | 0.7 |
Notification (N = 450) | ||
No | 29 | 6.4 |
Yes | 421 | 92.7 |
Type of TB (N = 452) | ||
Extra-pulmonary TB | 6 | 1.3 |
Pulmonary TB | 446 | 98.7 |
Type of regimen at the start of treatment (N = 443) | ||
Long | 68 | 15.0 |
Short | 375 | 82.6 |
Type of regimen at end of treatment (N = 436) | ||
Long | 85 | 18.7 |
Short | 351 | 77.3 |
HIV status (N = 447) | ||
Negative | 165 | 36.9 |
Positive | 281 | 62.9 |
Type of Resistance (N = 444) | Frequency | Percent |
---|---|---|
Poly | 237 | 52.2 |
Mono | 207 | 45.6 |
Type DR-TB (N = 445) | ||
Rifampicin Resistant | 205 | 46.1 |
MDR | 194 | 43.6 |
Pre-XDR | 23 | 5.2 |
XDR | 17 | 3.8 |
Isoniazid Resistance | 6 | 1.4 |
Diagnostic Modality (N = 439) | ||
LPA | 31 | 6.8 |
Xpert (GXP) | 408 | 89.9 |
Smear Results (N = 426) | ||
Negative | 237 | 52.2 |
Positive | 189 | 41.6 |
Culture Results (N = 399) | ||
Negative | 110 | 27.6 |
Positive | 280 | 70.2 |
Contaminated | 9 | 2.3 |
DST1 (N = 407) | ||
RR | 175 | 43.0 |
INH and RR | 218 | 53.6 |
INH | 11 | 2.7 |
Sensitive | 3 | 0.7 |
DST2 (N = 38) | ||
Fluoroquinolone resistance | 8 | 1.8 |
Injectable resistance | 12 | 2.6 |
Fluoroquinolone and Injectable resistance | 18 | 4.0 |
LPA1 (N = 207) | ||
InhA (low-level isoniazid mutation) | 25 | 5.5 |
KatG (high-level isoniazid mutation) | 66 | 14.5 |
InhA and KatG (Combined mutations) | 23 | 5.1 |
No Mutation | 93 | 20.5 |
LPA2 (N = 181) | ||
gyrA/gyrB (Fluoroquinolone mutation) | 8 | 1.8 |
rrs/eis (Aminoglycoside injectable mutation) | 12 | 2.6 |
gyrA/gyrB and rrs/eis (Combined mutations) | 18 | 4.0 |
No Mutation | 143 | 31.5 |
Viral Load (N = 134) | ||
Suppressed | 41 | 9.0 |
Low-level Viraemia | 29 | 6.4 |
Virological Failure | 64 | 14.1 |
CPT (N = 120) (cotrimoxazole prophylactic therapy) | ||
Yes | 107 | 23.6 |
No | 13 | 2.9 |
Baseline Investigations Blood (N = 453) | ||
No | 75 | 16.5 |
Yes | 378 | 83.3 |
Audiometry (N = 437) | ||
No | 275 | 60.6 |
Yes | 162 | 35.7 |
ECG (N = 431) | ||
No | 42 | 9.3 |
Yes | 389 | 85.7 |
Variables | Median Time-to-Treatment in Days | Interquartile Range |
---|---|---|
Overall (n = 454) | 7 | 3–15 |
Years | ||
2018 (n = 149) | 8 | 4–14 |
2019 (n = 161) | 7 | 3–15 |
2020 (n = 128) | 7 | 2–15 |
2021 (n = 16) | 5.5 | 3.5–8 |
Clinic types | ||
District clinics (n = 412) | 7 | 3–15 |
Centralised (n = 42) | 7 | 3–15 |
Clinic Names | ||
Mthatha Gateway (n = 187) | 8 | 5–22 |
Holy Cross (n = 63) | 7 | 3–13 |
Barnabas Gateway (n = 60) | 9.5 | 6.5–18 |
Zithulele (n = 85) | 3 | 1–7 |
Bambisana/St. Elizabeth (n = 17) | 4 | 1–6 |
Nkqubela Chest Hospital (n = 42) | 7 | 3–15 |
Diagnostic Modality | ||
LPA (n = 31) | 8 | 0–34 |
Xpert (n = 408) | 7 | 4–15 |
Missing (n = 15) | 0 | 0–0 |
Culture Results | ||
Negative (n = 110) | 7 | 3–16 |
Positive (n = 280) | 7 | 3–15 |
Contaminated (n = 9) | 8 | 1–21 |
Missing (n = 55) | 6 | 4–13 |
Variables | Yes | UOR [95% CI] Unadjusted OR | AOR [95% CI] Adjusted OR |
---|---|---|---|
N (%) | |||
Age | |||
1–24 | 36 (43.37) | Ref | Ref |
25–34 | 40 (31.25) | 0.59 [0.33, 1.05] | 0.65 [0.36, 1.17] |
35–44 | 45 (37.19) | 0.77 [0.44, 1.37] | 0.8 [0.45, 1.44] |
Above 44 | 44 (36.07) | 0.74 [0.42, 1.30] | 0.7 [0.38, 1.28] |
Gender | |||
Female | 79 (39.7) | Ref | Ref |
Male | 86 (33.73) | 0.77 [0.53, 1.14] | 0.79 [0.53, 1.18] |
Education | |||
No Education | 37 (40.66) | Ref | Ref |
Primary | 38 (36.54) | 0.84 [0.47, 1.50] | 0.91 [0.50, 1.64] |
Secondary | 76 (35.02) | 0.79 [0.48, 1.30] | 0.78 [0.45, 1.34] |
Tertiary | 13 (31.71) | 0.68 [0.31, 1.48] | 0.71 [0.31, 1.59] |
Missing | 1 (100) | 1 [1.00, 1.00] | 1 [1.00, 1.00] |
Years | |||
2018 | 43 (28.86) | Ref | Ref |
2019 | 61 (37.89) | 1.5 [0.93, 2.42] | 1.43 [0.88, 2.32] |
2020 | 53 (41.41) | 1.74 * [1.06, 2.87] | 1.62 [0.98, 2.69] |
2021 | 8 (50) | 2.47 [0.87, 6.99] | 2.51 [0.87, 7.23] |
Variables | Yes | UOR [95% CI] | AOR [95% CI] |
---|---|---|---|
N (%) | |||
Clinic types | |||
Decentralised (District) | 147 (35.68) | Ref | Ref |
Centralised | 18 (42.86) | 1.35 [0.71, 2.57] | 2 [0.84, 4.76] |
Clinics | |||
Mthatha Gateway | 47 (25.13) | Ref | Ref |
Holy Cross | 22 (34.92) | 1.6 [0.86, 2.95] | 1.43 [0.75, 2.73] |
Barnabas Gateway | 13 (21.67) | 0.82 [0.41, 1.65] | 0.74 [0.35, 1.57] |
Zithulele | 54 (63.53) | 5.19 *** [2.99, 9.01] | 5.43 *** [3.07, 9.62] |
Bambisana/St. Elizabeth | 11 (64.71) | 5.46 ** [1.91, 15.58] | 5.05 ** [1.69, 15.11] |
Nkqubela Chest(Centralised) | 18 (42.86) | 2.23 * [1.12, 4.48] | 1 [1.00, 1.00] |
Diagnostic Modality | |||
LPA | 15 (48.39) | Ref | Ref |
Xpert | 136 (33.33) | 0.53 [0.26, 1.11] | 0.51 [0.23, 1.13] |
Missing | 14 (93.33) | 14.93 * [1.74, 127.89] | 14.82 * [1.60, 136.92] |
Culture results | |||
Negative | 33 (30) | Ref | Ref |
Positive | 105 (37.5) | 1.4 [0.87, 2.25] | 1.35 [0.79, 2.29] |
Contaminated | 4 (44.44) | 1.87 [0.47, 7.39] | 2.9 [0.69, 12.27] |
Missing | 23 (41.82) | 1.68 [0.86, 3.29] | 1.59 [0.73, 3.48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iruedo, J.O.; Pather, M.K. Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa. Int. J. Environ. Res. Public Health 2023, 20, 6423. https://doi.org/10.3390/ijerph20146423
Iruedo JO, Pather MK. Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa. International Journal of Environmental Research and Public Health. 2023; 20(14):6423. https://doi.org/10.3390/ijerph20146423
Chicago/Turabian StyleIruedo, Joshua Oise, and Michael K. Pather. 2023. "Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa" International Journal of Environmental Research and Public Health 20, no. 14: 6423. https://doi.org/10.3390/ijerph20146423
APA StyleIruedo, J. O., & Pather, M. K. (2023). Time-to-Treatment Initiation in a Decentralised Community-Care Model of Drug-Resistant Tuberculosis Management in the OR Tambo District Municipality of South Africa. International Journal of Environmental Research and Public Health, 20(14), 6423. https://doi.org/10.3390/ijerph20146423