Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. SARS-CoV-2 Isolation
2.2. Aircraft Parts
2.3. SARS-CoV-2 Viability on Surfaces
2.4. Viral Titration by TCID50 Assay
2.5. Scanning Electron Microscopy
2.6. Statistical Analysis
3. Results
3.1. Virus Stability over Time, after Treatment, and Cleaning Cycles Using Ancestral Strain
3.2. Virus Stability over Time on Different Interior Components with and without Treatment
3.3. Delta Strain Virus Stability over Time and on Different Surfaces
3.4. Omicron Virus Strain Stability over Time and after Regular Use
3.5. Antimicrobial Compound Presence on Treated Surfaces with and without Cleaning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Zapatero Gaviria, A.; Barba Martin, R. What do we know about the origin of COVID-19 three years later? Rev. Clin. Esp. 2023, 223, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Nicholls, J. Pathophysiology of infection with SARS-CoV-2-What is known and what remains a mystery. Respirology 2021, 26, 652–665. [Google Scholar] [CrossRef]
- Derqui, N.; Koycheva, A.; Zhou, J.; Pillay, T.D.; Crone, M.A.; Hakki, S.; Fenn, J.; Kundu, R.; Varro, R.; Conibear, E.; et al. Risk factors and vectors for SARS-CoV-2 household transmission: A prospective, longitudinal cohort study. Lancet Microbe 2023, 4, e397–e408. [Google Scholar] [CrossRef] [PubMed]
- Pena Rodriguez, M.; Hernandez Bello, J.; Vega Magana, N.; Viera Segura, O.; Garcia Chagollan, M.; Ceja Galvez, H.R.; Mora Mora, J.C.; Rentería Flores, F.I.; García González, O.P.; Muñoz Valle, J.F. Prevalence of symptoms, comorbidities, and reinfections in individuals infected with Wild-Type SARS-CoV-2, Delta, or Omicron variants: A comparative study in western Mexico. Front. Public Health 2023, 11, 1149795. [Google Scholar] [CrossRef]
- Le Targa, L.; Wurtz, N.; Lacoste, A.; Penant, G.; Jardot, P.; Annessi, A.; Colson, P.; La Scola, B.; Aherfi, S. SARS-CoV-2 Testing of Aircraft Wastewater Shows That Mandatory Tests and Vaccination Pass before Boarding Did Not Prevent Massive Importation of Omicron Variant into Europe. Viruses 2022, 14, 1511. [Google Scholar] [CrossRef]
- Ahmed, W.; Bivins, A.; Smith, W.J.M.; Metcalfe, S.; Stephens, M.; Jennison, A.V.; Moore, F.A.J.; Bourke, J.; Schlebusch, S.; McMahon, J.; et al. Detection of the Omicron (B.1.1.529) variant of SARS-CoV-2 in aircraft wastewater. Sci. Total Environ. 2022, 820, 153171. [Google Scholar] [CrossRef]
- Hasing, M.E.; Lee, B.E.; Gao, T.; Li, Q.; Qiu, Y.; Ellehoj, E.; Graber, T.E.; Fuzzen, M.; Servos, M.; Landgraff, C.; et al. Wastewater surveillance monitoring of SARS-CoV-2 variants of concern and dynamics of transmission and community burden of COVID-19. Emerg. Microbes Infect. 2023, 12, 2233638. [Google Scholar] [CrossRef]
- Li, J.; Hosegood, I.; Powell, D.; Tscharke, B.; Lawler, J.; Thomas, K.V.; Mueller, J.F. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Glob. Health 2023, 11, e791–e795. [Google Scholar] [CrossRef]
- Sobsey, M.D. Absence of virological and epidemiological evidence that SARS-CoV-2 poses COVID-19 risks from environmental fecal waste, wastewater and water exposures. J. Water Health 2022, 20, 126–138. [Google Scholar] [CrossRef]
- Termansen, M.B.; Frische, S. Fecal-oral transmission of SARS-CoV-2: A systematic review of evidence from epidemiological and experimental studies. Am. J. Infect. Control 2023. online ahead of print. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef] [PubMed]
- Khatib, A.N.; McGuinness, S.; Wilder-Smith, A. COVID-19 transmission and the safety of air travel during the pandemic: A scoping review. Curr. Opin. Infect. Dis. 2021, 34, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, J.; Estill, J.; Lan, H.; Zhang, J.; Wu, S.; Yao, J.; Yan, X.; Chen, Y. Risk of COVID-19 Transmission Aboard Aircraft: An Epidemiological Analysis Based on the National Health Information Platform. Int. J. Infect. Dis. 2022, 118, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Pombal, R.; Hosegood, I.; Powell, D. Risk of COVID-19 During Air Travel. JAMA 2020, 324, 1798. [Google Scholar] [CrossRef] [PubMed]
- Rosca, E.C.; Heneghan, C.; Spencer, E.A.; Brassey, J.; Pluddemann, A.; Onakpoya, I.J.; Evans, D.H.; Conly, J.M.; Jefferson, T. Transmission of SARS-CoV-2 associated with aircraft travel: A systematic review. J. Travel Med. 2021, 28, taab133. [Google Scholar] [CrossRef]
- Freedman, D.O. Air travel and SARS-CoV-2: Many remaining knowledge gaps. J. Travel Med. 2022, 29, taac123. [Google Scholar] [CrossRef]
- Anderson, J. COVID-19 in the Airline Industry: The Good, the Bad, and the Necessary. New Solut. 2022, 32, 92–99. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Lai, D.; Chen, Q. Evaluation of SARS-COV-2 transmission and infection in airliner cabins. Indoor Air 2022, 32, e12979. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Cheung, M.C.; Perera, R.; Ng, K.C.; Bui, C.H.T.; Ho, J.C.W.; Ng, M.M.T.; Kuok, D.I.T.; Shih, K.C.; Tsao, S.W.; et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 2020, 8, 687–695. [Google Scholar] [CrossRef]
- Wang, Z.; Galea, E.R.; Grandison, A.; Ewer, J.; Jia, F. Inflight transmission of COVID-19 based on experimental aerosol dispersion data. J. Travel Med. 2021, 28, taab023. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Kong, D.; He, Y.; Lu, Y.; Chen, L.; Zhao, J.; Feng, S.; Chen, Y.; Wan, J.; Wen, Y.; et al. A SARS-CoV-2 Delta variant outbreak on airplane: Vaccinated air passengers are more protected than unvaccinated. J. Travel Med. 2021, 28, taab161. [Google Scholar] [CrossRef] [PubMed]
- Atyeo, C.; Slein, M.D.; Fischinger, S.; Burke, J.; Schafer, A.; Leist, S.R.; Kuzmina, N.A.; Mire, C.; Honko, A.; Johnson, R.; et al. Dissecting strategies to tune the therapeutic potential of SARS-CoV-2-specific monoclonal antibody CR3022. JCI Insight 2021, 6, e143129. [Google Scholar] [CrossRef]
- Olsen, S.J.; Chang, H.-L.; Cheung, T.Y.-Y.; Tang, A.F.-Y.; Fisk, T.L.; Ooi, S.P.-L.; Kuo, H.-W.; Jiang, D.D.-S.; Chen, K.-T.; Lando, J.; et al. Transmission of the Severe Acute Respiratory Syndrome on Aircraft. New Engl. J. Med. 2003, 349, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Leong, H.N.; Villacian, J.S. In-flight transmission of Severe Acute Respiratory Syndrome (SARS): A Case Report. J. Travel Med. 2006, 10, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.; Fleming, K. Covid-19 infection risk on US domestic airlines. Health Care Manag. Sci. 2022, 25, 347–362. [Google Scholar] [CrossRef]
- Ngeh, S.; Vogt, F.; Sikazwe, C.T.; Levy, A.; Pingault, N.M.; Smith, D.W.; Effler, P.V. Travel-associated SARS-CoV-2 transmission documented with whole genome sequencing following a long-haul international flight. J. Travel Med. 2022, 29, taac057. [Google Scholar] [CrossRef]
- Namilae, S.; Wu, Y.; Mubayi, A.; Srinivasan, A.; Scotch, M. Identifying mitigation strategies for COVID-19 superspreading on flights using models that account for passenger movement. Travel Med. Infect. Dis. 2022, 47, 102313. [Google Scholar] [CrossRef]
- Harries, A.D.; Martinez, L.; Chakaya, J.M. SARS-CoV-2: How safe is it to fly and what can be done to enhance protection? Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 117–119. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.C.; Ng, K.C.; Ching, R.H.H.; Lai, K.L.; Kam, T.T.; Gu, H.; Sit, K.Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch. Für Exp. Pathol. Und Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Celik, U.; Celik, K.; Celik, S.; Abayli, H.; Sahna, K.C.; Tonbak, S.; Toraman, Z.A.; Oral, A. Interpretation of SARS-CoV-2 behaviour on different substrates and denaturation of virions using ethanol: An atomic force microscopy study. RSC Adv. 2020, 10, 44079–44086. [Google Scholar] [CrossRef] [PubMed]
- Owen, L.; Shivkumar, M.; Cross, R.B.M.; Laird, K. Porous surfaces: Stability and recovery of coronaviruses. Interface Focus 2021, 12, 20210039. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R. COVID-19: The case for aerosol transmission. Interface Focus 2022, 12, 20210072. [Google Scholar] [CrossRef]
- Katona, P.; Kullar, R.; Zhang, K. Bringing Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to the Surface: Is There a Role for Fomites? Clin. Infect. Dis. 2022, 75, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.J.; Heneghan, C.J.; Spencer, E.A.; Brassey, J.; Rosca, E.C.; Maltoni, S.; Plüddemann, A.; Evans, D.H.; Conly, J.M.; Jefferson, T. Viral cultures for assessing fomite transmission of SARS-CoV-2: A systematic review and meta-analysis. J. Hosp. Infect. 2022, 130, 63–94. [Google Scholar] [CrossRef] [PubMed]
- Sia, S.F.; Yan, L.M.; Chin, A.W.H.; Fung, K.; Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef]
- Dai, H.; Tang, H.; Sun, W.; Deng, S.; Han, J. It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world. Sci. Total. Environ. 2023, 868, 161388. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Y. Stability and transmissibility of SARS-CoV-2 in the environment. J. Med. Virol. 2023, 95, e28103. [Google Scholar] [CrossRef]
- Butot, S.; Zuber, S.; Moser, M.; Baert, L. Data on Transfer of Human Coronavirus SARS-CoV-2 from Foods and Packaging Materials to Gloves Indicate That Fomite Transmission Is of Minor Importance. Appl. Environ. Microbiol. 2022, 88, e0233821. [Google Scholar] [CrossRef]
- Bueckert, M.; Gupta, R.; Gupta, A.; Garg, M.; Mazumder, A. Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. Materials 2020, 13, 5211. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, K.P.Y.; Chin, A.W.H.; Ehret, J.; Ng, K.-C.; Peiris, M.; Poon, L.L.M.; Wong, K.H.M.; Chan, M.C.W.; Hosegood, I.; Nicholls, J.M. Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures. Int. J. Environ. Res. Public Health 2023, 20, 6598. https://doi.org/10.3390/ijerph20166598
Hui KPY, Chin AWH, Ehret J, Ng K-C, Peiris M, Poon LLM, Wong KHM, Chan MCW, Hosegood I, Nicholls JM. Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures. International Journal of Environmental Research and Public Health. 2023; 20(16):6598. https://doi.org/10.3390/ijerph20166598
Chicago/Turabian StyleHui, Kenrie P. Y., Alex W. H. Chin, John Ehret, Ka-Chun Ng, Malik Peiris, Leo L. M. Poon, Karen H. M. Wong, Michael C. W. Chan, Ian Hosegood, and John M. Nicholls. 2023. "Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures" International Journal of Environmental Research and Public Health 20, no. 16: 6598. https://doi.org/10.3390/ijerph20166598
APA StyleHui, K. P. Y., Chin, A. W. H., Ehret, J., Ng, K. -C., Peiris, M., Poon, L. L. M., Wong, K. H. M., Chan, M. C. W., Hosegood, I., & Nicholls, J. M. (2023). Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures. International Journal of Environmental Research and Public Health, 20(16), 6598. https://doi.org/10.3390/ijerph20166598