Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area
Abstract
:1. Introduction
2. Methodology
2.1. Area of Study and Experimental Site
2.2. Experimental Deployment and Instrumentation
2.2.1. Air Pollutant Measurements
2.2.2. Meteorology and Turbulence Parameters
3. Results and Discussion
3.1. General Overview
3.2. Mean Indoor/Outdoor Ratios
3.3. Real-Time Indoor/Outdoor Ratio Variations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- World Health Organization. Air Pollution. Available online: www.who.int/health-topics/air-pollution (accessed on 4 July 2023).
- Zaman, S.U.; Yesmin, M.; Pavel, M.; Sarkar, R.; Jeba, F.; Salam, A. Indoor air quality indicators and toxicity potential at the hospitals’ environment in Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 37727–37740. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- EEA. The European Environment—State and Outlook 2010: Assessment of Global Megatrends; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/ (accessed on 4 July 2023).
- UN GA. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; pp. 1–35. [Google Scholar]
- EEA. Air Quality in Europe—2020 Report; European Environmental Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- EEA. Air Quality in Europe—2021 Report; Report no. 15/2021; European Environment Agency: Copenhagen, Denmark, 2021; ISBN 978-92-9480-403-7. ISSN 1977-8449. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality: Household Fuel Combustion; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef]
- ECA. Urban Air, Indoor Environment and Human Exposure. 2003. Ventilation, Good Indoor Quality and Rational Use of Energy, Report No 23; ECA: Luxembourg, Luxembourg, 2003. [Google Scholar]
- Adgate, J.; Ramachandran, G.; Pratt, G.; Waller, L.; Sexton, K. Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure. Atmos. Environ. 2002, 36, 3255–3265. [Google Scholar] [CrossRef]
- Brauer, M.; Hrubá, F.; Mihalíková, E.; Fabiánová, E.; Miskovic, P.; Plziková, A.; Lendacká, M.; Vandenberg, J.; Cullen, A. Personal exposure to particles in Banska Bystrica, Slovakia. J. Expo. Sci. Environ. Epidemiol. 2000, 10, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Majd, E.; McCormack, M.; Davis, M.; Curriero, F.; Berman, J.; Connolly, F.; Leaf, P.; Rule, A.; Green, T.; Clemons-Erby, D. Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environ. Res. 2019, 170, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 2005, 15, 2–12. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Younes, C.; Shdid, C.A.; Bitsuamlak, G. Air infiltration through building envelopes: A review. J. Build. Phys. 2012, 35, 267–302. [Google Scholar] [CrossRef]
- Diapouli, E.; Chaloulakou, A.; Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: A review. J. Air Waste Manag. Assoc. 2013, 63, 1113–1129. [Google Scholar] [CrossRef]
- Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 2014, 69, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A.J.; Tàubel, M.; Hyvärinen, A. Indoor air quality in London schools. Part 2: Long-term integrated assessment. Intell. Build. Int. 2015, 7, 130–146. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to NO2 in school and office indoor environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T.; Naim, N.N.M.; Zain, S.M.S.M.; Khan, M.F.; Sahani, M.; Wahab, M.I.A.; Sofwan, N.M.; Abd Hamid, H.H.; Mohamed, A.F. Children’s exposure to PM2.5 and its chemical constituents in indoor and outdoor schools urban environment. Atmos. Environ. 2022, 273, 118963. [Google Scholar] [CrossRef]
- Shaw, C.; Boulic, M.; Longley, I.; Mitchell, T.; Pierse, N.; Howden-Chapman, P. The association between indoor and outdoor NO2 levels: A case study in 50 residences in an urban neighbourhood in New Zealand. Sustain. Cities Soc. 2020, 56, 102093. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S.G. Indoor air quality in buildings: A comprehensive review on the factors influencing air pollution in residential and commercial structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef]
- Challoner, A.; Gill, L. Indoor/outdoor air pollution relationships in ten commercial buildings: PM2.5 and NO2. Build. Environ. 2014, 80, 159–173. [Google Scholar] [CrossRef]
- Moreno, T.; Reche, C.; Rivas, I.; Minguillón, M.C.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Achilleos, S.; Michanikou, A.; Kouis, P.; Papatheodorou, S.I.; Panayiotou, A.G.; Kinni, P.; Mihalopoulos, N.; Kalivitis, N.; Kouvarakis, G.; Galanakis, E. Improved indoor air quality during desert dust storms: The impact of the MEDEA exposure-reduction strategies. Sci. Total Environ. 2023, 863, 160973. [Google Scholar] [CrossRef]
- Crump, D. Application of diffusive samplers. In Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 47–63. [Google Scholar]
- Stamp, S.; Burman, E.; Chatzidiakou, L.; Cooper, E.; Wang, Y.; Mumovic, D. A critical evaluation of the dynamic nature of indoor-outdoor air quality ratios. Atmos. Environ. 2022, 273, 118955. [Google Scholar] [CrossRef]
- Ayuntamiento de Madrid. Calidad del Aire 2020. Available online: https://airedemadrid.madrid.es/UnidadesDescentralizadas/Sostenibilidad/CalidadAire/Publicaciones/Memorias_anuales/Ficheros/MEMORIA_2020.pdf (accessed on 1 April 2023).
- Ayuntamiento de Madrid. Calidad del Aire 2021. Available online: https://www.madrid.es/UnidadesDescentralizadas/Sostenibilidad/CalidadAire/Publicaciones/Memorias_anuales/Ficheros/MEMORIA_2021.pdf (accessed on 1 April 2023).
- Ayuntamiento de Madrid. Calidad del Aire 2022. Available online: https://www.madrid.es/UnidadesDescentralizadas/Sostenibilidad/CalidadAire/Publicaciones/Memorias_anuales/Ficheros/Resumen_calidad_aire_%202022.pdf (accessed on 1 April 2023).
- Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J.A.; Paz, D.D.L.; Querol, X.; Artíñano, B.; Gómez-Moreno, F.J.; Cuevas, C.A. Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. Sci. Rep. 2017, 7, 45956. [Google Scholar] [CrossRef] [PubMed]
- Monzón, A.; Pardeiro, A.; Vega, L. Reducing car trip and pollutant emissions through strategic transport planning in Madrid, Spain. In Highway and Urban Environment; Springer: Dordrecht/South Holland, The Netherlands, 2007; pp. 81–90. [Google Scholar]
- Salvador, P.; Artíñano, B.; Viana, M.; Alastuey, A.; Querol, X. Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999–2008 temporal trend of particulate matter. Atmos. Environ. 2012, 57, 175–185. [Google Scholar] [CrossRef]
- Directive 2008/50/EC of the European parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union L 152/3, 6e15 (11 June 2008). Available online: http://news.cleartheair.org.hk/wp-content/uploads/2013/02/LexUriServ.pdf (accessed on 1 April 2023).
- Borge, R.; Artíñano, B.; Yagüe, C.; Gomez-Moreno, F.J.; Saiz-Lopez, A.; Sastre, M.; Narros, A.; García-Nieto, D.; Benavent, N.; Maqueda, G. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode-Part I: Diagnostic and analysis from observations. Sci. Total Environ. 2018, 635, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- EA. Informe de Calidad-Aire en Madrid-2021. 2022. Available online: https://www.ecologistasenaccion.org/wp-content/uploads/2022/01/informe-calidad-aire_madrid-2021.pdf (accessed on 16 March 2022).
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef]
- Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C. Personal sampler for nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 1976, 37, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Lumbreras, J.; Solazzo, E. Comparative evaluation of nitrogen oxides and ozone passive diffusion tubes for exposure studies. Atmos. Environ. 2009, 43, 2509–2517. [Google Scholar] [CrossRef]
- Escudero, M.; Querol, X.; Pey, J.; Alastuey, A.; Pérez, N.; Ferreira, F.; Alonso, S.; Rodríguez, S.; Cuevas, E. A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos. Environ. 2007, 41, 5516–5524. [Google Scholar] [CrossRef]
- EC. Establishing Guidelines for Demonstration and Subtraction of Exceedances Attributable to Natural Sources under the Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe; EC: Brussels, Belgium, 2011. [Google Scholar]
- Stranger, M.; Potgieter-Vermaak, S.; Van Grieken, R. Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 2008, 18, 454–463. [Google Scholar] [CrossRef]
- Wichmann, J.; Lind, T.; Nilsson, M.-M.; Bellander, T. PM2.5, soot and NO2 indoor–outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Becerril-Valle, M.; Coz, E.; Prévôt, A.; Močnik, G.; Pandis, S.; de la Campa, A.S.; Alastuey, A.; Díaz, E.; Pérez, R.; Artíñano, B. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 2017, 169, 36–53. [Google Scholar] [CrossRef]
- Yuan, Y.; Alahmad, B.; Kang, C.-M.; Al-Marri, F.; Kommula, V.; Bouhamra, W.; Koutrakis, P. Dust events and indoor air quality in residential homes in Kuwait. Int. J. Environ. Res. Public Health 2020, 17, 2433. [Google Scholar] [CrossRef] [PubMed]
- Reche, C.; Rivas, I.; Pandolfi, M.; Viana, M.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 2015, 120, 417–426. [Google Scholar] [CrossRef]
- Diapouli, E.; Chaloulakou, A.; Spyrellis, N. Levels of ultrafine particles in different microenvironments—Implications to children exposure. Sci. Total Environ. 2007, 388, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Artíñano, B.; Gómez-Moreno, F.; Díaz, E.; Amato, F.; Pandolfi, M.; Alonso-Blanco, E.; Coz, E.; Garcia-Alonso, S.; Becerril-Valle, M.; Querol, X. Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. Sci. Total Environ. 2017, 593, 543–551. [Google Scholar] [CrossRef]
- Tippayawong, N.; Khuntong, P. Model prediction of indoor particle concentrations in a public school classroom. J. Chin. Inst. Eng. 2007, 30, 1077–1083. [Google Scholar] [CrossRef]
TKE (1) (m2/s2) | PNC | PM10 | PM2.5 | PM1 | eBC | NO | NO2 | NO2 Passive Tubes | O3 | |
---|---|---|---|---|---|---|---|---|---|---|
Winter campaign | ||||||||||
All periods | 0.34 | 0.36 [0.34, 0.37] | 0.13 [0.12, 0.13] | 0.18 [0.17, 0.19] | - | 0.61 [0.58, 0.64] | 3.22 [2.88, 3.61] | 1.19 [1.13, 1.26] | - | |
Week 1 (10 (11:05 UTC)–17 (13:05 UTC) February) | 0.32 | 0.39 [0.37, 0.41] | 0.17 [0.16, 0.18] | 0.20 [0.19, 0.21] | - | 0.59 [0.56, 0.63] | 1.54 [1.36, 1.74] | 0.77 [0.73, 0.81] | 0.82 | - |
Week 2 (17 (13:06 UTC)–26 (13:22 UTC) February) | 0.31 | 0.32 [0.29, 0.35] | 0.11 [0.10, 0.13] | 0.16 [0.15, 0.18] | - | 0.62 [0.57, 0.68] | 5.01 [4.00, 6.26] | 1.71 [1.55, 1.88] | 0.89 | - |
Stagnation episode days (19–25 February) | 0.26 | 0.29 [0.26, 0.33] | 0.10 [0.09, 0.12] | 0.15 [0.13, 0.17] | - | 0.61 [0.55, 0.68] | 5.52 [4.24, 7.18] | 1.69 [1.53, 1.88] | - | - |
Summer campaign | ||||||||||
All periods (2) | 0.75 | 0.79 [0.76, 0.82] | 0.28 [0.27, 0.30] | 0.37 [0.36, 0.39] | 0.54 [0.52, 0.56] | 0.94 [0.88, 1.00] | 2.56 [2.31, 2.82] | 1.25 [1.19, 1.31] | 0.06 [0.05, 0.07] | |
Week 1 (14 (9:56 UTC)– 21 (10:00 UTC) June) | 0.77 | 0.78 [0.74, 0.82] | 0.26 [0.24, 0.27] | 0.34 [0.33, 0.36] | 0.51 [0.49, 0.53] | 0.88 [0.83, 0.93] | 2.72 [2.43, 3.04] | 1.28 [1.21, 1.35] | 1.15 | 0.06 [0.05, 0.07] |
Week 2 (21 (10:01 UTC)–23 (11:22 UTC) June) | 0.73 | 0.85 [0.75, 0.89] | 0.36 [0.32, 0.41] | 0.46 [0.42, 0.50] | 0.63 [0.57, 0.70] | 1.06 [0.91, 1.23] | 1.86 [1.54, 2.25] | 1.16 [1.05, 1.27] | 1.04 (3) | 0.05 [0.03, 0.09] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Blanco, E.; Gómez-Moreno, F.J.; Díaz-Ramiro, E.; Fernández, J.; Coz, E.; Yagüe, C.; Román-Cascón, C.; Narros, A.; Borge, R.; Artíñano, B. Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area. Int. J. Environ. Res. Public Health 2023, 20, 6823. https://doi.org/10.3390/ijerph20196823
Alonso-Blanco E, Gómez-Moreno FJ, Díaz-Ramiro E, Fernández J, Coz E, Yagüe C, Román-Cascón C, Narros A, Borge R, Artíñano B. Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area. International Journal of Environmental Research and Public Health. 2023; 20(19):6823. https://doi.org/10.3390/ijerph20196823
Chicago/Turabian StyleAlonso-Blanco, Elisabeth, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Adolfo Narros, Rafael Borge, and Begoña Artíñano. 2023. "Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area" International Journal of Environmental Research and Public Health 20, no. 19: 6823. https://doi.org/10.3390/ijerph20196823
APA StyleAlonso-Blanco, E., Gómez-Moreno, F. J., Díaz-Ramiro, E., Fernández, J., Coz, E., Yagüe, C., Román-Cascón, C., Narros, A., Borge, R., & Artíñano, B. (2023). Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area. International Journal of Environmental Research and Public Health, 20(19), 6823. https://doi.org/10.3390/ijerph20196823