Relative Risks of Adverse Perinatal Outcomes in Three Australian Communities Exposed to Per- and Polyfluoroalkyl Substances: Data Linkage Study
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Study Population
2.2. Variables
2.2.1. Outcomes
2.2.2. Exposure and Other Variables
2.3. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. Perinatal Outcomes in Relation to Living in Exposure Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahrens, L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate. J. Environ. Monit. 2011, 13, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Bräunig, J.; Baduel, C.; Heffernan, A.; Rotander, A.; Donaldson, E.; Mueller, J.F. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci. Total Environ. 2017, 596, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global Distribution of Perfluorooctane Sulfonate in Wildlife. J. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Jian, J.-M.; Chen, D.; Han, F.-J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per-and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- AECOM. Off-Site Human Health Risk Assessment—RAAF Base Williamtown Stage 2B Environmental Investigation. 2016; Williamtown, NSW, Australia. Available online: https://web.archive.org.au/awa/20230427114224mp_/https://defence.gov.au/Environment/PFAS/docs/Williamtown/Reports/201810WilliamtownEcologicalRiskAssessmentReport.pdf (accessed on 30 November 2021).
- Stage 2C Environmental Investigation—Human Health Risk Assessment—Army Aviation Centre Oakey. 2017; Oakey, Qld, Australia. Available online: https://web.archive.org.au/awa/20230427112604mp_/https://defence.gov.au/Environment/PFAS/Docs/Oakey/Reports/201810OakeyERA.pdf (accessed on 30 November 2021).
- Coffey. RAAF Base Tindal Human Health Risk Assessment (HHRA). 2018; Victoria, Australia; 152p. Available online: https://web.archive.org.au/awa/20230427112348mp_/https:/defence.gov.au/Environment/PFAS/docs/Tindal/Reports/201806HHRAExecSummary.pdf (accessed on 31 November 2021).
- Smurthwaite, K.; Lazarevic, N.; Bräunig, J.; Mueller, J.; Nilsson, J.; D’Este, C.; Lucas, R.; Armstrong, B.; Lal, A.; Trevenar, S.; et al. PFAS Health Study Component Two: Blood Serum Study of PFAS Exposure, Related Risk Factors and Biochemical Markers of Health; The Australian National University: Canberra, Australia, 2021; Available online: https://rsph.anu.edu.au/files/PFAS%20Health%20Study%20Blood%20Serum%20Study%20report_Dec2021.pdf#overlay-context=research/projects/pfas-health-study/reports (accessed on 30 November 2021).
- Barton, K.E.; Starling, A.P.; Higgins, C.P.; McDonough, C.A.; Calafat, A.M.; Adgate, J.L. Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water. Int. J. Hyg. Environ. Health 2020, 223, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.R.; Chan, B.P.; Talbot, E.A.; Nassif, J.; Bean, C.; Cavallo, S.J.; Metcalf, E.; Simone, K.; Woolf, A.D. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int. J. Hyg. Environ. Health 2018, 221, 569–577. [Google Scholar] [CrossRef]
- Nair, A.S.; Ma, Z.Q.; Watkins, S.M.; Wood, S.S. Demographic and exposure characteristics as predictors of serum per- and polyfluoroalkyl substances (PFASs) levels—A community-level biomonitoring project in Pennsylvania. Int. J. Hyg. Environ. Health 2021, 231, 113631. [Google Scholar] [CrossRef]
- Xu, Y.; Nielsen, C.; Li, Y.; Hammarstrand, S.; Andersson, E.M.; Li, H.; Olsson, D.S.; Engström, K.; Pineda, D.; Lindh, C.H.; et al. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environ. Int. 2021, 147, 106333. [Google Scholar] [CrossRef]
- Midasch, O.; Drexler Hart, N.; Beckmann, M.W.; Angerer, J. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: A pilot study. Int. Arch. Occup. Environ. Health 2007, 80, 643–648. [Google Scholar] [CrossRef]
- Rovira, J.; Martínez, M.Á.; Sharma, R.P.; Espuis, T.; Nadal, M.; Kumar, V.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Domingo, J.L.; et al. Prenatal exposure to PFOS and PFOA in a pregnant women cohort of Catalonia, Spain. Environ. Res. 2019, 175, 384–392. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Perfluroalkyls; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2021. [CrossRef]
- Lam, J.; Koustas, E.; Sutton, P.; Johnson, P.I.; Atchley, D.S.; Sen, S.; Robinson, K.A.; Axelrad, D.A.; Woodruff, T.J. The Navigation Guide—Evidence-based medicine meets environmental health: Integration of animal and human evidence for PFOA effects on fetal growth. Environ. Health Perspect. 2014, 122, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Goudarzi, H.; Oulhote, Y. Developmental Exposures to Perfluoroalkyl Substances (PFASs): An Update of Associated Health Outcomes. Curr. Environ. Health Rep. 2018, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Fletcher, T.; Stein, C.R.; Bartell, S.M.; Darrow, L.; Lopez-Espinosa, M.-J.; Ryan, P.B.; Savitz, D.A. Review: Evolution of evidence on PFOA and health following the assessments of the C8 Science Panel. Environ. Int. 2020, 145, 106125. [Google Scholar] [CrossRef] [PubMed]
- Coffey. RAAF Base Tindal, Detailed Site Investigation—Per- and Poly-Fluoroalkyl Substances. 2018; Abbortsford, Victoria, Australia. Available online: https://defence.gov.au/Environment/PFAS/docs/Tindal/Reports/DSIExecSummary.pdf (accessed on 30 November 2021).
- GHD. RAAF Williamtown, Stage 1—Conceptual Site Model for AFFF Contamination. 2013; Williamtown, NSW, Australia. Available online: https://defence.gov.au/Environment/PFAS/docs/Williamtown/Reports/0908RBWilliamtown2013EI1ConceptualSiteModelGHD.pdf (accessed on 30 November 2021).
- Parsons Brinckerhoff. Offsite Risk Assessment, PFOS and PFOA in Groundwater: Stage 3 Risk Assessment and Remediation Design, Army Aviation Centre Oakey. 2013; Southbank, Victoria, Australia. Available online: https://defence.gov.au/Environment/PFAS/Docs/Oakey/Reports/AACOakeyOffsiteRiskAssessmentRemediationDesignMay2013.pdf (accessed on 30 November 2021).
- [dataset] Geoscape Australia. 2021; G-NAF. Available online: https://data.gov.au/data/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc (accessed on 30 November 2021).
- Dobbins, T.A.; Sullivan, E.A.; Roberts, C.L.; Simpson, J.M. Australian national birthweight percentiles by sex and gestational age, 1998–2007. Med. J. Aust. 2012, 197, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Zou, G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Stein, C.R.; Bartell, S.M.; Elston, B.; Gong, J.; Shin, H.M.; Wellenius, G.A. Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community. Epidemiology 2012, 23, 386–392. [Google Scholar] [CrossRef]
- Stein, C.R.; Savitz, D.A.; Dougan, M. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am. J. Epidemiol. 2009, 170, 837–846. [Google Scholar] [CrossRef]
- Darrow, L.A.; Stein, C.R.; Steenland, K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ. Health Perspect. 2013, 121, 1207–1213. [Google Scholar] [CrossRef]
- Savitz, D.A.; Stein, C.R.; Elston, B.; Wellenius, G.A.; Bartell, S.M.; Shin, H.M.; Vieira, V.M.; Fletcher, T. Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio Valley. Environ. Health Perspect. 2012, 120, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Starling, A.P.; Engel, S.M.; Richardson, D.B.; Baird, D.D.; Haug, L.S.; Stuebe, A.M.; Klungsøyr, K.; Harmon, Q.; Becher, G.; Thomsen, C.; et al. Perfluoroalkyl substances during pregnancy and validated preeclampsia among nulliparous women in the Norwegian Mother and Child Cohort Study. Am. J. Epidemiol. 2014, 179, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Wikström, S.; Lindh, C.H.; Shu, H.; Bornehag, C.-G. Early pregnancy serum levels of perfluoroalkyl substances and risk of preeclampsia in Swedish women. Sci. Rep. 2019, 9, 9179. [Google Scholar] [CrossRef]
- Borghese, M.M.; Walker, M.; Helewa, M.E.; Fraser, W.D.; Arbuckle, T.E. Association of perfluoroalkyl substances with gestational hypertension and preeclampsia in the MIREC study. Environ. Int. 2020, 141, 105789. [Google Scholar] [CrossRef] [PubMed]
- Bommarito, P.A.; Ferguson, K.K.; Meeker, J.D.; McElrath, T.F.; Cantonwine, D.E. Maternal Levels of Perfluoroalkyl Substances (PFAS) during Early Pregnancy in Relation to Preeclampsia Subtypes and Biomarkers of Preeclampsia Risk. Environ. Health Perspect. 2021, 129, 107004. [Google Scholar] [CrossRef]
- Sullivan, S.D.; Umans, J.G.; Ratner, R. Hypertension complicating diabetic pregnancies: Pathophysiology, management, and controversies. J. Clin. Hypertens. 2011, 13, 275–284. [Google Scholar] [CrossRef]
- Roberts, C.L.; Algert, C.S.; Morris, J.M.; Ford, J.B.; Henderson-Smart, D.J. Hypertensive disorders in pregnancy: A population-based study. Med. J. Aust. 2005, 182, 332–335. [Google Scholar] [CrossRef]
- Durmaz, A.; Komurcu, N. Relationship Between Maternal Characteristics and Postpartum Hemorrhage: A Meta-Analysis Study. J. Nurs. Res. 2018, 26, 362–372. [Google Scholar] [CrossRef]
- Fyfe, E.M.; Thompson, J.M.; Anderson, N.H.; Groom, K.M.; McCowan, L.M. Maternal obesity and postpartum haemorrhage after vaginal and caesarean delivery among nulliparous women at term: A retrospective cohort study. BMC Pregnancy Childbirth. 2012, 12, 112. [Google Scholar] [CrossRef]
- Quaresima, P.; Saccone, G.; Morelli, M.; Interlandi, F.; Votino, C.; Zuccalà, V.; Di Carlo, C.; Zullo, F.; Venturella, R. Stillbirth, potentially preventable cases: An Italian retrospective study. Ital. J. Gynaecol. Obstet. 2022, 34, 89–102. [Google Scholar] [CrossRef]
- Cao, T.; Qu, A.; Li, Z.; Wang, W.; Liu, R.; Wang, X.; Nie, Y.; Sun, S.; Zhang, X.; Liu, X. The relationship between maternal perfluoroalkylated substances exposure and low birth weight of offspring: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.I.; Sutton, P.; Atchley, D.S.; Koustas, E.; Lam, J.; Sen, S.; Robinson, K.A.; Axelrad, D.A.; Woodruff, T.J. The Navigation Guide—Evidence-based medicine meets environmental health: Systematic review of human evidence for PFOA effects on fetal growth. Environ. Health Perspect. 2014, 122, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Negri, E.; Metruccio, F.; Guercio, V.; Tosti, L.; Benfenati, E.; Bonzi, R.; La Vecchia, C.; Moretto, A. Exposure to PFOA and PFOS and fetal growth: A critical merging of toxicological and epidemiological data. Crit. Rev. Toxicol. 2017, 47, 482–508. [Google Scholar] [CrossRef] [PubMed]
- Dzierlenga, M.W.; Crawford, L.; Longnecker, M.P. Birth weight and perfluorooctane sulfonic acid: A random-effects meta-regression analysis. Environ. Epidemiol. 2020, 4, e095. [Google Scholar] [CrossRef]
- Steenland, K.; Barry, V.; Savitz, D. Serum Perfluorooctanoic Acid and Birthweight: An Updated Meta-analysis With Bias Analysis. Epidemiology 2018, 29, 765–776. [Google Scholar] [CrossRef]
- Verner, M.-A.; Loccisano, A.E.; Morken, N.-H.; Yoon, M.; Wu, H.; McDougall, R.; Maisonet, M.; Marcus, M.; Kishi, R.; Miyashita, C.; et al. Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK). Environ. Health Perspect. 2015, 123, 1317–1324. [Google Scholar] [CrossRef]
- Ouidir, M.; Buck Louis, G.M.; Kanner, J.; Grantz, K.L.; Zhang, C.; Sundaram, R.; Rahman, M.L.; Lee, S.; Kannan, K.; Tekola-Ayele, F.; et al. Association of Maternal Exposure to Persistent Organic Pollutants in Early Pregnancy With Fetal Growth. JAMA Pediatr. 2020, 174, 149–161. [Google Scholar] [CrossRef]
- Costa, O.; Iñiguez, C.; Manzano-Salgado, C.B.; Amiano, P.; Murcia, M.; Casas, M.; Irizar, A.; Basterrechea, M.; Beneito, A.; Schettgen, T.; et al. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy. Environ. Int. 2019, 130, 104830. [Google Scholar] [CrossRef]
- Blake, B.E.; Fenton, S.E. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020, 443, 152565. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Anthony, J.; Davey, D.A.; Rees, A.; Tiltman, A.; Vercruysse, L.; Van Assche, A.N.D.R.E. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br. J. Obs. Gynaecol. 1991, 98, 648–655. [Google Scholar] [CrossRef]
- Cuffe, J.S.M.; Holland, O.; Salomon, C.; Rice, G.E.; Perkins, A.V. Review: Placental derived biomarkers of pregnancy disorders. Placenta 2017, 54, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, M.G.; Webster, T.F. Trade-offs of Personal Versus More Proxy Exposure Measures in Environmental Epidemiology. Epidemiology 2017, 28, 635–643. [Google Scholar] [CrossRef]
- Bach, C.C.; Vested, A.; Jorgensen, K.T.; Bonde, J.P.E.; Henriksen, T.B.; Toft, G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: A systematic review. Crit. Rev. Toxicol. 2016, 46, 735–755. [Google Scholar] [CrossRef] [PubMed]
- Liew, Z.; Luo, J.; Nohr, E.A.; Bech, B.H.; Bossi, R.; Arah, O.A.; Olsen, J. Maternal Plasma Perfluoroalkyl Substances and Miscarriage: A Nested Case-Control Study in the Danish National Birth Cohort. Environ. Health Perspect. 2020, 128, 047007. [Google Scholar] [CrossRef] [PubMed]
NT | Qld | NSW | ||||
---|---|---|---|---|---|---|
Characteristic | Exposed n (%) | Comparison n (%) | Exposed n (%) | Comparison n (%) | Exposed n (%) | Comparison n (%) |
Mothers | ||||||
Total sample 1 | 4083 | 8607 | 513 | 2876 | 144 | 4871 |
Country of birth | ||||||
Australia | 3529 (87) | 6825 (80) | 463 (90) | 2642 (92) | 130 (90) | 4522 (93) |
Overseas | 543 (13) | 1720 (20) | 50 (10) | 234 (8) | 14 (10) | 349 (7) |
Missing/unknown | 11 | 62 | 0 | 0 | 0 | 0 |
Indigenous status 2 | ||||||
No | 2916 (71) | 6795 (79) | 424 (83) | 2707 (94) | 139 (97) | 4651 (96) |
Yes | 1167 (29) | 1806 (21) | 89 (17) | 169 (6) | ≤5 | 206 (4) |
Missing/unknown | 0 | 6 | 0 | 0 | ≤5 | 14 |
Pregnancies | ||||||
Total sample 1 | 5606 | 11,364 | 665 | 3989 | 188 | 7287 |
Year of birth | ||||||
1985–1994 | 1731 (31) | 2457 (22) | N/A | N/A | ≤5 | 264 (4) |
1995–2004 | 1724 (31) | 3466 (31) | N/A | N/A | 41 (22) | 2754 (38) |
2005–2014 | 1736 (31) | 4157 (37) | 445 (67) | 2681 (67) | 100 (53) | 3033 (42) |
2015–latest | 415 (7) | 1283 (11) | 220 (33) | 1308 (33) | 44 (23) | 1236 (17) |
Missing/unknown | 0 | 1 | 0 | 0 | ≤5 | 0 |
Mother’s age (at baby’s birth) 3 | ||||||
<20 | 606 (11) | 925 (8) | 87 (13) | 360 (9) | ≤5 | 332 (5) |
20–24 | 1344 (24) | 2182 (19) | 201 (30) | 961 (24) | 22 (12) | 1284 (18) |
25–29 | 1714 (31) | 3187 (28) | 194 (29) | 1281 (32) | 60 (32) | 2374 (33) |
30–34 | 1315 (23) | 3252 (29) | 121 (18) | 865 (22) | 60 (32) | 2105 (29) |
35–39 | 526 (9) | 1534 (14) | 62 (9) | 522 (13) | 39 (21) | 976 (13) |
40+ | 101 (2) | 281 (2) | N/A | N/A | 6 (3) | 215 (3) |
Missing/unknown | 0 | 3 | 0 | 0 | ≤5 | 1 |
Gestational age (weeks) | ||||||
≤36 | 455 (8) | 929 (8) | 61 (9) | 314 (8) | 15 (8) | 399 (5) |
37–40 | 4298 (77) | 9046 (80) | 524 (79) | 3209 (80) | 139 (74) | 5553 (76) |
41+ | 827 (15) | 1300 (12) | 80 (12) | 465 (12) | 34 (18) | 1332 (18) |
Missing | 26 | 89 | 0 | 1 | 0 | 3 |
Baby sex | ||||||
Female | 2688 (48) | 5607 (49) | 329 (49) | 1899 (48) | 94 (50) | 3552 (49) |
Male | 2916 (52) | 5753 (51) | 336 (51) | 2090 (52) | 94 (50) | 3735 (51) |
Missing/unknown | 2 | 4 | 0 | 0 | 0 | 0 |
Maternal parity | ||||||
No prior birth | 2087 (37) | 4683 (41) | 190 (29) | 1033 (26) | 72 (38) | 2595 (36) |
One prior birth | 1676 (30) | 3501 (31) | 160 (24) | 1054 (26) | 69 (37) | 2436 (33) |
≥Two prior births | 1840 (33) | 3156 (28) | 315 (47) | 1902 (48) | 47 (25) | 2246 (31) |
Missing/unknown | 3 | 24 | 0 | 0 | 0 | 10 |
Marital status (at birth) ⁴ | ||||||
Married/de facto | 3610 (65) | 7156 (64) | 484 (73) | 3133 (79) | 12 (80) | 960 (87) |
Other | 1959 (35) | 4014 (36) | 181 (27) | 856 (21) | 3 (20) | 148 (13) |
Missing/unknown | 37 | 194 | 0 | 0 | 173 | 6179 |
Pre-pregnancy BMI ⁵ | ||||||
0 -< 18.5 | 13 (3) | 48 (3) | 25 (4) | 210 (5) | ≤5 | 34 (4) |
18.5 -< 25 | 209 (43) | 772 (53) | 253 (41) | 1596 (41) | 12 (41) | 404 (44) |
25 -< 30 | 139 (29) | 393 (27) | 160 (26) | 1012 (26) | ≤10 | 244 (27) |
≥30 | 125 (26) | 257 (17) | 180 (29) | 1072 (28) | 9 (31) | 228 (25) |
Missing/unknown | 5120 | 9894 | 47 | 99 | 159 | 6377 |
Smoking during pregnancy ⁶ | ||||||
No | 2293 (68) | 5623 (75) | 471 (71) | 2959 (74) | 158 (84) | 5909 (81) |
Yes | 1092 (32) | 1912 (25) | 191 (29) | 1025 (26) | 30 (16) | 1355 (19) |
Missing/unknown | 2221 | 3829 | 3 | 5 | 0 | 23 |
IRSD ⁷ decile | ||||||
1 | N/A | N/A | 0 | 97 (2) | N/A | N/A |
2 | N/A | N/A | 0 | 599 (15) | N/A | N/A |
3 | N/A | N/A | 665 (100) | 2966 (74) | N/A | N/A |
4 | N/A | N/A | 0 | 327 (8) | N/A | N/A |
5–10 | N/A | N/A | 0 | 0 | N/A | N/A |
Remoteness | ||||||
Major city | N/A | N/A | 0 | 0 | N/A | N/A |
Inner regional | N/A | N/A | 0 | 0 | N/A | N/A |
Outer regional | N/A | N/A | 0 | 43 (1) | N/A | N/A |
Remote | N/A | N/A | 665 (100) | 3946 (99) | N/A | N/A |
Very remote | N/A | N/A | 0 | 0 | N/A | N/A |
NT | Qld | NSW | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposed % (n) | Comparison % (n) | Adjusted RR 1 (95% CI) | Adjusted RR 2 (95% CI) | Exposed % (n) | Comparison % (n) | Adjusted RR 1 (95% CI) | Adjusted RR 2 (95% CI) | Exposed % (n) | Comparison % (n) | Adjusted RR 1 (95% CI) | Adjusted RR 2 (95% CI) | |
Adverse Perinatal Outcome | ||||||||||||
Total sample | 5606 | 11,364 | 665 | 3989 | 188 | 7287 | ||||||
Gestational diabetes 3 | 7% (215) | 7% (505) | 1.08 (0.92,1.28) | 1.11 (0.94,1.32) | 8% (53) | 9% (361) | 0.95 (0.71,1.27) | 0.88 (0.66,1.19) | 8% (13) | 5% (306) | 1.44 (0.85,2.44) | 1.42 (0.84,2.41) |
Pregnancy-induced hypertension | 5% (294) | 5% (607) | 0.93 (0.80,1.07) | 1.10 (0.92,1.32) | 3% (17) | 2% (99) | 1.03 (0.62,1.72) | 0.94 (0.56,1.59) | 16% (30) | 7% (527) | 2.00 (1.36,2.93) | 1.88 (1.30,2.73) |
Caesarean/assisted vaginal | 31% (1711) | 34% (3853) | 0.99 (0.95,1.05) | 0.97 (0.91,1.03) | 40% (263) | 36% (1427) | 1.13 (1.01,1.27) | 1.12 (1.00,1.25) | 38% (71) | 33% (2423) | 1.03 (0.84,1.26) | 0.98 (0.81,1.20) |
Emergency caesarean | 11% (607) | 12% (1306) | 1.00 (0.90,1.10) | 1.08 (0.96,1.21) | 14% (90) | 12% (490) | 1.10 (0.88,1.37) | 1.11 (0.89,1.39) | 13% (25) | 10% (747) | 1.22 (0.83,1.81) | 1.12 (0.76,1.65) |
Postpartum haemorrhage ⁴ | 8% (475) | 9% (1075) | 0.96 (0.86,1.06) | 1.01 (0.90,1.14) | 6% (43) | 7% (265) | 0.96 (0.70,1.32) | 0.89 (0.63,1.26) | 34% (10) | 19% (174) | 1.97 (1.14,3.38) | 1.94 (1.13,3.33) |
Preterm birth | 8% (455) | 8% (929) | 0.95 (0.85,1.07) | 1.06 (0.92,1.22) | 9% (61) | 8% (314) | 1.13 (0.85,1.49) | 1.04 (0.77,1.41) | 8% (15) | 5% (399) | 1.46 (0.89,2.39) | 1.47 (0.90,2.40) |
Spontaneous preterm birth | 6% (310) | 5% (586) | 0.99 (0.86,1.14) | 1.14 (0.96,1.36) | 4% (29) | 5% (180) | 0.97 (0.65,1.44) | 0.90 (0.58,1.39) | 4% (7) | 3% (234) | 1.27 (0.60,2.68) | 1.32 (0.63,2.77) |
Small for gestational age (SGA) | 13% (750) | 14% (1553) | 0.87 (0.79,0.94) | 0.92 (0.82,1.03) | 5% (30) | 5% (192) | 0.93 (0.63,1.37) | 1.02 (0.69,1.51) | 7% (13) | 9% (621) | 0.87 (0.48,1.57) | 0.86 (0.48,1.53) |
Large for gestational age (LGA) | 8% (453) | 9% (1028) | 0.96 (0.86,1.08) | 0.91 (0.80,1.04) | 6% (39) | 6% (259) | 0.93 (0.66,1.32) | 0.89 (0.63,1.27) | 11% (20) | 11% (836) | 0.89 (0.58,1.37) | 0.95 (0.62,1.45) |
Stillbirth | 1% (45) | 1% (89) | 0.94 (0.66,1.35) | 0.90 (0.54,1.50) | 2% (11) | 1% (27) | 2.43 (1.20,4.93) | 2.59 (1.25,5.39) | (≤5) | <1% (34) | 1.13 (0.15,8.29) | 1.17 (0.16,8.61) |
Low Apgar score at 5 min | 3% (164) | 3% (327) | 0.93 (0.77,1.13) | 1.07 (0.83,1.37) | 4% (29) | 3% (113) | 1.50 (0.99,2.26) | 1.47 (0.95,2.26) | (≤5) | 2% (161) | 0.98 (0.37,2.57) | 0.95 (0.36,2.51) |
Term (≥37 weeks) outcome | ||||||||||||
Total sample | 5125 | 10,346 | 604 | 3674 | 173 | 6885 | ||||||
Term low Apgar score at 5 min | 2% (80) | 2% (185) | 0.77 (0.59,1.00) | 0.84 (0.59,1.20) | 2% (14) | 2% (70) | 1.15 (0.66,2.00) | 1.21 (0.69,2.10) | (≤5) | 2% (103) | 1.57 (0.58,4.20) | 1.51 (0.56,4.07) |
Exposed mean (SD) | Comparison mean (SD) | Adjusted difference in means 1 (95% CI) | Adjusted difference in means 2 (95% CI) | Exposed mean (SD) | Comparison mean (SD) | Adjusted difference in means 1 (95% CI) | Adjusted difference in means 2 (95% CI) | Exposed mean (SD) | Comparison mean (SD) | Adjusted difference in means 1 (95% CI) | Adjusted difference in means 2 (95% CI) | |
Growth measure | ||||||||||||
Total sample | 5125 | 10,346 | 604 | 3674 | 173 | 6885 | ||||||
Term birth weight (g) | 3423 (488.9) | 3405 (488.9) | 31.1 (14.4,47.9) | 11.22 (−8.9,31.3) | 3465 (448.8) | 3483 (468.9) | −9.6 (−49.7,30.6) | −11.1 (−48.7,26.5) | 3519 (479.6) | 3515 (477.4) | 21.7 (−49.0,92.1) | 35.7 (−29.4,100.8) |
Term birth length (cm) ⁵ | 50.7 (2.7) | 50.3 (2.4) | 0.3 (0.1,0.4) | 0.2 (0.1,0.4) | 51.6 (2.6) | 51.4 (2.6) | 0.3 (0.1,0.5) | 0.3 (0.1,0.5) | Data not available | |||
Term head circumference (cm) ⁶ | 34.7 (1.7) | 34.6 (1.5) | 0.1 (0.0,0.2) | 0.0 (−0.1,0.1) | 34.7 (1.6) | 34.7 (1.5) | 0.0 (−0.1,0.2) | 0.0 (−0.1,0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Law, H.D.; Randall, D.A.; Armstrong, B.K.; D’este, C.; Lazarevic, N.; Hosking, R.; Smurthwaite, K.S.; Trevenar, S.M.; Lucas, R.M.; Clements, A.C.A.; et al. Relative Risks of Adverse Perinatal Outcomes in Three Australian Communities Exposed to Per- and Polyfluoroalkyl Substances: Data Linkage Study. Int. J. Environ. Res. Public Health 2023, 20, 6886. https://doi.org/10.3390/ijerph20196886
Law HD, Randall DA, Armstrong BK, D’este C, Lazarevic N, Hosking R, Smurthwaite KS, Trevenar SM, Lucas RM, Clements ACA, et al. Relative Risks of Adverse Perinatal Outcomes in Three Australian Communities Exposed to Per- and Polyfluoroalkyl Substances: Data Linkage Study. International Journal of Environmental Research and Public Health. 2023; 20(19):6886. https://doi.org/10.3390/ijerph20196886
Chicago/Turabian StyleLaw, Hsei Di, Deborah A. Randall, Bruce K. Armstrong, Catherine D’este, Nina Lazarevic, Rose Hosking, Kayla S. Smurthwaite, Susan M. Trevenar, Robyn M. Lucas, Archie C. A. Clements, and et al. 2023. "Relative Risks of Adverse Perinatal Outcomes in Three Australian Communities Exposed to Per- and Polyfluoroalkyl Substances: Data Linkage Study" International Journal of Environmental Research and Public Health 20, no. 19: 6886. https://doi.org/10.3390/ijerph20196886
APA StyleLaw, H. D., Randall, D. A., Armstrong, B. K., D’este, C., Lazarevic, N., Hosking, R., Smurthwaite, K. S., Trevenar, S. M., Lucas, R. M., Clements, A. C. A., Kirk, M. D., & Korda, R. J. (2023). Relative Risks of Adverse Perinatal Outcomes in Three Australian Communities Exposed to Per- and Polyfluoroalkyl Substances: Data Linkage Study. International Journal of Environmental Research and Public Health, 20(19), 6886. https://doi.org/10.3390/ijerph20196886