Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder
Abstract
:1. Introduction
“It can be assumed that the detector of errors acquires a sort of independent, self-sufficient significance in other, more “natural” conditions of pathology and transforms from a detector—an optimizer of activity—into the determinator of its impairments. Such a process can also underlie psychopathological syndromes, particularly those that are characterized by an obsessive repetition of actions, inappropriate behavior etc. A constant, undetermined by error, primary in relation to some action activity of the structure which usually plays the role of the detector of errors, is always signaling the inconsistency of the executed action (or any other reality) with the plan, regardless of whether the action is correct”[8] (p. 101)
2. Materials and Methods
2.1. Participants
2.2. Task Design
2.3. Data Acquisition
2.4. Data Preprocessing
2.5. Data Analysis
3. Results
3.1. Behavioural Data
3.2. FMRI Data
4. Discussion
5. Conclusions
6. Limitations and Further Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maia, T.V.; Cooney, R.E.; Peterson, B.S. The neural bases of obsessive-compulsive disorder in children and adults. Dev. Psychopathol. 2008, 20, 1251–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramovitch, A.; Mittelman, A.; Tankersley, A.P.; Abramowitz, J.S.; Schweiger, A. Neuropsychological investigations in obsessive-compulsive disorder: A systematic review of methodological challenges. Psychiatry Res. 2015, 228, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Costa, D.L.C.; Lochner, C.; Miguel, E.C.; Reddy, Y.C.J.; Shavitt, R.G.; van den Heuvel, O.A.; Simpson, H.B. Obsessive-compulsive disorder. Nat. Rev. Dis. Prim. 2019, 5, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallanti, S.; Quercioli, L. Treatment-refractory obsessive-compulsive disorder: Methodological issues, operational definitions and therapeutic lines. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2006, 30, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.T.; Mikell, C.B.; Youngerman, B.E.; Zhang, Y.; McKhann, G.M.; Sheth, S.A. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: A systematic review of observational studies. J. Neurosurg. 2016, 124, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelow, B.; Baldwin, D.; Abelli, M.; Altamura, C.; Dell’Osso, B.; Domschke, K.; Fineberg, N.A.; Grünblatt, E.; Jarema, M.; Maron, E.; et al. Biological markers for anxiety disorders, OCD and PTSD—A consensus statement. Part I: Neuroimaging and genetics. World J. Biol. Psychiatry 2016, 17, 321–365. [Google Scholar] [CrossRef] [PubMed]
- Kropotov, J.D. Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment; Academic Press: Cambridge, UK, 2016; pp. 351–364. [Google Scholar]
- Bechtereva, N.P. The Neurophysiological Aspects of Human Mental Activity; Publ. Hause Meditsina: Saint Petersburg, Russia, 1971; pp. 93–108. (In Russian) [Google Scholar]
- Bechtereva, N.P. The Neurophysiological Aspects of Human Mental Activity, 2nd ed.; Oxford University Press: New York, NY, USA, 1978; p. 181. [Google Scholar]
- Bechtereva, N.P.; Gretchin, V.B. Physiological foundations of mental activity. Int. Rev. Neurobiol. 1968, 11, 239–246. [Google Scholar]
- Pitman, R.K. A cybernetic model of obsessive-compulsive psychopathology. Compr. Psychiatry 1987, 28, 334–343. [Google Scholar] [CrossRef]
- Gehring, W.J.; Himle, J.; Nisenson, L.G. Action-Monitoring Dysfunction in Obsessive-Compulsive Disorder. Psychol. Sci. 2000, 11, 1–6. [Google Scholar] [CrossRef]
- Hajcak, G.; Simons, R.F. Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Res. 2002, 110, 63–72. [Google Scholar] [CrossRef]
- van Veen, V.; Carter, C. The anterior cingulate as a conflict monitor: FMRI and ERP studies. Physiol. Behav. 2002, 77, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ursu, S.; Stenger, V.A.; Shear, M.K.; Jones, M.R.; Carter, C.S. Overactive Action Monitoring in Obsessive-Compulsive Disorder. Psychol. Sci. 2003, 14, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.D.; Welsh, R.C.; Gehring, W.J.; Abelson, J.L.; Himle, J.A.; Liberzon, I.; Taylor, S.F. Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol. Psychiatry 2005, 57, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.D.; Stern, E.R.; Angstadt, M.; Nicholson-Muth, K.C.; Maynor, M.R.; Welsh, R.C.; Hanna, G.L.; Taylor, S.F. Altered Function and Connectivity of the Medial Frontal Cortex in Pediatric Obsessive-Compulsive Disorder. Biol. Psychiatry 2010, 68, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Maltby, N.; Tolin, D.F.; Worhunsky, P.; O’Keefe, T.M.; Kiehl, K.A. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: An event-related fMRI study. NeuroImage 2005, 24, 495–503. [Google Scholar] [CrossRef]
- Bechtereva, N.; Shemyakina, N.; Starchenko, M.; Danko, S.; Medvedev, S. Error detection mechanisms of the brain: Background and prospects. Int. J. Psychophysiol. 2005, 58, 227–234. [Google Scholar] [CrossRef]
- Huey, E.D.; Zahn, R.; Krueger, F.; Moll, J.; Kapogiannis, D.; Wassermann, E.M.; Grafman, J. A Psychological and Neuroanatomical Model of Obsessive-Compulsive Disorder. J. Neuropsychiatry Clin. Neurosci. 2008, 20, 390–408. [Google Scholar] [CrossRef]
- Endrass, T.; Klawohn, J.; Schuster, F.; Kathmann, N. Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia 2008, 46, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, R.G.; Wagner, G.; Schachtzabel, C.; Peikert, G.; Koch, K.; Reichenbach, J.R.; Sauer, H. Fronto-cingulate effective connectivity in obsessive compulsive disorder: A study with fMRI and dynamic causal modeling. Hum. Brain Mapp. 2010, 31, 1834–1850. [Google Scholar] [CrossRef]
- McGovern, R.A.; Seth, S.A. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: Converging evidence from cognitive neuroscience and psychiatric neurosurgery. J. Neurosurg. 2016, 126, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Aycicegi, A.; Dinn, W.M.; Harris, C.L.; Erkmen, H. Neuropsychological function in obsessive-compulsive disorder: Effects of comorbid conditions on task performance. Eur. Psychiatry 2003, 18, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.; Blackwell, A.; Fineberg, N.; Robbins, T.; Sahakian, B. The neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 2005, 29, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Soref, A.; Dar, R.; Argov, G.; Meiran, N. Obsessive-compulsive tendencies are associated with a focused information processing strategy. Behav. Res. Ther. 2008, 46, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, M.; Bottesi, G.; Sica, C.; Sanavio, E.; Freeston, M.H. Is Performance on the Go/Nogo Task Related to Not Just Right Experiences in Patients with Obsessive Compulsive Disorder? Cogn. Ther. Res. 2013, 37, 1121–1131. [Google Scholar] [CrossRef]
- Shin, N.Y.; Lee, T.Y.; Kim, E.; Kwon, J.S. Cognitive functioning in obsessive-compulsive disorder: A meta-analysis. Psychol. Med. 2013, 44, 1121–1130. [Google Scholar] [CrossRef]
- van Velzen, L.S.; Vriend, C.; de Wit, S.J.; van den Heuvel, O.A. Response Inhibition and Interference Control in Obsessive-Compulsive Spectrum Disorders. Front. Hum. Neurosci. 2014, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.R.; Kaiser, R.H.; Warren, S.L.; Heller, W. Obsessive-Compulsive Disorder Is Associated with Broad Impairments in Executive Function. Clin. Psychol. Sci. 2014, 3, 301–330. [Google Scholar] [CrossRef] [Green Version]
- Eng, G.K.; Sim, K.; Chen, S.H.A. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci. Biobehav. Rev. 2015, 52, 233–257. [Google Scholar] [CrossRef]
- Berlin, G.S.; Lee, H.J. Response inhibition and error-monitoring processes in individuals with obsessive-compulsive disorder. J. Obs. Compuls. Relat. Disord. 2018, 16, 21–27. [Google Scholar] [CrossRef]
- Kertzman, S.G.; Poyurovski, M.; Faragian, S.; Weizman, R.; Cohen, K.; Aizer, A.; Weizman, A.; Dannon, P.N. Distinct Response Inhibition Patterns in Obsessive Compulsive Disorder Patients and Pathological Gamblers. Front. Psychiatry 2018, 9, 652. [Google Scholar] [CrossRef]
- Norman, L.J.; Taylor, S.F.; Liu, Y.; Radua, J.; Chye, Y.; De Wit, S.J.; Huyser, C.; Karahanoglu, F.I.; Luks, T.; Manoach, D.; et al. Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps. Biol. Psychiatry 2019, 85, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.P. An attempt at a physiological interpretation of obsessional neurosis and paranoia. J. Ment. Sci. 1934, 80, 187–197. [Google Scholar] [CrossRef]
- Aouizerate, B.; Guehl, D.; Cuny, E.; Rougier, A.; Bioulac, B.; Tignol, J.; Burbaud, P. Pathophysiology of obsessive-compulsive disorder. Prog. Neurobiol. 2004, 72, 195–221. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.M.; Saykin, A.J.; Flashman, L.A.; Pixley, H.S.; West, J.D.; Mamourian, A.C. Event-Related Functional Magnetic Resonance Imaging of Response Inhibition in Obsessive-Compulsive Disorder. Biol. Psychiatry 2007, 62, 901–909. [Google Scholar] [CrossRef]
- Nakao, T.; Okada, K.; Kanba, S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 2014, 68, 587–605. [Google Scholar] [CrossRef]
- Pauls, D.L.; Abramovitch, A.; Rauch, S.L.; Geller, D.A. Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective. Nat. Rev. Neurosci. 2014, 15, 410–424. [Google Scholar] [CrossRef]
- van den Heuvel, O.A.; van Wingen, G.; Soriano-Mas, C.; Alonso, P.; Chamberlain, S.R.; Nakamae, T.; Denys, D.; Goudriaan, A.E.; Veltman, D.J. Brain circuitry of compulsivity. Eur. Neuropsychopharmacol. 2016, 26, 810–827. [Google Scholar] [CrossRef] [Green Version]
- Karas, P.J.; Lee, S.; Jimenez-Shahed, J.; Goodman, W.K.; Viswanathan, A.; Sheth, S.A. Deep Brain Stimulation for Obsessive Compulsive Disorder: Evolution of Surgical Stimulation Target Parallels Changing Model of Dysfunctional Brain Circuits. Front. Neurosci. 2019, 12, 998. [Google Scholar] [CrossRef] [Green Version]
- Stern, E.R.; Welsh, R.C.; Gonzalez, R.; Fitzgerald, K.D.; Abelson, J.L.; Taylor, S.F. Subjective uncertainty and limbic hyperactivation in obsessive-compulsive disorder. Hum. Brain Mapp. 2012, 34, 1956–1970. [Google Scholar] [CrossRef] [Green Version]
- Banca, P.; Vestergaard, M.D.; Rankov, V.; Baek, K.; Mitchell, S.; Lapa, T.; Castelo-Branco, M.; Voon, V. Evidence Accumulation in Obsessive-Compulsive Disorder: The Role of Uncertainty and Monetary Reward on Perceptual Decision-Making Thresholds. Neuropsychopharmacology 2014, 40, 1192–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, V.; Droux, F.; Morris, L.; Chabardes, S.; Bougerol, T.; David, O.; Krack, P.; Polosan, M. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: Stimulation and connectivity. Brain 2016, 140, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Kalanthroff, E.; Linkovski, O.; Henik, A.; Wheaton, M.G.; Anholt, G.E. Inhibiting uncertainty: Priming inhibition promotes reduction of uncertainty. Neuropsychologia 2016, 92, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Bottesi, G.; Ghisi, M.; Sica, C.; Freeston, M.H. Intolerance of uncertainty, not just right experiences, and compulsive checking: Test of a moderated mediation model on a non-clinical sample. Compr. Psychiatry 2017, 73, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.P. Lectures on Conditioned Reflexes: Twenty-Five Years of Objective Study of the Higher Nervous Activity (Behavior) of Animals; International Publishers: New York, NY, USA, 1928; Volume 1, pp. 339–349. [Google Scholar]
- Albares, M.; Lio, G.; Criaud, M.; Anton, J.L.; Desmurget, M.; Boulinguez, P. The dorsal medial frontal cortex mediates automatic motor inhibition in uncertain contexts: Evidence from combined fMRI and EEG studies. Hum. Brain Mapp. 2014, 35, 5517–5531. [Google Scholar] [CrossRef]
- Criaud, M.; Longcamp, M.; Anton, J.L.; Nazarian, B.; Roth, M.; Sescousse, G.; Strafella, A.P.; Ballanger, B.; Boulinguez, P. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study. Behav. Brain Res. 2017, 333, 192–202. [Google Scholar] [CrossRef]
- Masharipov, R.; Korotkov, A.; Medvedev, S.; Kireev, M. Evidence for non-selective response inhibition in uncertain contexts revealed by combined meta-analysis and Bayesian analysis of fMRI data. Sci. Rep. 2022, 12, 10137. [Google Scholar] [CrossRef]
- Aron, A.R.; Verbruggen, F. Stop the presses: Dissociating a selective from a global mechanism for stopping. Psychol. Sci. 2008, 19, 1146–1153. [Google Scholar] [CrossRef]
- Wessel, J.R.; Aron, A.R. On the globality of motor suppression: Unexpected events and their influence on behavior and cognition. Neuron 2017, 93, 259–280. [Google Scholar] [CrossRef] [Green Version]
- Wessel, J.R.; Waller, D.A.; Greenlee, J.D.W. Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism. eLife 2019, 8, e46323. [Google Scholar] [CrossRef]
- Diesburg, D.A.; Wessel, J.R. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence. Neurosci. Biobehav. Rev. 2021, 129, 17–34. [Google Scholar] [CrossRef]
- Verbruggen, F.; Best, M.; Bowditch, W.A.; Stevens, T.; McLaren, I.P.L. The inhibitory control reflex. Neuropsychologia 2014, 65, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Di Russo, F.; Lucci, G.; Sulpizio, V.; Berchicci, M.; Spinelli, D.; Pitzalis, S.; Galati, G. Spatiotemporal brain mapping during preparation, perception, and action. Neuroimage 2016, 126, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Laurens, K.R.; Kiehl, K.A.; Liddle, P.F. A supramodal limbic-paralimbic-neocortical network supports goal-directed stimulus processing. Hum. Brain Mapp. 2004, 24, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Pluck, G.; Lekka, N.; Horton, A.; Wilkinson, I.D.; Woodruff, P.W.R. Self-harm in schizophrenia is associated with dorsolateral prefrontal and posterior cingulate activity. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2015, 61, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Masharipov, R.; Knyazeva, I.; Nikolaev, Y.; Korotkov, A.; Didur, M.; Cherednichenko, D.; Kireev, M. Providing Evidence for the Null Hypothesis in Functional Magnetic Resonance Imaging Using Group-Level Bayesian Inference. Front. Neuroinform. 2021, 15, 738342. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The Yale-Brown obsessive-compulsive scale: I. Development, use, and reliability. Arch. Gen. Psychiatry 1989, 46, 1006–1011. [Google Scholar] [CrossRef]
- Friston, K.J.; Penny, W.; Phillips, C.; Kiebel, S.; Hinton, G.; Ashburner, J. Classical and Bayesian Inference in Neuroimaging: Theory. NeuroImage 2002, 16, 465–483. [Google Scholar] [CrossRef] [Green Version]
- Eickhoff, S.B.; Bzdok, D.; Laird, A.R.; Kurth, F.; Fox, P.T. Activation likelihood estimation meta-analysis revisited. NeuroImage 2012, 59, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Albajes-Eizagirre, A.; Solanes, A.; Vieta, E.; Radua, J. Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM. NeuroImage 2019, 186, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, T.; Walsh, K.S.O.; Greischar, L.L.; Alexander, A.L.; Fox, A.S.; Davidson, R.J.; Oakes, T.R. Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum. Brain Mapp. 2006, 27, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Penny, W. Posterior probability maps and SPMs. NeuroImage 2003, 19, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Lau, W.K.; Eickhoff, S.B.; Long, J.; Song, X.; Wang, C.; Zhao, J.; Feng, X.; Huang, R.; Wang, M.; et al. Charting the neural circuits disruption in inhibitory control and its subcomponents across psychiatric disorders: A neuroimaging meta-analysis. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2022, 119, 110618. [Google Scholar] [CrossRef]
- Frydman, I.; de Salles Andrade, J.B.; Vigne, P.; Fontenelle, L.F. Can neuroimaging provide reliable biomarkers for obsessive-compulsive disorder? A narrative review. Curr. Psychiatry Rep. 2016, 18, 90. [Google Scholar] [CrossRef]
- Jang, J.H.; Kim, J.H.; Jung, W.H.; Choi, J.S.; Jung, M.H.; Lee, J.M.; Choi, C.H.; Kang, D.H.; Kwon, J.S. Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder. Neurosci. Lett. 2010, 474, 158–162. [Google Scholar] [CrossRef]
- Harrison, B.J.; Soriano-Mas, C.; Pujol, J.; Ortiz, H.; López-Solà, M.; Hernández-Ribas, R.; Deus, J.; Alonso, P.; Yücel, M.; Pantelis, C.; et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 2009, 66, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, K.D.; Welsh, R.C.; Stern, E.R.; Angstadt, M.; Hanna, G.L.; Abelson, J.L.; Taylor, S.F. Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Vaghi, M.M.; Vértes, P.E.; Kitzbichler, M.G.; Apergis-Schoute, A.M.; van der Flier, F.E.; Fineberg, N.A.; Sule, A.; Zaman, R.; Voon, V.; Kundu, P.; et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: Evidence from resting-state functional connectivity. Biol. Psychiatry 2017, 81, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, N.S.; Masharipov, R.S.; Korotkov, A.D.; Kireev, M.V.; Medvedev, S.V. Dynamics of Activity in the Anterior Cingulate Cortex on Development of Obsessive-Compulsive Disorder: A Combined PET and FMRI Study. Neurosci. Behav. Physiol. 2020, 50, 298–305. [Google Scholar] [CrossRef]
- Jimura, K.; Hirose, S.; Kunimatsu, A.; Ohtomo, K.; Koike, Y.; Konishi, S. Late enhancement of brain-behavior correlations during response inhibition. Neuroscience 2014, 274, 383–392. [Google Scholar] [CrossRef]
- Yamasaki, T.; Ogawa, A.; Osada, T.; Jimura, K.; Konishi, S. Within-Subject Correlation Analysis to Detect Functional Areas Associated with Response Inhibition. Front. Hum. Neurosci. 2018, 12, 208. [Google Scholar] [CrossRef]
- Schwartz, J.M. A Role for Volition and Attention in the Generation of New Brain Circuitry. Toward A Neurobiology of Mental Force. J. Conscious. Stud. 1999, 6, 114–142. [Google Scholar]
- Raud, L.; Huster, R.J. The temporal dynamics of response inhibition and their modulation by cognitive control. Brain Topogr. 2017, 30, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Huster, R.J.; Messel, M.S.; Thunberg, C.; Raud, L. The P300 as marker of inhibitory control—Fact or fiction? Cortex 2020, 132, 334–348. [Google Scholar] [CrossRef]
No. | Cluster Size, mm3 | Anatomical Localization * | Centroid Coordinates (MNI), mm | ||
---|---|---|---|---|---|
x | y | z | |||
1 | 3591 | R: DLPFC, BA 9, 10 | 36 | 42 | 24 |
2 | 1971 | R: Premotor cortex, FEF, BA 6, 8 | 39 | 9 | 42 |
3 | 1647 | R: IFG, Anterior insula, BA 13, 47 | 30 | 24 | 0 |
4 | 1539 | R: IPL, BA 7, 40 | 30 | −60 | 45 |
5 | 891 | L: IFG, Anterior insula, BA 13, 47 | −36 | 24 | −9 |
6 | 621 | R: TPJ, BA 40 | 54 | −45 | 36 |
7 | 405 | R: ACC, BA 32 | 6 | 27 | 45 |
No. | Cluster Size, mm3 | Anatomical Localization * | T-Value | Coordinates of Local Maxima (MNI), mm | ||
---|---|---|---|---|---|---|
x | y | z | ||||
1 | 1614 | R: ACC, BA 32 | 4.53 | 6 | 26 | 35 |
R: Superior frontal gyrus, SMA, BA 6, 8 | 4.34 | 12 | 20 | 56 | ||
R: SMA, BA 6 | 4.24 | 6 | 8 | 62 | ||
L: Superior frontal gyrus, SMA, BA 6, 8 | 3.94 | −6 | 29 | 56 | ||
R/L: ACC, SMA, BA 6, 32 | 3.66 | 3 | 14 | 47 | ||
L: Superior frontal gyrus, BA 9 | 3.49 | −18 | 44 | 23 | ||
R: Superior frontal gyrus, BA 9 | 2.97 | 18 | 50 | 29 | ||
2 | 7614 | L/R: Thalamus | 5.01 | 0 | −16 | 14 |
L: Caudate nucleus | 4.89 | −15 | −1 | 20 |
No. | Cluster Size, mm3 | Anatomical Localization * | T-Value | Coordinates of Local Maxima (MNI), mm | ||
---|---|---|---|---|---|---|
x | y | z | ||||
1 | 29,322 | R: MCC, BA 23 | 9.21 | 6 | −25 | 29 |
L: MCC, BA 23 | 7.73 | −3 | −25 | 29 | ||
L: Precuneus, SPL, BA 7 | 6.03 | −15 | −73 | 44 | ||
R: Precuneus, SPL, BA 7 | 5.51 | 6 | −76 | 47 | ||
R/L: Paracentral lobule, BA 5 | 5.22 | 0 | −43 | 53 | ||
R: Precuneus, BA 7 | 4.98 | 15 | −64 | 32 | ||
R: SPL, BA 7 | 4.69 | 30 | −55 | 62 | ||
R: IPL, BA 40 | 4.51 | 39 | −40 | 56 | ||
R/L: PCC, BA 23 | 3.58 | 3 | −55 | 11 | ||
R: IPL, BA 40 | 3.13 | 42 | −58 | 50 | ||
R: DLPFC, BA 9 | 7.79 | 30 | 35 | 35 | ||
2 | 9288 | R: ACC, BA 32 | 5.65 | 9 | 38 | 20 |
R: ACC, BA 24 | 4.40 | 3 | 20 | 29 | ||
L: ACC, BA 24 | 4.39 | −6 | 29 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masharipov, R.; Korotkov, A.; Knyazeva, I.; Cherednichenko, D.; Kireev, M. Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder. Int. J. Environ. Res. Public Health 2023, 20, 1171. https://doi.org/10.3390/ijerph20021171
Masharipov R, Korotkov A, Knyazeva I, Cherednichenko D, Kireev M. Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder. International Journal of Environmental Research and Public Health. 2023; 20(2):1171. https://doi.org/10.3390/ijerph20021171
Chicago/Turabian StyleMasharipov, Ruslan, Alexander Korotkov, Irina Knyazeva, Denis Cherednichenko, and Maxim Kireev. 2023. "Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder" International Journal of Environmental Research and Public Health 20, no. 2: 1171. https://doi.org/10.3390/ijerph20021171
APA StyleMasharipov, R., Korotkov, A., Knyazeva, I., Cherednichenko, D., & Kireev, M. (2023). Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder. International Journal of Environmental Research and Public Health, 20(2), 1171. https://doi.org/10.3390/ijerph20021171