Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methodology
2.3.1. Spatial Autocorrelation
2.3.2. Mann–Kendall Trend Test
2.3.3. Sequential Mann–Kendall Test
3. Results
3.1. Land Use Dynamics
3.2. Variations of Vegetation Coverage
3.3. The Change Trend and the Turning Point of the Grain Yield
4. Discussion
4.1. Ecological Restoration Conditions
4.2. Effects of the Returning Farmland to Forests Project on Grain Production
4.3. Comparison with Other Studies
4.4. Enlightenment and Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef]
- Alexander, S.; Aronson, J.; Whaley, O.; Lamb, D. The relationship between ecological restoration and the ecosystem services concept. Ecol. Soc. 2016, 21, 34. [Google Scholar] [CrossRef] [Green Version]
- Aviron, S.; Herzog, F.; Klaus, I.; Schüpbach, B.; Jeanneret, P. Effects of wildflower strip quality quantity, and connectivity on butterfly diversity in a Swiss arable landscape. Restor. Ecol. 2011, 19, 500–508. [Google Scholar] [CrossRef]
- Benayas José, M.R.; Newton Adrian, C.; Diaz, A.; Bullock James, M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Calmon, M.; Brancalion, P.; Paese, A.; Aronson, J.; Castro, P.; da Silva, S.; Rodrigues, R. Emerging threats and opportunities for large-scale ecological restoration in the Atlantic forest of Brazil. Restor. Ecol. 2011, 19, 154–158. [Google Scholar] [CrossRef]
- Wang, G.; Innes, J.L.; Lei, J.; Dai, S.; Wu, S.W. China’s forestry reforms. Science 2007, 318, 1556–1557. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.C.; Zhao, S.Q.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Chien, S.S. Local farmland loss and preservation in China—A perspective of quota territorialization. Land Use Policy 2015, 49, 65–74. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Bian, Z.; Mu, S.; Yuan, J.; Chen, F. Effects of climate change on land cover change and vegetation dynamics in Xinjiang, China. Int. J. Environ. Res. Public Health 2020, 17, 4865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, G.; Li, P.; Li, Z.; Wang, Y.; Wang, B.; Jia, L.; Cheng, Y.T.; Zhang, J.X.; Zhuang, S.H.; et al. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public Health 2019, 16, 4709. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Wang, R.H.; Jiang, Y.L.; Li, C. Contributions of climate change and human activities to vegetation dynamics in Qilian Mountain National Park, northwest China. Glob. Ecol. Conserv. 2021, 32, e01947. [Google Scholar] [CrossRef]
- Zhang, S.N.; Ye, L.P.; Huang, C.Q.; Wang, M.X.; Yang, Y.; Wang, T.W.; Tan, W.F. Evolution of vegetation dynamics and its response to climate in ecologically fragile regions from 1982 to 2020: A case study of the Three Gorges Reservoir area. Catena 2022, 219, 106601. [Google Scholar] [CrossRef]
- Wu, X.T.; Wang, S.; Fu, B.J.; Feng, X.M.; Chen, Y.Z. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- He, L.; Guo, J.B.; Jiang, Q.N.; Zhang, Z.Y.; Yu, S.P. How did the Chinese Loess Plateau turn green from 2001 to 2020? An explanation using satellite data. Catena 2022, 214, 106246. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, B.Y. Dynamics arising from the impact of large-scale afforestation on ecosystem services. Land Degrad. Dev. 2022, 33, 3186–3198. [Google Scholar] [CrossRef]
- Luo, N.N.; Mao, D.H.; Wen, B.L.; Liu, X.T. Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.J.; Gao, J.B.; Wu, S.H.; Dai, E.F. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.Y.; Fu, B.J.; Wang, S.; Liang, W.; Jiang, X.H. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.B.; Han, J.C.; Yan, J.W.; Liu, W.B.; Wei, Y.; Lu, N.; Sun, Y.Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Tanrivermis, H. Agricultural land use change and sustainable use of land resources in the Mediterranean region of Turkey. J. Arid Environ. 2003, 54, 553–564. [Google Scholar] [CrossRef]
- Zhang, X.S.; Zhang, M.M.; He, J.; Wang, Q.X.; Li, D.S. The Spatial-Temporal Characteristics of Cultivated Land and Its Influential Factors in The Low Hilly Region: A Case Study of Lishan Town, Hubei Province, China. Sustainability 2019, 11, 3810. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Lobell, D.B. Towards probabilistic projections of climate change impacts on global crop yields. Geophys. Geophys. Res. Lett. 2008, 35, L08705. [Google Scholar] [CrossRef]
- Rigolot, C.; de Voil, P.D.; Douxchamps, S.; Prestwidge, D.; Van Wijk, M.V.; Thornton, P.; Rodriguez, D.; Henderson, B.; Medina, D.; Herrero, M. Interactions between intervention packages, climatic risk, climate change and food security in mixed crop-livestock systems in Burkina Faso. Agric. Syst. 2016, 151, 217–224. [Google Scholar] [CrossRef]
- Li, T.X.; Balezentis, T.; Cao, L.J.; Zhu, J.; Krisciukaitiene, I.; Melnikiene, R. Are the changes in China’s grain production sustainable: Extensive and intensive development by the LMDI approach. Sustainability 2016, 8, 1198. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.E.D.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Li, T.T.; Long, H.L.; Zhang, Y.N.; Tu, S.S.; Ge, D.Z.; Li, Y.R.; Hu, B.Q. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Xin, F.F.; Xiao, X.M.; Dong, J.W.; Zhang, G.L.; Zhang, Y.; Wu, X.C.; Li, X.P.; Zou, Z.H.; Ma, J.; Du, G.M.; et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef]
- Pan, J.X.; Shang, Y.W.; Zhang, Y.W.; Wen, J.; Chen, X.; Cui, Z. Improving soil quality for higher grain yields in Chinese wheat and maize production. Land Degrad. Dev. 2019, 31, 1125–1137. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.Q.; Yang, J.; Zhang, L.G. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar]
- Xing, L.; Hu, M.S.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef]
- Lin, A.W.; Zhu, H.J.; Wang, L.C.; Gong, W.; Zou, L. Characteristics of Long-Term Climate Change and the Ecological Responses in Central China. Earth Interact. 2016, 20, 1–24. [Google Scholar] [CrossRef]
- Wang, S.L.; Tan, S.K.; Yang, S.F.; Lin, Q.W.; Zhang, L. Urban-biased land development policy and the urban-rural income gap: Evidence from Hubei Province, China. Land Use Policy 2019, 87, 104066. [Google Scholar] [CrossRef]
- CSY. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2019. (In Chinese)
- Hubei Province Statistical Bureau. Statistical Yearbook of Hubei Province 2001; China Statistics Press: Beijing, China, 2001.
- Hubei Province Statistical Bureau. Statistical Yearbook of Hubei Province 2019; Beijing, China Statistics Press: Beijing, China, 2019.
- Wang, J.Y.; Zhang, Z.W.; Liu, Y.S. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, D.J.; Ge, W.Y.; Zhang, Y. Evaluating the vegetation restoration sustainability of ecological projects: A case study of Wuqi County in China. J. Clean. Prod. 2020, 264, 121751. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Fu, W.J.; Jiang, P.K.; Zhou, G.M.; Zhao, K.L. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.S.; Tang, Y.; Luo, L.; Xu, W.L. Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land. Environ. Pollut. 2009, 157, 3083–3090. [Google Scholar] [CrossRef]
- Mann, H.B. Spatial-temporal variation and protection of wetland resources in Xinjiang. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 1–4. [Google Scholar] [CrossRef]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.H. Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. J. Hydrol. Reg. Stud. 2016, 5, 244–260. [Google Scholar] [CrossRef] [Green Version]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. 2009, 114, D03101. [Google Scholar] [CrossRef]
- Safari, B. Trend analysis of the mean annual temperature in Rwanda during the last fifty two years. J. Environ. Prot. 2012, 3, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Bisai, D.; Khan, A. Detection of approximate potential trend turning points in temperature time series (1941–2010) for Asansol weather observation station West Bengal, India. Atmos. Clim. Sci. 2014, 4, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.W.; Wang, K.L.; Yue, Y.M.; Brandt, M.; Liu, B.; Zhang, C.H.; Liao, C.J.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. App. Earth Obs. 2017, 54, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Duo, A.; Zhao, W.J.; Qu, X.Y.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. App. Earth Obs. 2016, 53, 103–117. [Google Scholar]
- Wang, X. Advances in separating effects of climate variability and human activity on stream discharge: An overview. Adv. Water Resour. 2014, 71, 209–218. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.L.; Jeong, S.J.; Yao, T. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Wang, L.C.; Lin, A.W.; Zhu, H.J.; Yuan, M.X. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.Q.; Jin, L.; Shi, W.Y.; Aryal, J.; Comber, A. Quantitative contribution of the Grain for Green Program to vegetation greening and its spatiotemporal variation across the Chinese Loess Plateau. Land Degrad. Dev. 2022, 33, 1878–1891. [Google Scholar] [CrossRef]
- Lu, Q.S.; Xu, B.; Liang, F.Y.; Gao, Z.Q.; Ning, J.C. Influences of the Grain-for-Green project on grain security in southern China. Ecol. Indic. 2013, 34, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.X.; Li, Z.G.; Zhang, X.P.; Li, R.; Liu, X.C.; Zhang, H.Y. Responses of vegetation cover to the Grain for Green Program and their driving forces in the He-Long region of the middle reaches of the Yellow River. J. Arid Land 2013, 5, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [Green Version]
- UNICEF. The millennium development goals report 2015. Midwifery 2014, 30, 1043–1044. [Google Scholar]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708.63. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.Z.; Long, H.L.; Zhang, Y.N.; Ma, L.; Li, T.T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Long, H.L.; Li, T.T.; Tu, S.S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Lyu, C.H.; Xu, Z.Y. Crop production changes and the impact of Grain for Green program in the Loess Plateau of China. J. Arid Land 2020, 12, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Feng, Z.H.; Gao, H.D.; Li, P.; Zhang, X.M.; Zhu, T.T.; Li, Z.B.; Xu, G.C.; Ren, Z.P.; Xiao, L. Has “Grain for Green” threaten food security on the Loess Plateau of China? Ecosyst. Health Sust. 2020, 6, 1709560. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.H.; Kong, X.B.; Zhang, F.R. Analyzing the mechanism of economic compensation for farmland protection. Chin. Land Sci. 2009, 23, 24–27. [Google Scholar]
Land Use Types | 2000 | 2018 | Change (2018–2000) | |||
---|---|---|---|---|---|---|
Area | Ratio | Area | Ratio | Area | Ratio | |
Cropland | 69,650.07 | 37.47 | 65,355.20 | 35.16 | −4294.87 | −6.17 |
Forest | 92,782.39 | 49.92 | 92,259.35 | 49.64 | −523.03 | −0.56 |
Grassland | 7044.34 | 3.79 | 6883.94 | 3.70 | −160.40 | −2.28 |
Water | 10,809.80 | 5.82 | 12,398.25 | 6.67 | 1588.44 | 14.69 |
Construction land | 5145.86 | 2.77 | 8604.11 | 4.63 | 3458.25 | 67.20 |
Unused land | 436.53 | 0.23 | 368.15 | 0.20 | −68.38 | −15.67 |
Land Use Types | Cropland | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Cropland | 58,786.92 | 4676.43 | 285.61 | 2381.35 | 3480.68 | 39.09 |
Forest | 4302.00 | 86,359.84 | 754.36 | 555.47 | 805.04 | 5.67 |
Grassland | 250.59 | 859.28 | 5800.61 | 65.58 | 64.80 | 3.48 |
Water | 989.61 | 262.54 | 33.19 | 9168.55 | 285.15 | 70.76 |
Construction land | 987.47 | 93.85 | 7.36 | 99.75 | 3953.77 | 3.66 |
Unused land | 38.61 | 7.41 | 2.81 | 127.54 | 14.68 | 245.48 |
Region | Grain | Rice | Wheat | Corn | Tubers | Soybean | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | β (10 4 Tons yr −1) | Z | β (10 4 Tons yr −1) | Z | β (104 Tons yr −1) | Z | β (10 4 Tons yr −1) | Z | β (10 4 Tons yr −1) | Z | β (10 4 Tons yr −1) | |
Hubei | 4.898 *** | 44.237 | 4.968 *** | 23.983 | 4.478 *** | 15.172 | 4.688 *** | 9.906 | −2.309 * | −2.785 | −2.379 * | −0.993 |
Wuhan | −1.399 | −0.696 | −1.609 | −0.721 | 0.770 | 0.055 | 2.449 * | 0.230 | −2.239 * | −0.119 | −4.128 *** | −0.139 |
Huangshi | 0.385 | 0.080 | 3.359 *** | 0.439 | 2.519 * | 0.119 | 0.735 | 0.026 | −4.446 *** | −0.288 | −2.382 * | −0.054 |
Shiyan | 2.099 * | 1.770 | 2.099 * | 0.309 | 1.749 | 0.310 | 2.415 * | 0.814 | 0.910ns | 0.247 | 2.309 * | 0.101 |
Yichang | 1.679 | 0.800 | 0.210 | 0.060 | 3.569 *** | 0.430 | 4.058 *** | 0.878 | −0.070 | −0.022 | −2.836 ** | −0.065 |
Xiangyang | 4.548 *** | 14.748 | 2.589 ** | 1.973 | 4.618 *** | 8.766 | 4.968 *** | 4.678 | −0.035 | −0.025 | −3.886 *** | −0.146 |
Ezhou | 2.239 * | 0.458 | 2.519 * | 0.419 | 1.190 | 0.025 | 0.210 | 0.002 | 0.910 | 0.058 | −1.297 | −0.009 |
Jingmen | 4.898 *** | 6.444 | 4.268 *** | 3.552 | 3.289 ** | 1.735 | 4.828 *** | 0.985 | 0.700 | 0.092 | −0.631 | −0.014 |
Xiaogan | 3.848 *** | 3.610 | 3.149 ** | 2.850 | 1.749 | 0.525 | 4.058 *** | 0.188 | 1.085 | 0.203 | −3.569 *** | −0.153 |
Jingzhou | 4.478 *** | 9.086 | 3.988 *** | 6.319 | 5.038 *** | 2.416 | 0.770 | 0.203 | −0.875 | −0.030 | 0.910 | 0.090 |
Huanggang | 2.869 ** | 4.524 | 2.869 ** | 3.084 | −0.980 | −0.170 | 3.359 *** | 0.312 | 1.889 | 1.106 | −4.446 *** | −0.178 |
Xianning | 2.799 ** | 1.355 | 3.149 ** | 1.345 | 3.610 *** | 0.083 | 1.329 | 0.044 | −2.869 ** | −0.140 | −2.379 * | −0.067 |
Suizhou | 4.058 *** | 3.140 | 3.429 *** | 1.761 | 3.429 *** | 1.231 | 2.799 ** | 0.314 | 1.051 | 0.313 | −1.614 | −0.026 |
Enshi | −0.560 | −0.176 | −2.659 *** | −0.363 | −5.356 *** | −0.234 | 3.778 *** | 0.882 | 0.700 | 0.320 | 2.659 ** | 0.070 |
Xiantao | 3.778 *** | 1.566 | 3.219 ** | 0.880 | 4.376 *** | 0.533 | 3.079 ** | 0.295 | −2.065 * | −0.025 | −2.029 * | −0.029 |
Qianjiang | 4.268 *** | 1.772 | 3.429 *** | 1.095 | 3.816 *** | 0.428 | 1.399 | 0.075 | 0.630 | 0.012 | −0.385 | −0.005 |
Tianmen | 4.688 *** | 2.661 | 4.516 *** | 1.458 | 4.548 *** | 0.760 | 2.239 * | 0.065 | 1.609 | 0.075 | 0.000 | −0.001 |
Shennongjia | 1.541 | 0.027 | 2.043 * | 0.000 | −1.165 | 0.000 | −1.681 | −0.011 | 3.009 ** | 0.030 | 1.355 | 0.001 |
Region | Elevation (m) | Slope (°) | ||
---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |
Hubei Province | 431.6 | 494.2 | 13.6 | 11.3 |
Wuhan | 37.7 | 46.2 | 5.7 | 4.9 |
Huangshi | 109.5 | 127.1 | 10.7 | 9.3 |
Shiyan | 736.9 | 387.8 | 21.6 | 10.8 |
Yichang | 662.3 | 508.2 | 18.8 | 12.0 |
Xiangyang | 347.5 | 358.1 | 12.5 | 10.3 |
Ezhou | 31.4 | 31.9 | 5.3 | 4.9 |
Jingmen | 116.5 | 104.7 | 8.5 | 6.8 |
Xiaogan | 75.2 | 83.8 | 6.6 | 6.0 |
Jingzhou | 42.6 | 57.8 | 5.5 | 4.8 |
Huanggang | 173.8 | 197.6 | 10.3 | 8.2 |
Xianning | 184.9 | 196.8 | 12.1 | 9.8 |
Suizhou | 185.6 | 127.2 | 9.4 | 7.2 |
Enshi | 1074.9 | 356.4 | 21.1 | 11.5 |
Xiantao | 26.3 | 5.9 | 3.7 | 2.8 |
Qianjiang | 28.1 | 8.4 | 5.3 | 4.2 |
Tianmen | 31.3 | 8.5 | 4.2 | 3.5 |
Shennongjia | 1683.4 | 469.4 | 27.3 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gong, N.; Zhu, H. Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. Int. J. Environ. Res. Public Health 2023, 20, 1225. https://doi.org/10.3390/ijerph20021225
Zhang Y, Gong N, Zhu H. Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. International Journal of Environmental Research and Public Health. 2023; 20(2):1225. https://doi.org/10.3390/ijerph20021225
Chicago/Turabian StyleZhang, Yu, Na Gong, and Huade Zhu. 2023. "Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China" International Journal of Environmental Research and Public Health 20, no. 2: 1225. https://doi.org/10.3390/ijerph20021225
APA StyleZhang, Y., Gong, N., & Zhu, H. (2023). Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. International Journal of Environmental Research and Public Health, 20(2), 1225. https://doi.org/10.3390/ijerph20021225