Does Education Influence Life-Course Depression in Middle-Aged and Elderly in China? Evidence from the China Health and Retirement Longitudinal Study (CHARLS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.1.1. Data Resource
2.1.2. Theoretical Framework
2.2. Study Variables
2.2.1. Outcome Variable
2.2.2. Mediators
2.2.3. Control Variables
2.2.4. Key Variables
2.3. Data Analysis
2.3.1. Processing of Missing Values
2.3.2. Test of Mediating Effect
3. Results
3.1. Influence of Education on the Depression of All Samples Using Linear Regression
3.2. Influence of Education on the Depression of the Middle-Aged and Elderly Using Linear Regression
3.3. Results of Multiple Mediation Tests: Total, Direct and Indirect Effect
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349, 1498–1504. [Google Scholar] [CrossRef]
- Steffens, D.C.; Otey, E.; Alexopoulos, G.S.; Butters, M.A.; Cuthbert, B.; Ganguli, M.; Geda, Y.E.; Hendrie, H.C.; Krishnan, R.R.; Kumar, A.; et al. Perspectives on depression, mild cognitive impairment, and cognitive decline. Arch. Gen. Psychiatry 2006, 63, 130–138. [Google Scholar] [CrossRef]
- Guerra, M.; Prina, A.M.; Ferri, C.P.; Acosta, D.; Gallardo, S.; Huang, Y.; Jacob, K.S.; Jimenez-Velazquez, I.Z.; Rodriguez, J.L.; Liu, Z.; et al. A comparative cross-cultural study of the prevalence of late life depression in low and middle income countries. J. Affect. Disord. 2016, 190, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Pei, J.; Hou, Z. The discussion of current mental health status and mental health management strategy in China. J. Pract. Med. Technol. 2013, 20, 911–912. [Google Scholar] [CrossRef]
- Oreopoulos, P.; Salvanes, K.G. Priceless: The nonpecuniary benefits of schooling. J. Econ. Perspect. 2011, 25, 159–184. [Google Scholar] [CrossRef] [Green Version]
- Lleras-Muney, A. The relationship between education and adult mortality in the United States. Rev. Econ. Stud. 2005, 72, 189–221. [Google Scholar] [CrossRef] [Green Version]
- Brunello, G.; Fabbri, D.; Fort, M. The causal effect of education on body mass: Evidence from Europe. J. Labor Econ. 2013, 31, 195–223. [Google Scholar] [CrossRef] [Green Version]
- Fryers, T.; Jenkins, R.; Melzer, D. Social inequalities and the distribution of the common mental disorders. Psychol. Press 2004, 38, 229–237. [Google Scholar] [CrossRef]
- Lehtinen, V.; Joukamaa, M.; Lahtela, K.; Raitasalo, R.; Jyrkinen, E.; Maatela, J.; Aromaa, A. Prevalence of mental disorders among adults in Finland: Basic results from the Mini Finland Health Survey. Acta Psychiatr. Scand. 1990, 81, 418–425. [Google Scholar] [CrossRef]
- Dalgard, O.S.; Håheim, L.L. Psychosocial risk factors and mortality: A prospective study with special focus on social support, social participation, and locus of control in Norway. J. Epidemiol. Community Health 1998, 52, 476–481. [Google Scholar] [CrossRef]
- Dalgard, O.S.; Dowrick, C.; Lehtinen, V.; Vazquez-Barquero, J.L.; Casey, P.; Wilkinson, G.; Ayuso-Mateos, J.L.; Page, H.; Dunn, G. Negative life events, social support and gender difference in depression. Soc. Psychiatry Psychiatr. Epidemiol. 2006, 41, 444–451. [Google Scholar] [CrossRef]
- Bell, A. Life-course and cohort trajectories of mental health in the UK, 1991–2008–a multilevel age–period–cohort analysis. Soc. Sci. Med. 2014, 120, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Strauss, P.; Cook, A.; Winter, S.; Watson, V.; Toussaint, D.W.; Lin, A. Associations between negative life experiences and the mental health of trans and gender diverse young people in Australia: Findings from Trans Pathways. Psychol. Med. 2020, 50, 808–817. [Google Scholar] [CrossRef]
- Meyer, O.L.; Castro-Schilo, L.; Aguilar-Gaxiola, S. Determinants of mental health and self-rated health: A model of socioeconomic status, neighborhood safety, and physical activity. Am. J. Public Health 2014, 104, 1734–1741. [Google Scholar] [CrossRef]
- Ohrnberger, J.; Fichera, E.; Sutton, M. The relationship between physical and mental health: A mediation analysis. Soc. Sci. Med. 2017, 195, 42–49. [Google Scholar] [CrossRef]
- Alipour, Z.; Kazemi, A.; Kheirabadi, G.; Eslami, A.A. Relationship between marital quality, social support and mental health during pregnancy. Community Ment. Health J. 2019, 55, 1064–1070. [Google Scholar] [CrossRef]
- Gariépy, G.; Danna, S.M.; Hawke, L.; Henderson, J.; Iyer, S.N. The mental health of young people who are not in education, employment, or training: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 57, 1107–1121. [Google Scholar] [CrossRef]
- Rodriguez, D.X.; Hill, J.; McDaniel, P.N. A scoping review of literature about mental health and well-being among immigrant communities in the United States. Health Promot. Pract. 2021, 22, 181–192. [Google Scholar] [CrossRef]
- Clarke, D.E.; Colantonio, A.; Rhodes, A.E.; Escobar, M. Ethnicity and mental health: Conceptualization, definition and operationalization of ethnicity from a Canadian context. Chronic Dis. Can 2008, 28, 128–147. [Google Scholar] [CrossRef]
- Koenig, H.G. Research on religion, spirituality, and mental health: A review. Can. J. Psychiatry 2009, 54, 283–291. [Google Scholar] [CrossRef]
- Shields-Zeeman, L.; Collin, D.F.; Batra, A.; Hamad, R. How does income affect mental health and health behaviours? A quasi-experimental study of the earned income tax credit. J. Epidemiol. Community Health 2021, 75, 929–935. [Google Scholar] [CrossRef]
- Sareen, J.; Afifi, T.O.; McMillan, K.A.; Asmundson, G.J. Relationship between household income and mental disorders: Findings from a population-based longitudinal study. Arch. Gen. Psychiatry 2011, 68, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.; McNeill, A.; Brose, L.S. Smoking and quitting behaviours by mental health conditions in Great Britain (1993–2014). Addict. Behav. 2019, 90, 14–19. [Google Scholar] [CrossRef]
- Gómez-Restrepo, C.; Marsch, L.A. Scaling up mental health interventions for depression and unhealthy alcohol use in Colombia. Rev. Colomb. Psiquiatr. 2021, 50 (Suppl. 1), 1–3. [Google Scholar] [CrossRef]
- VanKim, N.A.; Nelson, T.F. Vigorous physical activity, mental health, perceived stress, and socializing among college students. Am. J. Health Promot. 2013, 28, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Peluso, M.A.M.; De Andrade, L.H.S.G. Physical activity and mental health: The association between exercise and mood. Clinics 2005, 60, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Taskin, T.; Gautam, P.; Gamber, M.; Sun, W. Is there an association among sleep duration, nap, and stroke? Findings from the China Health and Retirement Longitudinal Study. Sleep Breath. 2021, 25, 315–323. [Google Scholar] [CrossRef]
- Blanchet, S.; Chikhi, S.; Maltais, D. The benefits of physical activities on cognitive and mental health in healthy and pathological aging. Geriatr. Psychol. Neuropsychiatr. Vieil. 2018, 16, 197–205. [Google Scholar] [CrossRef]
- Xie, H.; Liu, J.; Gao, M.; Liu, Y.; Ma, T.; Lu, Y.; Li, C.; Wang, M.; Zhang, R.; Wu, J.; et al. Physical symptoms and mental health status in deep underground miners: A cross-sectional study. Medicine 2020, 99, e19294. [Google Scholar] [CrossRef]
- Allen, J.; Balfour, R.; Bell, R.; Marmot, M. Social determinants of mental health. Int. Rev. Psychiatry 2014, 26, 392–407. [Google Scholar] [CrossRef]
- Azam, M.; Sulistiana, R.; Fibriana, A.I.; Savitri, S.; Aljunid, S.M. Prevalence of mental health disorders among elderly diabetics and associated risk factors in Indonesia. Int. J. Environ. Res. Public Health 2021, 18, 10301. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, H.; Yang, Q.; Ding, X.; Mao, D.; Ma, X.; Xiao, B.; Zhong, Z. Mental health and related influencing factors among rural elderly in 14 poverty state counties of Chongqing, Southwest China: A cross-sectional study. Environ. Health Prev. Med. 2020, 25, 51. [Google Scholar] [CrossRef]
- McArdle, J.J.; Smith, J.P.; Willis, R. Cognition and economic outcomes in the Health and Retirement Survey. Explor. Econ. Aging 2011, 7, 209–233. [Google Scholar] [CrossRef]
- Lei, X.; Hu, Y.; McArdle, J.J.; Smith, J.P.; Zhao, Y. Gender differences in cognition among older adults in China. J. Hum. Resour. 2012, 47, 951–971. [Google Scholar] [CrossRef] [Green Version]
- Stocker, R.; Nguyen, T.; Tran, T.; Tran, H.; Tran, T.; Hanieh, S.; Biggs, B.A.; Fisher, J. Social and economic development and pregnancy mental health: Secondary analyses of data from rural Vietnam. BMC Public Health 2020, 20, 1001. [Google Scholar] [CrossRef]
- Kim, Y.; Hagquist, C. Trends in adolescent mental health during economic upturns and downturns: A multilevel analysis of Swedish data 1988–2008. J. Epidemiol. Community Health 2018, 72, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Mocan, N.; Altindag, D.T. Education, cognition, health knowledge, and health behavior. Eur. J. Health Econ. 2014, 15, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Whiting, R.; Bartle-Haring, S. Variations in the association between education and self-reported health by race/ethnicity and structural racism. SSM-Popul. Health 2022, 19, 101136. [Google Scholar] [CrossRef] [PubMed]
- Stellefson, M.; Paige, S.R.; Chaney, B.H.; Chaney, J.D. Evolving role of social media in health promotion: Updated responsibilities for health education specialists. Int. J. Environ. Res. Public Health 2020, 17, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conquest, J.H.; Skinner, J.; Kruger, E.; Tennant, M. Oral Health Profiling for Young and Older Adults: A Descriptive Study. Int. J. Environ. Res. Public Health 2021, 18, 9033. [Google Scholar] [CrossRef]
- Freyer, D.R.; Kibrick-Lazear, R. In sickness and in health: Transition of cancer-related care for older adolescents and young adults. Cancer 2006, 107, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Lövdén, M.; Fratiglioni, L.; Glymour, M.M.; Lindenberger, U.; Tucker-Drob, E.M. Education and cognitive functioning across the life span. Psychol. Sci. Public Interest 2020, 21, 6–41. [Google Scholar] [CrossRef] [PubMed]
- Khuc, Q.V. Mindspongeconomics (No. hnucr). Cent. Open Sci. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Vuong, Q.H.; Napier, N.K. Acculturation and global mindsponge: An emerging market perspective. Int. J. Intercult. Relat. 2015, 49, 354–367. [Google Scholar] [CrossRef]
- Bell, G.; John, A.; Gaysina, D. Affective symptoms across the life course and resilience in cognitive function. Ann. Hum. Biol. 2020, 47, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Cox, S.R.; Brett, C.E.; Deary, I.J.; MacLullich, A.M. Cognitive ability across the life course and cortisol levels in older age. Neurobiol. Aging 2017, 59, 64–71. [Google Scholar] [CrossRef]
- Kim, S.R.; Han, K.; Choi, J.Y.; Ersek, J.; Liu, J.; Jo, S.J.; Lee, K.S.; Yim, H.W.; Lee, W.C.; Park, Y.G.; et al. Age-and sex-specific relationships between household income, education, and diabetes mellitus in Korean adults: The Korea National Health and Nutrition Examination Survey, 2008–2010. PLoS ONE 2015, 10, e0117034. [Google Scholar] [CrossRef]
Province (1–14) | Province (15–28) |
---|---|
Anhui | Jiangsu |
Beijing | Jiangxi |
Chongqing | Jilin |
Fujian | Liaoning |
Gansu | Qinghai |
Guangdong | Shandong |
Guangxi | Shanghai |
Guizhou | Shannxi |
Henan | Shanxi |
Hebei | Sichuan |
Heilongjiang | Tianjin |
Hunan | Xinjiang |
Hubei | Yunnan |
Inner mongolia | Zhejiang |
Variables | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Age | 60.89 | 9.30 | 45 | 108 |
Gender | 0.49 | 0.50 | 0 | 1 |
Place of residence | 0.29 | 0.45 | 0 | 1 |
Marital status | 0.81 | 0.39 | 0 | 1 |
Ethnicity | 0.92 | 0.27 | 0 | 1 |
Religious belief | 0.10 | 0.30 | 0 | 1 |
Education | 2.62 | 1.91 | 0 | 10 |
Depression | 21.57 | 6.49 | 0 | 30 |
Personal annual gross income (logarithm) | 2.66 | 1.84 | 0 | 6.78 |
Smoking | 0.43 | 0.50 | 0 | 1 |
Alcohol consumption | 0.36 | 0.48 | 0 | 1 |
Social activities | 0.56 | 0.50 | 0 | 1 |
Physical exercise | 0.92 | 0.27 | 0 | 1 |
Taking a nap after lunch | 0.62 | 0.49 | 0 | 1 |
Episodic memory | 4.23 | 1.85 | 0 | 10 |
Mental status | 3.83 | 1.25 | 0 | 5 |
Variables | Model 1 Basic Variables | Model 2 + Economic Level | Model 3 + Health Related Lifestyle | Model 4 + Cognitive Level | Model 5 All Variables | Model 6 + Cross Terms |
---|---|---|---|---|---|---|
Education | 0.520 *** (0.030) | 0.455 *** (0.030) | 0.490 *** (0.030) | 0.178 *** (0.033) | 0.112 *** (0.034) | 0.152 ** (0.056) |
Economic level | 0.349 *** (0.030) | 0.312 *** (0.030) | 0.305 *** (0.029) | |||
Health related lifestyle | 0.402 *** (0.054) | 0.313 *** (0.054) | 0.313 *** (0.054) | |||
Cognitive level | 0.505 *** (0.023) | 0.481 *** (0.023) | 0.483 *** (0.023) | |||
Education Age | −0.024 (0.032) | |||||
Explanation (1 − β1/α1) | 0.125 | 0.058 | 0.658 | 0.785 | ||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 17.875 *** (0.275) | 17.973 *** (0.274) | 16.451 *** (0.336) | 14.455 *** (0.313) | 13.598 *** (0.359) | 13.414 *** (0.307) |
R2/pseudo R2 | 0.080 | 0.087 | 0.083 | 0.107 | 0.115 | 0.115 |
Number of observations | 15,767 | 15,767 | 15,767 | 15,767 | 15,767 | 15,767 |
Variables | Education | Economic Level | Health Related Lifestyle | Cognitive Level | Education Age |
---|---|---|---|---|---|
Education | 1.000 | ||||
Economic level | 0.274 *** | 1.000 | |||
Health related lifestyle | −0.033 ** | 0.067 | 1.000 | ||
Cognitive level | 0.541 *** | 0.234 *** | 0.067 *** | 1.000 | |
Education Age | 0.990 *** | 0.272 *** | −0.033 ** | 0.548 *** | 1.000 |
Variables | The Middle-Aged Samples | The Elderly Samples | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 Basic Variables | Model 2 + Economic Level | Model 3 + Health Related Lifestyle | Model 4 + Cognitive Level | Model 1 Basic Variables | Model 2 + Economic Level | Model 3 + Health Related Lifestyle | Model 4 + Cognitive Level | |
Education | 0.550 *** (0.043) | 0.453 *** (0.044) | 0.518 *** (0.043) | 0.183 *** (0.048) | 0.496 *** (0.042) | 0.450 *** (0.042) | 0.470 *** (0.042) | 0.173 *** (0.047) |
Economic level | 0.328 *** (0.035) | 0.430 *** (0.057) | ||||||
Health related lifestyle | 0.357 *** (0.078) | 0.432 *** (0.075) | ||||||
Cognitive level | 0.537 *** (0.034) | 0.486 *** (0.032) | ||||||
Education Age | ||||||||
Explanation (1 − β1/α1) | 0.176 | 0.058 | 0.667 | 0.093 | 0.052 | 0.651 | ||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 17.637 *** (0.313) | 17.423 *** (0.312) | 16.380 *** (0.417) | 14.275 *** (0.374) | 17.450 *** (0.313) | 16.407 *** (0.342) | 15.963 *** (0.406) | 15.171 *** (0.343) |
R2/pseudo R2 | 0.082 | 0.093 | 0.085 | 0.113 | 0.076 | 0.082 | 0.079 | 0.101 |
Number of observations | 7424 | 7424 | 7424 | 7424 | 8343 | 8343 | 8343 | 8343 |
Samples | All Type of Effect | Estimate | Bias-Corrected Percentile (95%CI) | p-Value | Number of Observations | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
All | Total effect | 0.165 | 0.147 | 0.181 | 0.003 | 15,767 |
Direct effect | 0.033 | 0.014 | 0.053 | 0.003 | 15,767 | |
Indirect effect | 0.132 | 0.121 | 0.143 | 0.002 | 15,767 | |
education→economic level | 0.214 | 0.200 | 0.229 | 0.001 | 15,767 | |
education→health related lifestyle | 0.011 | −0.004 | 0.025 | 0.166 | 15,767 | |
education→cognitive level | 0.563 | 0.553 | 0.573 | 0.002 | 15,767 | |
economic level→depression | 0.090 | 0.073 | 0.105 | 0.002 | 15,767 | |
health related lifestyle→depression | 0.052 | 0.035 | 0.070 | 0.002 | 15,767 | |
cognitive level→depression | 0.199 | 0.181 | 0.217 | 0.002 | 15,767 | |
middle-aged | Total effect | 0.165 | 0.141 | 0.190 | 0.002 | 7424 |
Direct effect | 0.025 | −0.003 | 0.054 | 0.084 | 7424 | |
Indirect effect | 0.140 | 0.125 | 0.155 | 0.002 | 7424 | |
education→economic level | 0.343 | 0.324 | 0.363 | 0.002 | 7424 | |
education→health related lifestyle | 0.025 | 0.004 | 0.047 | 0.027 | 7424 | |
education→cognitive level | 0.525 | 0.508 | 0.541 | 0.002 | 7424 | |
economic level→depression | 0.101 | 0.077 | 0.123 | 0.003 | 7424 | |
health related lifestyle→depression | 0.051 | 0.026 | 0.076 | 0.002 | 7424 | |
cognitive level→depression | 0.198 | 0.174 | 0.225 | 0.001 | 7424 | |
elderly | Total effect | 0.157 | 0.132 | 0.180 | 0.003 | 8343 |
Direct effect | 0.038 | 0.012 | 0.063 | 0.005 | 8343 | |
Indirect effect | 0.120 | 0.104 | 0.136 | 0.002 | 8343 | |
education→economic level | 0.274 | 0.253 | 0.294 | 0.002 | 8343 | |
education→health related lifestyle | −0.033 | −0.053 | −0.013 | 0.002 | 8343 | |
education→cognitive level | 0.541 | 0.527 | 0.554 | 0.002 | 8343 | |
economic level→depression | 0.075 | 0.052 | 0.079 | 0.002 | 8343 | |
health related lifestyle→depression | 0.052 | 0.029 | 0.076 | 0.002 | 8343 | |
cognitive level→depression | 0.186 | 0.160 | 0.212 | 0.002 | 8343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhou, Y.; Su, D.; Dang, Y.; Zhang, X. Does Education Influence Life-Course Depression in Middle-Aged and Elderly in China? Evidence from the China Health and Retirement Longitudinal Study (CHARLS). Int. J. Environ. Res. Public Health 2023, 20, 1256. https://doi.org/10.3390/ijerph20021256
Xu X, Zhou Y, Su D, Dang Y, Zhang X. Does Education Influence Life-Course Depression in Middle-Aged and Elderly in China? Evidence from the China Health and Retirement Longitudinal Study (CHARLS). International Journal of Environmental Research and Public Health. 2023; 20(2):1256. https://doi.org/10.3390/ijerph20021256
Chicago/Turabian StyleXu, Xiwu, Yaodong Zhou, Dai Su, Yuan Dang, and Xianwen Zhang. 2023. "Does Education Influence Life-Course Depression in Middle-Aged and Elderly in China? Evidence from the China Health and Retirement Longitudinal Study (CHARLS)" International Journal of Environmental Research and Public Health 20, no. 2: 1256. https://doi.org/10.3390/ijerph20021256
APA StyleXu, X., Zhou, Y., Su, D., Dang, Y., & Zhang, X. (2023). Does Education Influence Life-Course Depression in Middle-Aged and Elderly in China? Evidence from the China Health and Retirement Longitudinal Study (CHARLS). International Journal of Environmental Research and Public Health, 20(2), 1256. https://doi.org/10.3390/ijerph20021256