How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Sample Characterization
2.3. Study Setting
2.3.1. Identification of Food and Beverage Items (First Part)
2.3.2. Categorization of Items Followed by Labelling (Second Part)
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, E.; Adamson, A. Challenges Involved in Measuring Intake in Early Life: Focus on Methods. Proc. Nutr. Soc. 2014, 73, 201–209. [Google Scholar] [CrossRef]
- Lu, A.S.; Baranowski, J.; Islam, N.; Baranowski, T. How to Engage Children in Self-Administered Dietary Assessment Programmes. J. Hum. Nutr. Diet. 2014, 27, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, M.B.; Robson, P.J. Measurement of Dietary Intake in Children. Proc. Nutr. Soc. 2000, 59, 279–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Rodrigo, C.; Artiach Escauriaza, B.; Artiach Escauriaza, J.; Polanco Allúe, I. Dietary Assessment in Children and Adolescents: Issues and Recommendations. Nutr. Hosp. 2015, 31 (Suppl. S3), 76–83. [Google Scholar] [CrossRef]
- Baranowski, T.; Domel, S.B. A Cognitive Model of Children’s Reporting of Food Intake. Am. J. Clin. Nutr. 1994, 59, 212S–217S. [Google Scholar] [CrossRef]
- Domel, S.B. Self-Reports of Diet: How Children Remember What They Have Eaten. Am. J. Clin. Nutr. 1997, 65, 1148S–1152S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rioux, C.; Picard, D.; Lafraire, J. Food Rejection and the Development of Food Categorization in Young Children. Cogn. Dev. 2016, 40, 163–177. [Google Scholar] [CrossRef]
- Beltran, A.; Knight Sepulveda, K.; Watson, K.; Baranowski, T.; Baranowski, J.; Islam, N.; Missaghian, M. Mixed Foods Are Similarly Categorized by 8–13 Year Old Children. Appetite 2008, 50, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Beltran, A.; Knight Sepulveda, K.; Watson, K.; Baranowski, T.; Baranowski, J.; Islam, N.; Missaghian, M. Grains Are Similarly Categorized by 8- to 13-Year-Old Children. J. Am. Diet. Assoc. 2008, 108, 1921–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran, A.; Knight Sepulveda, K.; Watson, K.; Baranowski, T.; Baranowski, J.; Islam, N.; Missaghian, M. Diverse Food Items Are Similarly Categorized by 8- to 13-Year-Old Children. J. Nutr. Educ. Behav. 2008, 40, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.P.; Murphy, G.L. An Apple Is More Than Just a Fruit: Cross-Classification in Children’s Concepts. Child Dev. 2003, 74, 1783–1806. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.P. Children’s Evaluative Categories and Inductive Inferences within the Domain of Food. Infant Child Dev. 2008, 17, 285–299. [Google Scholar] [CrossRef]
- Sepulveda, K.K.; Beltran, A.; Watson, K.; Baranowski, T.; Baranowski, J.; Islam, N.; Missaghian, M. Fruit and Vegetables Are Similarly Categorised by 8–13-Year-Old Children. Public Health Nutr. 2009, 12, 175–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, J.S.; Harris, H.A.; Bleser, J.A.; Rollins, B.Y. Parents’ and Children’s Categorization of Candy Are Similar: A Card Sort Protocol. Nutrients 2019, 11, 2472. [Google Scholar] [CrossRef] [Green Version]
- de Assis, M.A.A.; Guimarães, D.; Calvo, M.C.M.; de Barros, M.V.G.; Kupek, E. Reproducibility and Validity of a Food Consumption Questionnaire for Schoolchildren. Rev. Saúde Pública 2007, 41, 1054–1057. [Google Scholar] [CrossRef] [Green Version]
- de Assis, M.A.A.; Benedet, J.; Kerpel, R.; de Vasconcelos, F.d.A.G.; Di Pietro, P.F.; Kupek, E. Validação Da Terceira Versão Do Questionário Alimentar Do Dia Anterior (QUADA-3) Para Escolares de 6 a 11 Anos. Cad. Saúde Pública 2009, 25, 1816–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa, F.F.; Schmoelz, C.P.; Davies, V.F.; Di Pietro, P.F.; Kupek, E.; de Assis, M.A.A. Assessment of Diet and Physical Activity of Brazilian Schoolchildren: Usability Testing of a Web-Based Questionnaire. JMIR Res. Protoc. 2013, 2, e2646. [Google Scholar] [CrossRef]
- Davies, V.F.; Kupek, E.; de Assis, M.A.; Natal, S.; Di Pietro, P.F.; Baranowski, T. Validation of a Web-Based Questionnaire to Assess the Dietary Intake of Brazilian Children Aged 7–10 Years. J. Hum. Nutr. Diet. 2015, 28 (Suppl. S1), 93–102. [Google Scholar] [CrossRef]
- de Jesus, G.M.; de Assis, M.A.A.; Kupek, E. Validade e Reprodutibilidade de Questionário Baseado Na Internet (Web-CAAFE) Para Avaliação Do Consumo Alimentar de Escolares de 7 a 15 Anos. Cad. Saúde Pública 2017, 33, e00163016. [Google Scholar] [CrossRef] [Green Version]
- Perazi, F.M.; Kupel, E.; de Assis, M.A.A.; Pereira, L.J.; Cezimbra, V.G.; de Oliveira, M.T.; Vieira, F.G.K.; Pietro, P.F.D.; Hinnig, P.d.F. Effect of the Day and the Number of Days of Application on Reproducibility of a Questionnaire to Assess the Food Intake in Schoolchildren. Rev. Bras. Epidemiol. 2020, 23, e200084. [Google Scholar] [CrossRef]
- Cezimbra, V.G.; de Assis, M.A.A.; de Oliveira, M.T.; Pereira, L.J.; Vieira, F.G.K.; Di Pietro, P.F.; Roberto, D.M.T.; Geraldo, A.P.G.; Soar, C.; Rockenbach, G.; et al. Meal and Snack Patterns of 7–13-Year-Old Schoolchildren in Southern Brazil. Public Health Nutr. 2021, 24, 2542–2553. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.J.; Hinnig, P.d.F.; Di Pietro, P.F.; de Assis, M.A.A.; Vieira, F.G.K. Trends in Food Consumption of Schoolchildren from 2nd to 5th Grade: A Panel Data Analysis. Rev. Nutr. 2020, 33, e190164. [Google Scholar] [CrossRef]
- Pereira, L.J.; Vieira, F.G.K.; Belchor, A.L.L.; Cezimbra, V.G.; Junior, C.A.S.A.; Matsuo, L.H.; Spanholi, M.W.; Teodoroski, A.C.C.; Roberto, D.M.T.; de Souza, L.D.; et al. Methodological Aspects and Characteristics of Participants in the Study on the Prevalence of Obesity in Children and Adolescents in Florianópolis, Southern Brazil, 2018–2019: EPOCA Study. Ann. Epidemiol. 2022, 77, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, T.; Beltran, A.; Martin, S.; Watson, K.B.; Islam, N.; Robertson, S.; Berno, S.; Dadabhoy, H.; Thompson, D.; Cullen, K.; et al. Tests of the Accuracy and Speed of Categorizing Foods into Child vs Professional Categories Using Two Methods of Browsing with Children. J. Am. Diet. Assoc. 2010, 110, 91–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biltoft-Jensen, A.; Trolle, E.; Christensen, T.; Islam, N.; Andersen, L.F.; Egenfeldt-Nielsen, S.; Tetens, I. WebDASC: A Web-Based Dietary Assessment Software for 8-11-Year-Old Danish Children. J. Hum. Nutr. Diet. 2014, 27 (Suppl. S1), 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, A.S.; de Assis, M.A.A.; Leal, D.B.; Borgatto, A.F.; Vieira, F.K.; Di Pietro, P.F.; Kupek, E. Empirically Derived Dietary Patterns through Latent Profile Analysis among Brazilian Children and Adolescents from Southern Brazil, 2013–2015. PLoS ONE 2019, 14, e0210425. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 978-0-87322-121-4. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Lobo, A.S.; Kupek, E.; de Assis, M.A.A.; Cezimbra, V.G.; Pereira, L.J.; Silva, D.A.S.; Di Pietro, P.F.; Hinnig, P.d.F. Association between Sleep Period Time and Dietary Patterns in Brazilian Schoolchildren Aged 7–13 Years. Sleep Med. 2020, 74, 179–188. [Google Scholar] [CrossRef]
- Ministério da Saúde (Brasil); Secretaria de Atenção à Saúde. Guia Alimentar Para a População Brasileira: Promovendo a Alimentação Saudável; Ministério da Saúde: Rio de Janeiro, Brazil, 2008; Volume 210.
- Ministério da Saúd. Guia Alimentar para a População Brasileira; Ministério da Saúd: Rio de Janeiro, Brazil, 2014; p. 158.
- Ross, B.H.; Murphy, G.L. Food for Thought: Cross-Classification and Category Organization in a Complex Real-World Domain. Cogn. Psychol. 1999, 38, 495–553. [Google Scholar] [CrossRef] [Green Version]
- Microsoft Corporation Microsoft Excel; Microsoft Corporation: Washington, DC, USA, 2018.
- Hornik, K. Frequently Asked Questions on R. Available online: https://cran.r-project.org/doc/FAQ/R-FAQ.html (accessed on 10 August 2020).
- Adamson, A.J.; Baranowski, T. Developing Technological Solutions for Dietary Assessment in Children and Young People. J. Hum. Nutr. Diet. 2014, 27, 1–4. [Google Scholar] [CrossRef]
- Livingstone, M.B.E.; Robson, P.J.; Wallace, J.M.W. Issues in Dietary Intake Assessment of Children and Adolescents. Br. J. Nutr. 2004, 92 (Suppl. S2), S213–S222. [Google Scholar] [CrossRef] [Green Version]
- Baxter, S.D. Cognitive Processes in Children’s Dietary Recalls: Insight from Methodological Studies. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S1), S19–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, S.P. Inductive Selectivity in Children’s Cross-Classified Concepts: Inductive Selectivity. Child Dev. 2012, 83, 1748–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michela, J.L.; Contento, I.R. Spontaneous Classification of Foods by Elementary School-Aged Children. Health Educ. Q. 1984, 11, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.L.; Savage, J.S. From the Children’s Perspective: What Are Candy, Snacks, and Meals? Appetite 2017, 116, 215–222. [Google Scholar] [CrossRef] [PubMed]
- García Coni, A.; Ison, M.; Vivas, J. Conceptual Flexibility in School Children: Switching between Taxonomic and Thematic Relations. Cogn. Dev. 2019, 52, 100827. [Google Scholar] [CrossRef]
Cognitive Level | Conceptual Categories | Examples |
---|---|---|
Individual characteristic | 1. Evaluative: preferences | Like or do not like |
Concrete characterization of the food | 2. Specific food item name | Name of the picture |
3. Food characteristics | Colors, texture, taste, and shape | |
Requires some knowledge of a common culture | 4. Script scheme | Scheme for a routine or event: lunch, snack, birthday, dinner, etc. |
5. Food preparation | Baked, cooked, frozen, packaged, etc. | |
6. Thematic: combination | Food/ingredient groups that are associated with or have a complementary relationship (i.e., rice and cooked beans) | |
Requires some knowledge or perception of the health effects of food items | 7. Evaluative: health perception | Good or bad, healthy or unhealthy |
Requires knowledge of professional groupings | 8. Taxonomic-professional | Based on common properties or similarities among the categories (beverages, grains, dairy, plant-related, farm group, etc.) |
9. Nutrient composition | Macro and micro nutrients (proteins, fats, carbohydrates, and vitamins and minerals) |
Characteristic | n | % | Piles (n) | ||
---|---|---|---|---|---|
Mean | SD | CI 95% | |||
Sex *,§ | |||||
Girls | 84 | 63.4 | 9.0 | 2.7 | 8.4–9.6 |
Boys | 49 | 36.6 | 9.3 | 2.1 | 8.7–9.9 |
Total | 133 | 100.0 | 9.1 | 2.4 | 8.7–9.5 |
Age (years) *,§ | |||||
7 to 8 | 57 | 42.9 | 9.0 | 2.6 | 8.3–9.7 |
9 to 10 | 76 | 57.1 | 9.2 | 2.3 | 8.7–9.3 |
School Grade †,§ | |||||
2° | 32 | 24.1 | 8.8 | 3.2 | 7.6–9.9 |
3° | 42 | 36.1 | 9.1 | 2.1 | 8.5–9.8 |
4° | 33 | 24.8 | 9.3 | 2.4 | 8.5–10.1 |
5° | 26 | 19.5 | 9.3 | 2.1 | 8.4–10.1 |
Weight status (BMI) a,*,§ | |||||
Non-overweight | 112 | 84.2 | 9.3 | 2.5 | 8.8–9.7 |
Overweight (including obesity) | 21 | 15.8 | 8.3 | 2.4 | 7.3–9.3 |
Food and Beverage Items from Web-CAAFE | Correctly Identified | Incorrectly Identified | Unknown Items | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Rice | 125 | 94.0 | 7 | 5.2 | 1 | 0.8 |
Vegetables | 106 | 79.7 | 25 | 18.8 | 2 | 1.5 |
Green leaves | 90 | 67.7 | 42 | 31.5 | 1 | 0.8 |
Vegetable soup | 126 | 94.7 | 6 | 4.5 | 1 | 0.8 |
Beans (cooked) | 130 | 97.7 | 3 | 2.3 | 0 | 0.0 |
Manioc flour | 114 | 85.7 | 18 | 13.5 | 1 | 0.8 |
Pasta | 77 | 57.8 | 53 | 39.9 | 3 | 2.3 |
Instant pasta | 123 | 92.5 | 9 | 6.7 | 1 | 0.8 |
French fries | 124 | 93.2 | 9 | 6.7 | 0 | 0.0 |
Beef/poultry | 115 | 86.5 | 17 | 12.7 | 1 | 0.8 |
Eggs | 133 | 100.0 | 0 | 0.0 | 0 | 0.0 |
Fish/seafood | 80 | 60.2 | 53 | 39.8 | 0 | 0.0 |
Maize/potatoes | 112 | 84.2 | 21 | 15.8 | 0 | 0.0 |
Sausages | 100 | 75.2 | 32 | 24.0 | 1 | 0.8 |
Nuggets | 61 | 45.9 | 34 | 25.5 | 38 | 28.6 |
Breakfast cereal | 129 | 97.0 | 3 | 2.3 | 1 | 0.8 |
Fruits | 123 | 92.5 | 10 | 7.5 | 0 | 0.0 |
Bread/biscuits | 127 | 95.5 | 6 | 4.5 | 0 | 0.0 |
Cheese bread | 114 | 85.7 | 19 | 14.3 | 0 | 0.0 |
Cake | 123 | 92.5 | 10 | 7.5 | 0 | 0.0 |
Porridge | 122 | 91.8 | 9 | 6.7 | 2 | 1.5 |
Cheese | 133 | 100.0 | 0 | 0.0 | 0 | 0.0 |
Coffee with milk | 123 | 92.5 | 10 | 7.5 | 0 | 0.0 |
Milk | 133 | 100.0 | 0 | 0.0 | 0 | 0.0 |
Yogurt | 131 | 98.5 | 2 | 1.5 | 0 | 0.0 |
Chocolate milk | 126 | 94.7 | 7 | 5.3 | 0 | 0.0 |
Fruit juices | 129 | 97.0 | 4 | 3.0 | 0 | 0.0 |
Cream cookie | 133 | 100.0 | 0 | 0.0 | 0 | 0.0 |
Sodas | 131 | 98.5 | 2 | 1.5 | 2 | 1.5 |
Sweets | 124 | 93.3 | 9 | 6.7 | 0 | 0.0 |
Chips | 126 | 94.7 | 6 | 4.5 | 1 | 0.8 |
Pizza/hamburger/hot-dog | 95 | 71.4 | 37 | 27.8 | 1 | 0.8 |
Food and Beverage Items | Evaluative: Preferences | Specific Food Item Name | Food Characteristic | Script Scheme | Food Preparation | Thematic: Combination | Evaluative: Health Perception | Taxonomic-Professional | Nutrient Composition | Don’t Know/ Not Sure |
---|---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Fruits (n = 131) | - | 6 (4.6) | 1 (0.8) | 2 (1.5) | - | 1 (0.8) | 30 (22.9) | 78 (59.5) | 1 (0.8) | 12 (9.2) |
Vegetables (n = 131) | - | 8 (6.1) | 2 (1.5) | 1 (0.8) | - | - | 40 (30.5) | 72 (55.0) | - | 8 (6.1) |
Green leaves (n = 132) | - | 8 (6.1) | 4 (3.0) | 2 (1.5) | - | - | 38 (28.8) | 70 (53.1) | - | 10 (7.6) |
Vegetable soup (n = 133) | 1 (0.8) | 16 (12.0) | 13 (9.8) | 7 (5.3) | - | 1 (0.8) | 24 (18.1) | 51 (38.6) | - | 20 (15.0) |
Fruit juices (n = 131) | - | 17 (13.0) | 3 (2.3) | 5 (3.8) | - | 2 (1.5) | 15 (11.5) | 79 (60.3) | 1 (0.8) | 9 (6.9) |
Beans (cooked) (n = 131) | 3 (2.3) | 39 (29.8) | 9 (6.9) | 15 (11.5) | - | 8 (6.1) | 8 (6.1) | 19 (14.5) | 1 (0.8) | 29 (22.1) |
Rice (n = 132) | 2 (1.5) | 35 (26.5) | 10 (7.6) | 13 (9.9) | 1 (0.8) | 7 (5.3) | 8 (6.1) | 26 (19.7) | 1 (0.8) | 29 (22.0) |
Manioc flour (n = 131) | 4 (3.1) | 30 (22.9) | 13 (9.9) | 8 (6.1) | 1 (0.8) | 5 (3.8) | 2 (1.5) | 24 (18.3) | 1 (0.8) | 43 (32.8) |
Pasta (n = 131) | 2 (1.5) | 24 (18.3) | 9 (6.9) | 6 (4.6) | 2 (1.5) | 1 (0.8) | 5 (3.8) | 53 (40.5) | 1 (0.8) | 28 (21.4) |
Eggs (n = 131) | 2 (1.5) | 24 (18.3) | 14 (10.7) | 12 (9.2) | 2 (1.5) | 2 (1.5) | 8 (6.1) | 30 (22.9) | - | 37 (28.2) |
Instant pasta (n = 133) | 3 (2.3) | 29 (22.0) | 19 (14.4) | 3 (2.3) | 2 (1.5) | - | 7 (5.3) | 38 (28.8) | - | 32 (24.2) |
French fries (n = 133) | 2 (1.5) | 37 (27.8) | 17 (12.8) | 3 (2.3) | 8 (6.0) | - | 17 (12.8) | 35 (26.3) | 2 (1.5) | 12 (9.0) |
Maize/potatoes (n = 131) | - | 35 (26.7) | 9 (6.8) | 5 (3.8) | 1 (0.8) | 2 (1.5) | 10 (7.6) | 35 (26.7) | 1 (0.8) | 33 (25.2) |
Nuggets (n = 130) | - | 22 (16.9) | 12 (9.3) | 5 (3.8) | 4 (3.1) | - | 10 (7.7) | 33 (25.4) | 1 (0.8) | 43 (33.1) |
Bread/biscuits (n = 128) | - | 41 (32.0) | 5 (3.9) | 14 (10.9) | 1 (0.8) | 3 (2.3) | 4 (3.1) | 35 (27.3) | 3 (2.3) | 22 (17.2) |
Chips (n = 131) | 2 (1.5) | 26 (1.5) | 25 (19.1) | 1 (0.8) | 2 (1.5) | 1 (0.8) | 18 (13.7) | 44 (33.6) | 2 (1.5) | 10 (7.6) |
Pizza/Hamburger/hot-dog (n = 131) | 2 (1.5) | 22 (16.8) | 16 (12.2) | 4 (3.0) | 5 (3.8) | - | 21 (16.0) | 46 (35.1) | 2 (1.5) | 13 (9.9) |
Cream cookie (n = 131) | - | 20 (15.3) | 6 (4.6) | 7 (5.3) | - | 1 (0.8) | 12 (9.2) | 74 (56.5) | - | 11 (8.4) |
Cake (n = 131) | - | 28 (21.4) | 4 (3.0) | 5 (3.8) | - | - | 8 (6.1) | 78 (59.5) | - | 8 (6.1) |
Soda (n = 132) | - | 26 (19.7) | 8 (6.1) | 3 (2.3) | - | - | 12 (9.1) | 59 (44.7) | - | 24 (18.2) |
Sweets (n = 133) | - | 15 (11.3) | 2 (1.5) | 2 (1.5) | - | - | 20 (15.0) | 87 (65.4) | 1 (0.8) | 6 (4.5) |
Beef/poultry (n = 133) | - | 7 (5.3) | 7 (5.3) | 5 (3.8) | 1 (0.8) | - | 5 (3.8) | 99 (74.4) | 1 (0.8) | 8 (6.0) |
Sausage (n = 131) | - | 5 (3.8) | 4 (3.0) | 4 (3.0) | 2 (1.5) | 1 (0.8) | 6 (4.6) | 96 (73.3) | 1 (0.8) | 12 (9.2) |
Fish/seafood (n = 132) | - | 8 (6.1) | 6 (4.5) | 4 (3.0) | 1 (0.8) | - | 10 (7.6) | 80 (60.6) | - | 23 (17.4) |
Coffee with milk (n = 132) | - | 14 (10.6) | 5 (3.8) | 11 (8.3) | - | - | 2 (1.5) | 83 (62.9) | - | 17 (12.9) |
Porridge (n = 131) | - | 18 (13.7) | 11 (8.4) | 4 (3.0) | - | - | 6 (4.6) | 62 (47.3) | - | 30 (22.9) |
Cheese (n = 133) | - | 47 (35.6) | 2 (1.5) | 4 (3.0) | - | - | 3 (2.3) | 68 (51.5) | - | 9 (6.8) |
Cheese bread (n = 131) | 2 (1.5) | 47 (35.9) | 7 (5.3) | 3 (2.3) | 1 (0.8) | 8 (6.1) | 47 (35.9) | 1 (0.8) | 15 (11.5) | |
Milk (n = 133) | - | 7 (5.3) | 1 (0.8) | 4 (3.0) | - | - | 2 (1.5) | 115 (86.5) | 1 (0.8) | 3 (2.3) |
Yogurt (n = 132) | - | 3 (2.3) | 1 (0.8) | 3 (2.3) | - | 2 (1.5) | 4 (3.0) | 113 (85.6) | 1 (0.8) | 5 (3.8) |
Chocolate milk (n = 131) | - | 26 (19.8) | 5 (3.8) | 1 (0.8) | - | - | 4 (3.1) | 90 (68.7) | 1 (0.8) | 4 (3.1) |
Breakfast cereal (n = 131) | - | 9 (6.9) | 10 (7.6) | 9 (6.9) | - | - | 5 (3.8) | 79 (60.3) | - | 19 (14.5) |
Total | 24 (1.6) | 657 (16.4) | 260 (6.2) | 161 (4.2) | 34 (1.7) | 37 (2.0) | 372 (8.8) | 1998 (47.4) | 24 (1.0) | 584 (13.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.J.; Lopes, C.P.; Martins, M.L.; de Fragas Hinnig, P.; Di Pietro, P.F.; de Moura Araujo, P.H.; de Andrade, D.F.; De Assis, M.A.A.; Vieira, F.G.K. How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology. Int. J. Environ. Res. Public Health 2023, 20, 1296. https://doi.org/10.3390/ijerph20021296
Pereira LJ, Lopes CP, Martins ML, de Fragas Hinnig P, Di Pietro PF, de Moura Araujo PH, de Andrade DF, De Assis MAA, Vieira FGK. How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology. International Journal of Environmental Research and Public Health. 2023; 20(2):1296. https://doi.org/10.3390/ijerph20021296
Chicago/Turabian StylePereira, Luciana Jeremias, Clarice Perucchi Lopes, Mayara Lopes Martins, Patrícia de Fragas Hinnig, Patricia Faria Di Pietro, Pedro Henrique de Moura Araujo, Dalton Francisco de Andrade, Maria Alice Altenburg De Assis, and Francilene Gracieli Kunradi Vieira. 2023. "How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology" International Journal of Environmental Research and Public Health 20, no. 2: 1296. https://doi.org/10.3390/ijerph20021296
APA StylePereira, L. J., Lopes, C. P., Martins, M. L., de Fragas Hinnig, P., Di Pietro, P. F., de Moura Araujo, P. H., de Andrade, D. F., De Assis, M. A. A., & Vieira, F. G. K. (2023). How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology. International Journal of Environmental Research and Public Health, 20(2), 1296. https://doi.org/10.3390/ijerph20021296