Multivalent Effect of Defect Engineered Ag2S/g-C3N4 3D Porous Floating Catalyst with Enhanced Contaminant Removal Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ag2S
2.2. Preparation of C3N4
2.3. Preparation of Three-Dimensional Ag2S/C3N4 (ACNs)
2.4. Characterization
2.5. Photocatalytic Degradation
3. Results and Discussion
3.1. Structure and Morphology of the ACNs
3.2. Photocatalytic Removal of Pollutants
3.3. Possible Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.; Xu, J.; Bu, X.-H. Recent advances about metal-organic frameworks in the removal of pollutants from wastewater. Coord Chem. Rev. 2019, 378, 17–31. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Rong, X.; Song, Q.; Wu, B.; Lan, X.; Feng, Y.; Qiu, X.; Zhang, P. Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants. J. Environ. Chem. Eng. 2021, 9, 105627. [Google Scholar] [CrossRef]
- Wazeer, I.; Hizaddin, H.F.; Hashim, M.A.; Hadj-Kali, M.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents. J. Environ. Chem. Eng. 2022, 10, 108574. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Liang, J.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Lu, S.; Asiri, A.M.; Gong, Z.; et al. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochem. Commun. 2021, 123, 106912. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag nanoparticles decorated ZnO nanorods as multifunctional SERS substrates for ultrasensitive detection and catalytic degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Pei, S.; Wang, Y.; You, S.; Li, Z.; Ren, N. Electrochemical removal of chlorophenol pollutants by reactive electrode membranes: Scale-up strategy for engineered applications. Engineering 2022, 9, 77–84. [Google Scholar] [CrossRef]
- Acimovic, D.D.; Karic, S.D.; Nikolic, Z.M.; Brdaric, T.P.; Tasic, G.S.; Marceta Kaninski, M.P.; Nikolic, V.M. Electrochemical oxidation of the polycyclic aromatic hydrocarbons in polluted concrete of the residential buildings. Environ. Pollut. 2017, 220, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, L.; Liu, X.; Zhou, H.; Huang, S.; Wang, Z. Levels and spatial distribution of chlorophenols-2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere 2008, 71, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Gaya, U.I.; Abdullah, A.H.; Hussein, M.Z.; Zainal, Z. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 2010, 263, 176–182. [Google Scholar] [CrossRef]
- Xu, H.; Tong, N.; Huang, S.; Zhou, S.; Li, S.; Li, J.; Zhang, Y. Degradation of 2,4,6-trichlorophenol and determination of bacterial community structure by micro-electrical stimulation with or without external organic carbon source. Bioresour. Technol. 2018, 263, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ramírez, E.; Tzompantzi-Morales, F.; Gutiérrez-Ortega, N.; Mojica-Calvillo, H.G.; Castillo-Rodríguez, J. Photocatalytic Degradation of 2,4,6-Trichlorophenol by MgO–MgFe2O4 Derived from Layered Double Hydroxide Structures. Catalysts 2019, 9, 454. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Chang, F.; Hu, X.; Qin, W.; Shen, J. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chem. Eng. J. 2013, 218, 183–190. [Google Scholar] [CrossRef]
- Ezugwu, C.I.; Liu, S.; Li, C.; Zhuiykov, S.; Roy, S.; Verpoort, F. Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord. Chem. Rev. 2022, 450, 214245. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Jing, J.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C 2020, 8, 3000–3009. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Gao, B.; Lin, B.; Wang, X. Phosphorene-based heterostructured photocatalysts. Engineering 2021, 7, 991–1001. [Google Scholar] [CrossRef]
- Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 2017, 396, 1685–1695. [Google Scholar] [CrossRef]
- Deng, H.; Wang, X.-C.; Wang, L.; Li, Z.-J.; Liang, P.-L.; Ou, J.-Z.; Liu, K.; Yuan, L.-Y.; Jiang, Z.-Y.; Zheng, L.-R.; et al. Enhanced photocatalytic reduction of aqueous Re (VII) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc (VII) elimination. Chem. Eng. J. 2020, 401, 125977. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Catal. B 2017, 209, 621–630. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.; Park, J.; Moon, G.H.; Vequizo, J.J.M.; Yamakata, A.; Lee, J.; Choi, W. How g-C3N4 works and is different from TiO2 as an environmental photocatalyst: Mechanistic view. Environ. Sci. Technol. 2020, 54, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, L.; Wang, Y.; Li, L.; Chen, S. High yield synthesis of homogeneous boron doping C3N4 nanocrystals with enhanced photocatalytic property. Appl. Surf. Sci. 2019, 489, 631–638. [Google Scholar] [CrossRef]
- Wang, L.; Tong, Y.; Feng, J.; Hou, J.; Li, J.; Hou, X.; Liang, J. G-C3N4-based films: A rising star for photoelectrochemical water splitting. Sustain. Mater. Technol. 2019, 19, e00089. [Google Scholar] [CrossRef]
- Kong, L.; Song, P.; Ma, F.; Sun, M. Graphitic carbon nitride-based 2D catalysts for green energy: Physical mechanism and applications. Mater. Today Energy 2020, 17, 100488. [Google Scholar] [CrossRef]
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Zhang, Y.; Ren, Y.; Kang, P.; Yan, J.; Zhao, W.; Zhang, Z.; Guo, H. Tunable type-I/type-II transition in g-C3N4/graphyne heterostructure by BN-doping: A promising photocatalyst. Sol. Energy Mater. Sol. Cells 2020, 210, 110516. [Google Scholar] [CrossRef]
- Lv, Z.; Cheng, X.; Liu, B.; Guo, Z.; Zhang, C. Py-COOH modified g-C3N4 nanosheets with enhanced visible-light photocatalytic H2 production. Appl. Surf. Sci. 2020, 504, 144486. [Google Scholar] [CrossRef]
- Lu, L.; Lv, Z.; Si, Y.; Liu, M.; Zhang, S. Recent progress on band and surface engineering of graphitic carbon nitride for artificial photosynthesis. Appl. Surf. Sci. 2018, 462, 693–712. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Bai, Y.; Huang, Z.H.; Kang, F.; Yang, Q.H. A composite polymeric carbon nitride with in situ formed isotype heterojunctions for highly improved potocatalysis under visible light. Small 2017, 13, 1603182. [Google Scholar] [CrossRef]
- Song, T.; Hou, L.; Long, B.; Ali, A.; Deng, G.-J. Constructing ultralong hollow chain-ball-like carbon nitride implanted with oxygen for superior visible-light photocatalytic hydrogen production. J. Alloy. Compd. 2021, 857, 157609. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Taha, T.A.; Kumar Baburao Mane, S.; Al-Sehemi, A.G.; Al-Ghamdi, A.A.; Nawawi, W.I.; Palamanit, A.; Amin, M.A.; Fallatah, A.M.; et al. Synergetic effect of bismuth vanadate over copolymerized carbon nitride composites for highly efficient photocatalytic H2 and O2 generation. J. Colloid Interface Sci. 2022, 627, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Kim, D.-H. Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B. Appl. Surf. Sci. 2020, 511, 145595. [Google Scholar] [CrossRef]
- Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. Graphitic carbon nitride (g-C3N4) decorated ZnWO4 heterojunctions architecture synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2020, 108, 107981. [Google Scholar] [CrossRef]
- Guo, Z.; Ni, S.; Wu, H.; Wen, J.; Li, X.; Tang, T.; Li, M.; Liu, M. Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Appl. Surf. Sci. 2021, 548, 149211. [Google Scholar] [CrossRef]
- Che, H.; Che, G.; Zhou, P.; Song, N.; Li, C.; Li, C.; Liu, C.; Liu, X.; Dong, H. Precursor-reforming strategy induced g-C3N4 microtubes with spatial anisotropic charge separation established by conquering hydrogen bond for enhanced photocatalytic H2-production performance. J. Colloid Interface Sci. 2019, 547, 224–233. [Google Scholar] [CrossRef]
- Chen, D.; Wei, L.; Wang, D.; Chen, Y.; Tian, Y.; Yan, S.; Mei, L.; Jiao, J. Ag2S/ZnO core-shell nanoheterojunction for a self-powered solid-state photodetector with wide spectral response. J. Alloy. Compd. 2018, 735, 2491–2496. [Google Scholar] [CrossRef]
- Feng, J.; Gao, M.; Zhang, Z.; Gu, M.; Wang, J.; Zeng, W.; Ren, Y. Comparing the photocatalytic properties of g-C3N4 treated by thermal decomposition, solvothermal and protonation. Results Phys. 2018, 11, 331–334. [Google Scholar] [CrossRef]
- Peng, D.; Wang, H.; Yu, K.; Chang, Y.; Ma, X.; Dong, S. Photochemical preparation of the ternary composite CdS/Au/g-C3N4 with enhanced visible light photocatalytic performance and its microstructure. RSC Adv. 2016, 6, 77760–77767. [Google Scholar] [CrossRef]
- Sierra, M.; Borges, E.; Esparza, P.; Mendez-Ramos, J.; Martin-Gil, J.; Martin-Ramos, P. Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater. Sci. Technol. Adv. Mater. 2016, 17, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yin, C.; Li, K.; Tang, H.; Wang, Y.; Wu, Z. Cu Doped Crystalline Carbon-Conjugated g-C3N4, a Promising Oxygen Reduction Catalyst by Theoretical Study. J. Electrochem. Soc. 2019, 166, F755–F759. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, L.; Wu, P.; Xu, R.; He, J.; Jiang, W. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification. Appl. Surf. Sci. 2020, 527, 146584. [Google Scholar] [CrossRef]
- Li, J.; Qi, Y.; Mei, Y.; Ma, S.; Li, Q.; Xin, B.; Yao, T.; Wu, J. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity. J. Colloid Interface Sci. 2020, 566, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, L.; Zhang, Q.; Chen, Z.; Deng, X.; Feng, C.; Xu, L.; Sun, M. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. J. Alloy. Compd. 2019, 808, 151681. [Google Scholar] [CrossRef]
- Dong, X.; Wang, S.; Wu, Q.; Liu, K.; Kong, F.; Liu, J. Co-catalyst boosted photocatalytic hydrogen production driven by visible-light over g-C3N4: The synergistic effect between Ag and Ag2S. J. Alloy. Compd. 2021, 875, 160032. [Google Scholar] [CrossRef]
- Yu, H.; Liu, W.; Wang, X.; Wang, F. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: A case study of TiO2/Ag-Ag2S photocatalyst. Appl. Catal. B 2018, 225, 415–423. [Google Scholar] [CrossRef]
- Nekooei, A.; Miroliaei, M.R.; Shahabi Nejad, M.; Sheibani, H. Enhanced visible-light photocatalytic activity of ZnS/S-graphene quantum dots reinforced with Ag2S nanoparticles. Mater. Sci. Eng. C 2022, 284, 115884. [Google Scholar] [CrossRef]
- Yuan, L.; Lu, S.W.; Yang, F.; Wang, Y.S.; Jia, Y.F.; Kadhim, M.S.; Yu, Y.M.; Zhang, Y.; Zhao, Y. A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. J. Mater. Sci. 2019, 54, 3174–3186. [Google Scholar] [CrossRef]
- Zhao, X.X.; Yang, H.; Li, R.S.; Cui, Z.M.; Liu, X.Q. Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes. Environ. Sci. Pollut. Res. Int. 2019, 26, 5524–5538. [Google Scholar] [CrossRef]
- Barrocas, B.; Entradas, T.J.; Nunes, C.D.; Monteiro, O.C. Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Appl. Catal. B Environ. 2017, 218, 709–720. [Google Scholar] [CrossRef]
- Di, L.; Yang, H.; Xian, T.; Liu, X.; Chen, X. Photocatalytic and photo-fenton catalytic degradation activities of Z-Scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation. Nanomaterials 2019, 9, 399. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Chen, S.; Li, R.; Peng, T. Construction of Ag2S/WO3 direct Z-Scheme photocatalyst for enhanced charge separation efficiency and H2 generation activity. Ind. Eng. Chem. Res. 2019, 58, 14802–14813. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, J.; Zhai, X.; Guan, F.; Wang, X.; Zhang, J.; Hou, B. Photocatalytic Degradation and Antibacterial Properties of Fe3+-Doped Alkalized Carbon Nitride. Nanomaterials 2020, 10, 1751. [Google Scholar] [CrossRef] [PubMed]
- Gaigneaux, E.M.; Devillers, M.; DeVos, D.E.; Hermans, S.; Jacobs, P.A.; Martens, J.A.; Ruiz, P. Scientific, Bases for the Preparation of Heterogeneous Catalysts; Elsevier: Amsterdam, The Netherlands, 2006; Volume 162, pp. 1–1048. [Google Scholar]
- Zhao, S.; Wu, J.; Xu, Y.; Zhang, X.; Han, Y.; Xing, H. CdS/Ag2S/g-C3N4 ternary composites with superior photocatalytic performance for hydrogen evolution under visible light irradiation. Dalton Trans. 2021, 50, 3253–3260. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zeng, Z.; Cai, W.; Zhou, Z.; Dou, C.; Liu, H.; Xia, J. The zeta potentials of g-C3N4 nanoparticles: Effect of electrolyte, ionic strength, pH, and humic acid. J. Nanoparticle Res. 2019, 21, 233. [Google Scholar] [CrossRef]
- Xue, J.; Ma, T.; Shen, Q.; Guan, R.; Jia, H.; Liu, X.; Xu, B. A novel synthesis method for Ag/g-C3N4 nanocomposite and mechanism of enhanced visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2019, 30, 15636–15645. [Google Scholar] [CrossRef]
- Xue, B.; Jiang, H.-Y.; Sun, T.; Mao, F.; Ma, C.-C.; Wu, J.-K. Microwave-assisted one-step rapid synthesis of ternary Ag/Ag2S/g-C3N4 heterojunction photocatalysts for improved visible-light induced photodegradation of organic pollutant. J. Photochem. Photobiol. A Chem. 2018, 353, 557–563. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Li, Y.; Chen, J.; Song, M.; Zhang, L. Multivalent Effect of Defect Engineered Ag2S/g-C3N4 3D Porous Floating Catalyst with Enhanced Contaminant Removal Efficiency. Int. J. Environ. Res. Public Health 2023, 20, 1357. https://doi.org/10.3390/ijerph20021357
Zhou N, Li Y, Chen J, Song M, Zhang L. Multivalent Effect of Defect Engineered Ag2S/g-C3N4 3D Porous Floating Catalyst with Enhanced Contaminant Removal Efficiency. International Journal of Environmental Research and Public Health. 2023; 20(2):1357. https://doi.org/10.3390/ijerph20021357
Chicago/Turabian StyleZhou, Nan, Yanzhang Li, Jie Chen, Mingxin Song, and Linlin Zhang. 2023. "Multivalent Effect of Defect Engineered Ag2S/g-C3N4 3D Porous Floating Catalyst with Enhanced Contaminant Removal Efficiency" International Journal of Environmental Research and Public Health 20, no. 2: 1357. https://doi.org/10.3390/ijerph20021357
APA StyleZhou, N., Li, Y., Chen, J., Song, M., & Zhang, L. (2023). Multivalent Effect of Defect Engineered Ag2S/g-C3N4 3D Porous Floating Catalyst with Enhanced Contaminant Removal Efficiency. International Journal of Environmental Research and Public Health, 20(2), 1357. https://doi.org/10.3390/ijerph20021357