Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure
2.3. Intervention
2.3.1. Static Stretching
2.3.2. Ballistic Stretching
2.3.3. Dynamic Stretching
2.4. Measurements
2.4.1. Ankle Joint ROM
2.4.2. Balance Ability
2.5. Statistics
3. Results
3.1. Patients’ General Characteristics
3.2. Balance Ability
3.2.1. Static Balance Ability
3.2.2. Dynamic Balance Ability
3.3. Ankle Joint ROM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shumway-Cook, A.; Horak, F.B. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys. Ther. 1986, 66, 1548–1550. [Google Scholar] [CrossRef]
- In, T.S.; Jung, J.H.; Jang, S.H.; Kim, K.H.; Jung, K.S.; Cho, H.Y. Effects of Light Touch on Balance in Patients with Stroke. Open Med. 2019, 14, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Jung, J.H.; Kim, S.H.; Hahm, S.C.; Cho, H.Y. A Comparison of the Transient Effect of Complex and Core Stability Exercises on Static Balance Ability and Muscle Activation during Static Standing in Healthy Male Adults. Healthcare 2020, 8, 375. [Google Scholar] [CrossRef]
- Johansson, J.; Nordström, A.; Gustafson, Y.; Westling, G.; Nordström, P. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Ageing 2017, 46, 964–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muehlbauer, T.; Grundmann, A.; Vortkamp, L.; Schedler, S. Effect of balance training on static and dynamic balance performance in male adolescents: Role of training frequency. BMC Res. Notes 2022, 15, 365. [Google Scholar] [CrossRef]
- Petrofsky, J.; Donatelli, R.; Laymon, M.; Lee, H. Greater Postural Sway and Tremor during Balance Tasks in Patients with Plantar Fasciitis Compared to Age-Matched Controls. Healthcare 2020, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, S.H. Effectiveness of multicomponent home-based rehabilitation in older patients after hip fracture surgery: A systematic review and meta-analysis. J. Clin. Nurs. 2023, 32, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Pua, Y.H.; Ong, P.H.; Clark, R.A.; Matcher, D.B.; Lim, E.C. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: Prospective cohort study. BMC Geriatr. 2017, 17, 291. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, S.H. Effectiveness of Multicomponent Home-Based Rehabilitation in Elderly Patients after Hip Fracture Surgery: A Randomized Controlled Trial. J. Pers. Med. 2022, 12, 649. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Latham, N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009, 2009, CD002759. [Google Scholar] [CrossRef]
- Hess, J.A.; Woollacott, M. Effect of high-intensity strength-training on functional measures of balance ability in balance-impaired older adults. J. Manip. Physiol. Ther. 2005, 28, 582–590. [Google Scholar] [CrossRef]
- Behm, D.G.; Bambury, A.; Cahill, F.; Power, K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med. Sci. Sport. Exerc. 2004, 36, 1397–1402. [Google Scholar] [CrossRef]
- Costa, P.B.; Graves, B.S.; Whitehurst, M.; Jacobs, P.L. The acute effects of different durations of static stretching on dynamic balance performance. J. Strength Cond. Res. 2009, 23, 141–147. [Google Scholar] [CrossRef]
- Lim, K.I.; Nam, H.C.; Jung, K.S. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques. J. Phys. Ther. Sci. 2014, 26, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulos, D.; Galazoulas, C.; Patikas, D.; Kotzamanidis, C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J. Sport. Sci. Med. 2014, 13, 403–409. [Google Scholar]
- Leblebici, H.; Yarar, H.; Aydın, E.M.; Zorlu, Z.; Ertaş, U.; Kıngır, M.E. The acute effects of different stretching on dynamic balance performance. Int. J. Sport. Stud. 2017, 7, 153–159. [Google Scholar]
- Malliaropoulos, N.; Papalexandris, S.; Papalada, A.; Papacostas, E. The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Med. Sci. Sport. Exerc. 2004, 36, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Page, P. Current concepts in muscle stretching for exercise and rehabilitation. Int. J. Sport. Phys. Ther. 2012, 7, 109–119. [Google Scholar]
- Pescatello, L.S.; Riebe, D.; Thompson, P.D. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Shellock, F.G.; Prentice, W.E. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sport. Med. 1985, 2, 267–278. [Google Scholar] [CrossRef]
- Small, K.; Mc Naughton, L.; Matthews, M. A systematic review into the efficacy of static stretching as part of a warm-up for the prevention of exercise-related injury. Res. Sport. Med. 2008, 16, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Trajano, G.S.; Nosaka, K.; Blazevich, A.J. Intermittent stretch reduces force and central drive more than continuous stretch. Med. Sci. Sport. Exerc. 2014, 46, 902–910. [Google Scholar] [CrossRef]
- Walsh, G.S. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength. Hum. Mov. Sci. 2017, 55, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avela, J.; Kyröläinen, H.; Komi, P.V. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 1999, 86, 1283–1291. [Google Scholar] [CrossRef]
- Lee, K.B.; Park, Y.H.; Song, E.K.; Yoon, T.R.; Jung, K.I. Static and dynamic postural balance after successful mobile-bearing total ankle arthroplasty. Arch. Phys. Med. Rehabil. 2010, 91, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, E.M.; Losa-Iglesias, M.E.; Díaz-Velázquez, J.I.; Becerro-De-Bengoa-Vallejo, R.; Palomo-López, P.; Calvo-Lobo, C.; López-López, D.; Rodríguez-Sanz, D. Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial. J. Clin. Med. 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, B.N.; Lucareli, P.R.; Gomes, W.A.; Silva, J.J.; Bley, A.S.; Hartigan, E.H.; Marchetti, P.H. The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J. Sports. Sci. Med. 2014, 13, 564–570. [Google Scholar]
- Nelson, A.G.; Kokkonen, J.; Arnall, D.A.; Li, L. Acute stretching increases postural stability in nonbalance trained individuals. J. Strength Cond. Res. 2012, 26, 3095–3100. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Aanalysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Unick, J.; Kieffer, H.S.; Cheesman, W.; Feeney, A. The acute effects of static and ballistic stretching on vertical jump performance in trained women. J. Strength Cond. Res. 2005, 19, 206–212. [Google Scholar]
- O’Sullivan, K.; Murray, E.; Sainsbury, D. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC Musculoskelet. Disord. 2009, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.A.; Cloud, B.A.; Forster, L.A.; Schrank, J.A.; Hollman, J.H. Measurement of ankle dorsiflexion: A comparison of active and passive techniques in multiple positions. J. Sport Rehabil. 2011, 20, 333–344. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Roth, R.; Mueller, S.; Granacher, U. Intra and intersession reliability of balance measures during one-leg standing in young adults. J. Strength Cond. Res. 2011, 25, 2228–2234. [Google Scholar] [CrossRef]
- Kinzey, S.J.; Armstrong, C.W. The reliability of the star-excursion test in assessing dynamic balance. J. Orthop. Sport. Phys. Ther. 1998, 27, 356–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl 2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.E.; Rossi, M.D.; Lopez, R. The effects of the contract-relax-antagonist-contract form of proprioceptive neuromuscular facilitation stretching on postural stability. J. Strength Cond. Res. 2010, 24, 1888–1894. [Google Scholar] [CrossRef]
- Palmer, T.B.; Agu-Udemba, C.C.; Palmer, B.M. Acute effects of static stretching on passive stiffness and postural balance in healthy, elderly men. Physician Sportsmed. 2018, 46, 78–86. [Google Scholar] [CrossRef]
- Lewis, N.L.; Brismée, J.M.; James, C.R.; Sizer, P.S.; Sawyer, S.F. The effect of stretching on muscle responses and postural sway responses during computerized dynamic posturography in women and men. Arch. Phys. Med. Rehabil. 2009, 90, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Avela, J.; Finni, T.; Liikavainio, T.; Niemelä, E.; Komi, P.V. Neural and mechanical responses of the triceps surae muscle group after 1 h of repeated fast passive stretches. J. Appl. Physiol. 2004, 96, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.C.; Staton, G.S.; McKeon, P.O. Dorsiflexion range of motion significantly influences dynamic balance. J. Sci. Med. Sport 2011, 14, 90–92. [Google Scholar] [CrossRef]
- Ross, S.E.; Guskiewicz, K.M.; Gross, M.T.; Yu, B. Balance measures for discriminating between functionally unstable and stable ankles. Med. Sci. Sport. Exerc. 2009, 41, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Davlin, C.D. Dynamic balance in high level athletes. Percept. Mot. Ski. 2004, 98, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
Variable | SG | DG | BG | CG | p Value |
---|---|---|---|---|---|
Gender a,* (M/F) | 9/2 | 9/2 | 9/2 | 9/2 | 1.000 |
Side a,* (Rt./Lt.) | 11/0 | 10/1 | 9/2 | 10/1 | 0.532 |
Age b,# (years) | 26.09 ± 1.76 | 26.27 ± 1.68 | 26.73 ± 2.15 | 27.45 ± 3.17 | 0.507 |
Height b,# (cm) | 169.82 ± 7.55 | 174.35 ± 7.98 | 172.09 ± 7.11 | 173.64 ± 6.33 | 0.481 |
Weight b,# (kg) | 71.64 ± 14.24 | 77.18 ± 19.76 | 67.64 ± 11.31 | 71.34 ± 9.95 | 0.485 |
BMI b,# (kg/m2) | 24.63 ± 3.27 | 25.07 ± 4.65 | 22.69 ± 2.38 | 23.56 ± 2.13 | 0.326 |
CAIT b,# (score) | 29.00 ± 0.89 | 28.82 ± 0.87 | 29.45 ± 0.82 | 29.00 ± 0.89 | 0.374 |
Variable | Pre-Intervention | Post-Intervention | Follow-Up | ANOVA p Value | Post-Hoc | |||
---|---|---|---|---|---|---|---|---|
Pre vs. Post | Pre vs. Follow | Post vs. Follow | ||||||
Sway area (mm2) | SG | 6.21 ± 2.37 | 6.91 ± 2.50 | 7.22 ± 2.60 | 0.759 | 0.853 | 0.759 | 0.906 |
DG | 7.40 ± 2.11 | 7.67 ± 2.61 | 8.91 ± 3.16 | 0.977 | 0.542 | 0.207 | ||
BG | 8.00 ± 3.74 | 7.01 ± 1.84 | 6.83 ± 2.32 | 0.731 | 0.693 | 0.969 | ||
CG | 8.22 ± 2.56 | 9.67 ± 7.98 | 9.42 ± 9.16 | 0.631 | 0.774 | 0.933 | ||
Path length (mm) | SG | 43.03 ± 9.48 | 43.24 ± 6.51 | 42.62 ± 8.20 | 0.500 | 0.998 | 0.991 | 0.913 |
DG | 50.66 ± 13.77 | 50.44 ± 10.01 | 49.50 ± 9.05 | 0.998 | 0.930 | 0.809 | ||
BG | 45.15 ± 7.70 | 43.38 ± 9.80 | 42.07 ± 9.48 | 0.863 | 0.601 | 0.667 | ||
CG | 52.41 ± 15.19 | 56.18 ± 15.80 | 51.93 ± 15.12 | 0.154 | 0.815 | 0.052 | ||
Sway velocity (mm/s) | SG | 4.30 ± 0.95 | 4.32 ± 0.65 | 4.26 ± 0.82 | 0.648 | 0.998 | 0.991 | 0.906 |
DG | 5.07 ± 1.38 | 5.04 ± 1.00 | 4.95 ± 0.91 | 0.998 | 0.929 | 0.796 | ||
BG | 4.51 ± 0.77 | 4.34 ± 0.98 | 4.21 ± 0.95 | 0.857 | 0.597 | 0.646 | ||
CG | 5.24 ± 1.52 | 5.62 ± 1.58 | 5.19 ± 1.51 | 0.134 | 0.838 | 0.093 |
Variable | Pre-Intervention | Post-Intervention | Follow-Up | ANOVA p Value | Post-Hoc | |||
---|---|---|---|---|---|---|---|---|
Pre vs. Post | Pre vs. Follow | Post vs. Follow | ||||||
Sway area (mm2) | SG | 23.02 ± 7.30 | 18.90 ± 6.04 | 21.91 ± 6.96 | 0.257 | 0.039 | 0.888 | 0.294 |
DG | 25.97 ± 11.03 | 21.10 ± 7.82 | 22.19 ± 5.70 | 0.042 | 0.263 | 0.605 | ||
BG | 26.05 ± 7.57 | 22.41 ± 5.48 | 24.28 ± 6.31 | 0.046 | 0.739 | 0.618 | ||
CG | 24.91 ± 7.48 | 23.28 ± 8.26 | 24.41 ± 7.93 | 0.988 | 0.802 | 0.837 | ||
Path length (mm) | SG | 83.54 ± 19.38 | 82.23 ± 18.60 | 83.73 ± 21.66 | 0.826 | 0.954 | 0.999 | 0.888 |
DG | 97.22 ± 19.91 | 83.33 ± 14.35 | 88.17 ± 18.71 | 0.009 | 0.120 | 0.304 | ||
BG | 88.27 ± 19.24 | 83.37 ± 17.77 | 83.77 ± 16.39 | 0.523 | 0.569 | 0.992 | ||
CG | 78.93 ± 29.78 | 77.14 ± 27.79 | 75.93 ± 28.11 | 0.916 | 0.776 | 0.925 | ||
Sway velocity (mm/s) | SG | 8.35 ± 1.94 | 8.22 ± 1.86 | 8.37 ± 2.17 | 0.365 | 0.954 | 0.999 | 0.888 |
DG | 9.72 ± 1.99 | 8.33 ± 1.43 | 8.82 ± 1.87 | 0.009 | 0.122 | 0.305 | ||
BG | 8.83 ± 1.92 | 8.34 ± 1.78 | 8.38 ± 1.64 | 0.526 | 0.574 | 0.992 | ||
CG | 9.14 ± 2.35 | 8.92 ± 1.99 | 8.80 ± 2.08 | 0.879 | 0.737 | 0.933 |
Variable | Pre-Intervention | Post-Intervention | Follow-Up | ANOVA p Value | Post-Hoc | |||
---|---|---|---|---|---|---|---|---|
Pre vs. Post | Pre vs. Follow | Post vs. Follow | ||||||
YANT | SG | 69.46 ± 7.07 | 72.08 ± 7.16 a | 72.74 ± 8.17 a | 0.016 | <0.001 | 0.002 | 0.393 |
DG | 68.01 ± 6.29 | 70.57 ± 6.52 a | 70.21 ± 6.80 a | 0.042 | 0.046 | 0.412 | ||
BG | 68.36 ± 4.45 | 70.94 ± 3.88 a | 70.57 ± 3.72 a | <0.001 | <0.001 | 0.060 | ||
CG | 66.58 ± 6.26 | 67.03 ± 6.30 | 66.72 ± 6.03 | 0.744 | 0.986 | 0.805 | ||
YMED | SG | 103.19 ± 11.51 | 106.88 ± 10.97 | 106.27 ± 12.12 | <0.001 | 0.001 | 0.017 | 0.729 |
DG | 98.62 ± 7.14 | 103.80 ± 8.63 | 104.63 ± 7.70 | <0.001 | <0.001 | 0.563 | ||
BG | 99.58 ± 8.22 | 105.25 ± 8.00 | 107.05 ± 7.03 | <0.001 | <0.001 | 0.077 | ||
CG | 104.07 ± 11.71 | 104.14 ± 11.58 | 104.47 ± 10.54 | 0.998 | 0.927 | 0.910 | ||
YLAT | SG | 99.27 ± 12.57 | 103.37 ± 13.15 | 102.95 ± 13.85 | <0.001 | <0.001 | 0.002 | 0.849 |
DG | 94.07 ± 10.73 | 100.06 ± 10.88 | 100.94 ± 10.73 | <0.001 | <0.001 | 0.488 | ||
BG | 93.57 ± 9.33 | 97.84 ± 8.84 | 98.07 ± 7.97 | <0.001 | <0.001 | 0.138 | ||
CG | 98.05 ± 15.36 | 98.57 ± 13.97 | 99.72 ± 14.14 | 0.835 | 0.237 | 0.297 | ||
YSUM | SG | 90.64 ± 9.21 | 94.11 ± 9.08 | 93.99 ± 10.00 | <0.001 | <0.001 | <0.001 | 0.969 |
DG | 86.90 ± 7.36 | 93.48 ± 8.10 | 91.93 ± 7.81 | <0.001 | <0.001 | 0.294 | ||
BG | 87.17 ± 6.69 | 91.34 ± 6.34 | 91.90 ± 5.58 | <0.001 | <0.001 | 0.342 | ||
CG | 89.57 ± 9.57 | 89.91 ± 9.03 | 90.30 ± 8.80 | 0.817 | 0.523 | 0.732 |
Variable | Pre-Intervention | Post-Intervention | Follow-Up | ANOVA p-Value | Post-Hoc | |||
---|---|---|---|---|---|---|---|---|
Pre vs. Post | Pre vs. Follow | Post vs. Follow | ||||||
ROM | SG | 18.46 ± 3.77 | 23.42 ± 3.63 a | 22.36 ± 3.50 | <0.001 | <0.001 | <0.001 | 0.021 |
DG | 19.70 ± 2.54 | 24.27 ± 2.31 a | 23.33 ± 2.97 a | <0.001 | <0.001 | 0.045 | ||
BG | 18.58 ± 3.29 | 23.21 ± 3.69 a | 22.67 ± 3.30 a | <0.001 | <0.001 | 0.332 | ||
CG | 18.70 ± 3.96 | 18.79 ± 3.93 | 18.67 ± 3.95 | 0.974 | 0.997 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, E.-Y.; Jung, J.-H.; Cho, H.-Y.; Kim, S.-H. Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults. Int. J. Environ. Res. Public Health 2023, 20, 1462. https://doi.org/10.3390/ijerph20021462
Jung E-Y, Jung J-H, Cho H-Y, Kim S-H. Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults. International Journal of Environmental Research and Public Health. 2023; 20(2):1462. https://doi.org/10.3390/ijerph20021462
Chicago/Turabian StyleJung, Eui-Young, Jin-Hwa Jung, Hwi-Young Cho, and Sung-Hyeon Kim. 2023. "Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults" International Journal of Environmental Research and Public Health 20, no. 2: 1462. https://doi.org/10.3390/ijerph20021462
APA StyleJung, E. -Y., Jung, J. -H., Cho, H. -Y., & Kim, S. -H. (2023). Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults. International Journal of Environmental Research and Public Health, 20(2), 1462. https://doi.org/10.3390/ijerph20021462