Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Preparation
2.3.1. Spatial Interpolation of Meteorological Data
2.3.2. Interpolation Accuracy Validation
2.4. Methods
2.4.1. Definitions of HWI and Heatwaves
2.4.2. Heatwave Hazard Assessment and Classification
2.4.3. Analysis of the Relative Change of Indicators
3. Results
3.1. Dynamic Changes in TI in Different Months
3.2. Assessment of Hazard Indicators
3.3. Spatiotemporal Distribution of Heatwave Hazard
3.4. Ranking the Heatwave Hazard Levels of Chinese Cities
4. Discussions
4.1. Heatwave Hazards in Chinese Mainland
4.2. Strengths and Limitations of the Study
4.3. Implications for Future Heatwave Research and Public Policy
5. Conclusions
- (1)
- The TI increased in 1990–2019, albeit with fluctuations, with the highest ATIRC value found in North China, followed by Northwest China, in July (3.39%). Notably, there was a clear trend of increasing TI values in climate-sensitive regions, such as Northeast China and the Qinghai–Tibet Plateau, in June and September.
- (2)
- The areas with medium hazard levels and above were mainly distributed in East and South China, Southeast Tibet, East and South Xinjiang, and Chongqing, accounting for 22.16% of the total. The areas with significantly increasing hazard levels were East China, South Xinjiang, and Western Inner Mongolia. Through a comparative analysis, the areas with “high and rapidly increasing” hazard levels, such as Southeast Tibet, South Xinjiang, Chongqing, South Hebei, West Henan, Central Zhejiang, Central and South Jiangxi, and East Hunan, accounted for 8.71% of the country, while the areas with “low and continually increasing” hazard levels were widely distributed in the eastern, southern, and northern regions of China, including Jiangsu, Inner Mongolia, Hainan, Shandong, and Heilongjiang, which accounted for 41.33% of the total.
- (3)
- The city with the highest AH value was Luohe (Henan), while the city with the fastest growth was Suzhou (Jiangsu). The units of cities and counties were found to have increased significantly by 57% and 68%, respectively. Among the 49 first-tier, new first-tier, and second-tier cities, the top 10 were Jinhua, Zhengzhou, Nanchang, Wuhan, Shaoxing, Changsha, Shijiazhuang, Nanjing, Wuxi, and Changzhou. Some of these cities have low administrative or economic development levels, which have reduced the attention paid to the mentioned cities. However, it is necessary to pay attention to the internal infrastructure construction in these cities to reduce the harm of future heatwaves. Upon ranking the provincial capitals, the “ten furnaces” were identified as Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei (sequentially).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | City | MEAN | Slope | City-Class | Index | City | MEAN | Slope | City-Class |
---|---|---|---|---|---|---|---|---|---|
1 | * Luohe, Henan | 0.6388 | 0.0106 | fifth-tier | 51 | Jining City | 0.4393 | 0.0073 | third-tier |
2 | * Jiaozuo, Henan | 0.6380 | 0.0104 | fourth-tier | 52 | Quzhou, Zhejiang | 0.4367 | 0.0063 | fourth-tier |
3 | * Xuchang, Henan | 0.6359 | 0.0119 | fourth-tier | 53 | * Suzhou, Jiangsu | 0.4322 | 0.0119 | fourth-tier |
4 | Guang’an, Sichuan | 0.6020 | 0.0155 | fifth-tier | 54 | * Nanjing, Jiangsu | 0.4314 | 0.0138 | new first-tier |
5 | * Hebi, Henan | 0.5985 | 0.0135 | fifth-tier | 55 | * Wuxi, Jiangsu | 0.4307 | 0.0145 | second-tier |
6 | Karamay, Xinjiang | 0.5931 | −0.0043 | fifth-tier | 56 | * Changzhou, Jiangsu | 0.4307 | 0.0145 | second-tier |
7 | * Turpan, Xinjiang | 0.5922 | 0.0116 | fifth-tier | 57 | * Jiaxing, Zhejiang | 0.4293 | 0.0177 | second-tier |
8 | * Xinxiang, Henan | 0.5867 | 0.0163 | third-tier | 58 | Xiaogan, Hubei | 0.4243 | 0.0067 | fourth-tier |
9 | * Puyang, Henan | 0.5786 | 0.0128 | fifth-tier | 59 | * Zhuzhou, Hunan | 0.4236 | 0.0108 | third-tier |
10 | Dezhou, Shandong | 0.5607 | 0.0050 | fourth-tier | 60 | Hangzhou, Zhejiang | 0.4206 | 0.0091 | new first-tier |
11 | * Pingdingshan, Henan | 0.5603 | 0.0118 | fourth-tier | 61 | Wuhu, Anhui | 0.4180 | 0.0065 | third-tier |
12 | Liaocheng, Shandong | 0.5540 | 0.0083 | fourth-tier | 62 | * Huainan, Anhui | 0.4136 | 0.0100 | fourth-tier |
13 | Hengyang, Hunan | 0.5528 | 0.0134 | third-tier | 63 | * Yueyang, Hunan | 0.4082 | 0.0119 | third-tier |
14 | * Kaifeng, Henan | 0.5521 | 0.0177 | fourth-tier | 64 | * Huzhou, Zhejiang | 0.4056 | 0.0132 | third-tier |
15 | Jinhua, Zhejiang | 0.5459 | 0.0125 | second-tier | 65 | * Dongying, Shandong | 0.4042 | 0.0139 | fourth-tier |
16 | * Ezhou, Hubei | 0.5416 | 0.0145 | fifth-tier | 66 | * Changde, Hunan | 0.4038 | 0.0121 | fourth-tier |
17 | * Anyang, Henan | 0.5395 | 0.0108 | fourth-tier | 67 | * Xinyang, Henan | 0.4035 | 0.0088 | third-tier |
18 | * Zhengzhou, Henan | 0.5349 | 0.0129 | new first-tier | 68 | Haikou, Hinan | 0.3997 | 0.0055 | second-tier |
19 | Xinyu, Jiangxi | 0.5305 | 0.0064 | fifth-tier | 69 | * Xianning, Hubei | 0.3996 | 0.0090 | fourth-tier |
20 | * Bozhou, Anhui | 0.5252 | 0.0109 | fourth-tier | 70 | * Bayingoleng, Xinjiang | 0.3938 | 0.0088 | fifth-tier |
21 | * Huaibei, Anhui | 0.5243 | 0.0140 | fifth-tier | 71 | Chongqing | 0.3935 | 0.0096 | new first-tier |
22 | Hengshui, Hebei | 0.5238 | 0.0061 | fifth-tier | 72 | * Zhenjiang, Jiangsu | 0.3914 | 0.0149 | third-tier |
23 | * Zhoukou, Henan | 0.5234 | 0.0133 | fourth-tier | 73 | * Sanya, Hainan | 0.3859 | 0.0123 | third-tier |
24 | * Shangqiu, Henan | 0.5233 | 0.0097 | third-tier | 74 | Hefei, Anhui | 0.3848 | 0.0067 | second-tier |
25 | * Zhumadian, Henan | 0.5210 | 0.0137 | fourth-tier | 75 | * Jingzhou, Hubei | 0.3798 | 0.0107 | third-tier |
26 | Handan, Hebei | 0.5069 | 0.0072 | third-tier | 76 | * Zaozhuang, Shandong | 0.3767 | 0.0121 | fourth-tier |
27 | Tacheng, Xinjiang | 0.5051 | −0.0033 | fifth-tier | 77 | * Hami, Xinjiang | 0.3720 | 0.0064 | fifth-tier |
28 | * Heze, Shandong | 0.5040 | 0.0100 | fourth-tier | 78 | Dazhou, Sichuan | 0.3717 | 0.0099 | fifth-tier |
29 | * Yingtan, Jiangxi | 0.5038 | 0.0095 | fourth-tier | 79 | Pingxiang, Jiangxi | 0.3707 | 0.0079 | fifth-tier |
30 | Nanchang, Jiangxi | 0.5019 | 0.0086 | second-tier | 80 | Yibin, Sichuan | 0.3698 | 0.0116 | fourth-tier |
31 | Xingtai, Hebei | 0.4968 | 0.0061 | fourth-tier | 81 | * Chuzhou, Anhui | 0.3698 | 0.0108 | third-tier |
32 | * Wuhan, Hubei | 0.4929 | 0.0103 | new first-tier | 82 | * Yiyang, Hunan | 0.3697 | 0.0128 | fourth-tier |
33 | * Ji’an, Jiangxi | 0.4922 | 0.0108 | fourth-tier | 83 | * Huanggang, Hubei | 0.3694 | 0.0091 | fourth-tier |
34 | Binzhou, Shandong | 0.4900 | 0.0101 | fourth-tier | 84 | * Xuzhou, Jiangsu | 0.3691 | 0.0129 | second-tier |
35 | Shaoxing, Zhejiang | 0.4861 | 0.0103 | second-tier | 85 | Langfang, Hebei | 0.3654 | 0.0083 | third-tier |
36 | * Nanyang, Henan | 0.4845 | 0.0133 | third-tier | 86 | * Suizhou, Hubei | 0.3585 | 0.0094 | fifth-tier |
37 | * Changsha, Hunan | 0.4837 | 0.0122 | new first-tier | 87 | * Suzhou, Jiangsu | 0.3577 | 0.0183 | new first-tier |
38 | Nanchong, Jiangsu | 0.4746 | 0.0130 | fourth-tier | 88 | * Xiangyang, Hubei | 0.3537 | 0.0067 | third-tier |
39 | * Fuyang, Anhui | 0.4727 | 0.0110 | third-tier | 89 | Tongling, Anhui | 0.3503 | 0.0062 | fourth-tier |
40 | * Xiangtan, Hunan | 0.4724 | 0.0152 | third-tier | 90 | * Foshan, Guangdong | 0.3474 | 0.0112 | second-tier |
41 | * Danzhou, Hainan | 0.4697 | 0.0154 | fifth-tier | 91 | Zibo, Shandong | 0.3453 | 0.0082 | third-tier |
42 | Fuzhou, Fujian | 0.4690 | 0.0085 | fourth-tier | 92 | * Ganzhou, Jiangxi | 0.3416 | 0.0101 | third-tier |
43 | Cangzhou, Hebei | 0.4667 | 0.0070 | third-tier | 93 | Baoding, Hebei | 0.3415 | 0.0050 | third-tier |
44 | * Huangshi, Hubei | 0.4641 | 0.0128 | fourth-tier | 94 | Jingmen, Hubei | 0.3397 | 0.0076 | fifth-tier |
45 | Shijiazhuang, Hebei | 0.4575 | 0.0079 | second-tier | 95 | * Yongzhou, Hunan | 0.3359 | 0.0109 | fourth-tier |
46 | * Bengbu, Anhui | 0.4463 | 0.0107 | third-tier | 96 | Shiyan, Hubei | 0.3331 | 0.0045 | fourth-tier |
47 | Ma’anshan, Anhui | 0.4413 | 0.0089 | third-tier | 97 | Zigong, Sichuan | 0.3308 | 0.0082 | fifth-tier |
48 | Yichun, Jiangxi | 0.4409 | 0.0063 | fourth-tier | 98 | Jinan, Shandong | 0.3306 | 0.0036 | second-tier |
49 | Shangrao, Jiangxi | 0.4401 | 0.0058 | third-tier | 99 | Tai’an, Shandong | 0.3278 | 0.0056 | third-tier |
50 | Jingdezhen, Jiangxi | 0.4396 | 0.0045 | fourth-tier | 100 | Tianjin | 0.3242 | 0.0098 | new first-tier |
Index | County | MEAN | Slope | Index | County | MEAN | Slope |
---|---|---|---|---|---|---|---|
1 | Yuzhong District, Chongqing | 0.8055 | 0.0169 | 51 | * Shangjie District, Zhengzhou, Henan | 0.6543 | 0.0117 |
2 | Jiangbei District, Chongqing | 0.7983 | 0.0170 | 52 | * Xinhua District, Pingdingshan, Henan | 0.6541 | 0.0138 |
3 | * Dadukou District, Chongqing | 0.7943 | 0.0179 | 53 | Yanfeng District, Hengyang, Hunan | 0.6532 | 0.0133 |
4 | Nan’an District, Chongqing | 0.7694 | 0.0169 | 54 | * Yuanyang County, Xinxiang, Henan | 0.6528 | 0.019 |
5 | * Wen County, Jiaozuo, Henan | 0.7407 | 0.0108 | 55 | * Jiefang District, Jiaozuo, Henan | 0.6506 | 0.0116 |
6 | * Jiulongpo District, Chongqing | 0.7403 | 0.0180 | 56 | * Shancheng District, Hebi, Henan | 0.6492 | 0.0120 |
7 | * Macun District, Jiaozuo, Henan | 0.7331 | 0.0146 | 57 | * Wuyang County, Luohe, Henan | 0.6488 | 0.0112 |
8 | * Wuzhi County, Jiaozuo, Henan | 0.7327 | 0.0143 | 58 | * Yanjin County, Xinxiang, Henan | 0.6488 | 0.019 |
9 | * Yindu District, Anyang, Henan | 0.7277 | 0.0130 | 59 | Beibei District, Chongqing | 0.6486 | 0.0157 |
10 | * Jindong District, Jinhua, Zhejiang | 0.7269 | 0.0163 | 60 | Baijiantan District, Karamay, Xinjiang | 0.6454 | −0.0052 |
11 | * Beiguan District, Anyang, Henan | 0.7134 | 0.0114 | 61 | * Jia County, Pingdingshan, Henan | 0.6454 | 0.0125 |
12 | * Huojia County, Xinxiang, Henan | 0.7130 | 0.0169 | 62 | * Ye County, Pingdingshan, Henan | 0.6448 | 0.0127 |
13 | * Linzhang County, Handan, Hebei | 0.7081 | 0.0117 | 63 | * Erqi District, Zhengzhou, Henan | 0.6441 | 0.0163 |
14 | Banan District, Chongqing | 0.7065 | 0.0159 | 64 | * Anyang County, Anyang, Henan | 0.6431 | 0.0101 |
15 | * Changshou District, Chongqing | 0.7057 | 0.0175 | 65 | Yancheng District, Luohe, Henan | 0.6417 | 0.0106 |
16 | Hanshan Distinct, Handan, Hebei | 0.7027 | 0.0092 | 66 | Yiwu, Jinhua, Zhejiang | 0.6407 | 0.0147 |
17 | * Wenfeng District, Anyang, Henan | 0.7001 | 0.0122 | 67 | * Furong District, Changsha, Hunan | 0.6403 | 0.0146 |
18 | * Cheng’an County, Handan, Hebei | 0.6983 | 0.0103 | 68 | * Baofeng County, Pingdingshan, Henan | 0.6403 | 0.0126 |
19 | * Shapingba District, Chongqing | 0.6971 | 0.0169 | 69 | * Xingyang, Zhengzhou, Henan | 0.6401 | 0.0129 |
20 | Yubei District, Chongqing | 0.6946 | 0.0163 | 70 | Luhe Hui District, Luoyang, Henan | 0.6400 | 0.0081 |
21 | * Shanyang District, Jiaozuo, Henan | 0.6938 | 0.0124 | 71 | Jili District, Luoyang, Henan | 0.6384 | 0.0073 |
22 | * Weidu District, Xuchang, Henan | 0.6899 | 0.0111 | 72 | * Weidong District, Pingdingshan, Henan | 0.6379 | 0.0124 |
23 | * Muye District, Xinxiang, Henan | 0.6890 | 0.0186 | 73 | Daming County, Handan, Hebei | 0.6356 | 0.0108 |
24 | Weibin District, Xinxiang, Henan | 0.6882 | 0.0185 | 74 | * Yuanhui District, Luohe, Henan | 0.6352 | 0.0105 |
25 | Fengquan District, Xinxiang, Henan | 0.6879 | 0.0173 | 75 | Karamay District, Karamay, Xinjiang | 0.6348 | −0.0052 |
26 | Huiji District, Zhengzhou, Henan | 0.6863 | 0.0178 | 76 | Guantao County, Handan, Hebei | 0.6328 | 0.0086 |
27 | * Xinxiang County, Xinxiang, Henan | 0.6822 | 0.0191 | 77 | Hechuan District, Chongqing | 0.6321 | 0.0155 |
28 | * Zhongyuan District, Zhengzhou, Henan | 0.6797 | 0.0172 | 78 | * Zhengxiang District, Hengyang, Hunan | 0.6315 | 0.0154 |
29 | * Xiangcheng County, Xuchang, Henan | 0.6775 | 0.0123 | 79 | Yangling District, Xianyang, Shaanxi | 0.6313 | 0.0090 |
30 | * Jinshui District, Zhengzhou, Henan | 0.6763 | 0.0185 | 80 | Guang’an District, Guang’an, Sichuan | 0.6289 | 0.0158 |
31 | * Tangyin County, Anyang, Henan | 0.6754 | 0.0121 | 81 | Gaoyi County, Shijiazhuang, Hebei | 0.6285 | 0.0089 |
32 | * Long’an District, Anyang, Henan | 0.6753 | 0.0118 | 82 | * Zhongmu County, Zhengzhou, Henan | 0.6277 | 0.0189 |
33 | * Jiangjin District, Chongqing | 0.6737 | 0.0164 | 83 | Changning, Hengyang, Hunan | 0.6264 | 0.0115 |
34 | Jian’an District, Xuchang, Henan | 0.6731 | 0.0116 | 84 | * Xinzheng, Zhengzhou, Henan | 0.6260 | 0.0153 |
35 | * Weixian County, Handan, Hebei | 0.6713 | 0.0105 | 85 | * Zhong County, Chongqing | 0.6253 | 0.0155 |
36 | Guangping County, Handan, Hebei | 0.6710 | 0.0091 | 86 | Qinyang, Jiaozuo, Henan | 0.6249 | 0.0070 |
37 | Feixiang District, Handan, Hebei | 0.6696 | 0.0089 | 87 | Luancheng District, Shijiazhuang, Hebei | 0.6246 | 0.0088 |
38 | * Hongqi District, Xinxiang, Henan | 0.6693 | 0.0202 | 88 | * Yongchuan District, Chongqing | 0.6246 | 0.0199 |
39 | Lanxi, Jinhua, Zhejiang | 0.6676 | 0.0128 | 89 | Baixiang County, Xingtai, Hebei | 0.6245 | 0.0084 |
40 | Mengzhou, Jiaozuo, Henan | 0.6651 | 0.0084 | 90 | Wusheng County, Guang’an, Sichuan | 0.6229 | 0.0142 |
41 | * Guancheng District, Zhengzhou, Henan | 0.6651 | 0.0174 | 91 | Zhuhui District, Hengyang, Hunan | 0.6226 | 0.0146 |
42 | * Jizhou District, Ji’an, Jiangxi | 0.6618 | 0.0143 | 92 | Quzhou County, Handan, Hebei | 0.6216 | 0.0084 |
43 | * Xun County, Hebi, Henan | 0.6614 | 0.0154 | 93 | * Yuhua District, Changsha, Hunan | 0.6204 | 0.0144 |
44 | * Bishan District, Chongqing | 0.6602 | 0.0183 | 94 | * Yongkang, Jinhua, Zhejiang | 0.6202 | 0.0146 |
45 | * Neihuang County, Anyang, Henan | 0.6594 | 0.0117 | 95 | Qiaoxi District, Shijiazhuang, Hebei | 0.6200 | 0.0102 |
46 | * Zhanhe District, Pingdingshan, Henan | 0.6591 | 0.0141 | 96 | Hengnan County, Hengyang, Hunan | 0.6199 | 0.0131 |
47 | * Shanshan County, Turpan, Xinjiang | 0.6577 | 0.0121 | 97 | Congtai District, Handan, Hebei | 0.6193 | 0.0081 |
48 | * Dianjiang County, Chongqing | 0.6563 | 0.0174 | 98 | * Shilong District, Pingdingshan, Henan | 0.6189 | 0.0121 |
49 | Changge, Xuchang, Henan | 0.6560 | 0.0134 | 99 | * Shifeng District, Zhuzhou, Hunan | 0.6154 | 0.0143 |
50 | * Linying County, Luohe, Henan | 0.6550 | 0.0108 | 100 | * Binjiang District, Hangzhou, Zhejiang | 0.6153 | 0.0169 |
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Suarez-Gutierrez, L.; Müller, W.A.; Li, C.; Marotzke, J. Hotspots of extreme heat under global warming. Clim. Dyn. 2020, 55, 429–447. [Google Scholar] [CrossRef]
- Borden, K.A.; Cutter, S.L. Spatial patterns of natural hazards mortality in the United States. Int. J. Public Health 2008, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Pengelly, L.D.; Campbell, M.E.; Cheng, C.S.; Fu, C.; Gingrich, S.E.; Macfarlane, R. Anatomy of Heat Waves and Mortality in Toronto: Lessons for Public Health Protection. Can. J. Public Health. 2007, 98, 364–368. [Google Scholar] [CrossRef]
- Armstrong, B.; Sera, F.; Vicedo-Cabrera, A.M.; Abrutzky, R.; Åström, D.O.; Bell, M.L.; Chen, B.Y.; de Sousa Zanotti Stagliorio Coelho, M.; Correa, P.M.; Dang, T.N.; et al. The Role of Humidity in Associations of High Temperature with Mortality: A Multicountry, Multicity Study. Environ. Health Perspect. 2019, 127, 097007. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Gu, S.H.; Huang, C.R.; Bai, L.; Chu, C.; Liu, Q.Y. Heat-related illness in China, summer of 2013. Int. J. Biometeorol. 2016, 60, 131–137. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A. Review of heat wave studies and related urban policies in South Asia. Urban Clim. 2021, 36, 100777. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Clim. Dyn. 2018, 51, 2707–2723. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A. Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995–2020). Sustain. Cities Soc. 2021, 76, 103487. [Google Scholar] [CrossRef]
- Chatterjee, P. No cause identified for death of children in Bihar, India. Lancet 2019, 393, 2578. [Google Scholar] [CrossRef]
- World Weather Attribution. Western North American Extreme Heat Virtually Impossible without Human-Caused Climate Change. 2021. Available online: https://www.worldweatherattribution.org/western-north-american-extreme-heat-virtually-impossible-without-human-caused-climate-change/ (accessed on 20 September 2022).
- Lin, H.; Mo, R.P.; Vitart, F. The 2021 Western North American Heatwave and Its Subseasonal Predictions. Geophys. Res. Lett. 2022, 49, e2021GL097036. [Google Scholar] [CrossRef]
- Silberner, J. Heat wave causes hundreds of deaths and hospitalisations in Pacific north west. BMJ 2021, 374, n1696. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Pogačar, T.; Žnidaršič, Z.; Kajfež Bogataj, L.; Flouris, A.D.; Poulianiti, K.; Črepinšek, Z. Heat Waves Occurrence and Outdoor Workers’ Self-assessment of Heat Stress in Slovenia and Greece. Int. J. Environ. Res. Public Health 2019, 16, 597. [Google Scholar] [CrossRef] [Green Version]
- Chung, U.; Gbegbelegbe, S.; Shiferaw, B.; Robertson, R.; Yun, J.L.; Tesfaye, K.; Hoogenboom, G.; Sonder, K. Modeling the effect of a heat wave on maize production in the USA and its implications on food security in the developing world. Weather. Clim. Extremes 2014, 5, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Standardization Administration of China. Grade of the Heat Wave. 2012. Available online: http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=DA6A2DF5B2E32753961AB5C5433DF527 (accessed on 9 September 2022).
- KNMI. Heat Wave Standard—The Netherlands. 2020. Available online: https://www.knmi.nl/kennis-en-datacentrum/uitleg/hittegolf (accessed on 10 September 2022).
- Met Office. Heat-Health Watch. 2017. Available online: https://www.metoffice.gov.uk/public/weather/heat-health/?tab=heatHealth&season=normal (accessed on 10 September 2022).
- SMHI. Heat Wave Standard—Sweden. 2020. Available online: http://www.smhi.se/kunskapsbanken/klimat/varmebolja-1.22372 (accessed on 9 September 2022).
- Liu, Y.H.; Quan, W.J. Research on high temperature indices of Beijing city and its spatiotemporal pattern based on satellite data. Clim. Environ. Res. 2014, 19, 332–342. [Google Scholar]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- China Meteorological Administration. Foreign High Temperature Standards. 2013. Available online: http://www.cma.gov.cn/2011xzt/20120816/2012060201/201208160101/201305/t20130531_215191.html (accessed on 18 November 2022).
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather. Clim. Extremes 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Steadman, R.G. A Universal Scale of Apparent Temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Masterton, J.M.; Richardson, F.A. Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity; Environment Canada; Atmospheric Environment: Ontario, ON, Canada, 1979. [Google Scholar]
- Yaglou, C.P.; Minaed, D. Control of Heat Casualties at Military Training Centers. A.M.A. Arch. Ind. Health 1957, 16, 302–316. [Google Scholar]
- Dong, J.Q.; Peng, J.; He, X.R.; Corcoran, J.; Qiu, S.J.; Wang, X.Y. Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework. Landsc Urban Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- Emmanuel, R. Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka. Build Environ. 2005, 40, 1591–1601. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.; Tian, H. Research on the Heat Wave Index. Meteor. Mon. 2011, 37, 345–351. [Google Scholar]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.J.; Du, Q.; Wang, Y.W.; Gao, Y.H.; Hu, N.; He, Z.N. Characteristic Analysis of High Temperature Heat Wave and Humidity in Chongqing from 1959 to 2018 Summer. Resour. Environ. Yangtze Basin 2021, 30, 2492–2501. [Google Scholar]
- Ma, Y.; Liang, P.; Grimmond, S. Three-Dimensional Urban Thermal Effect across a Large City Cluster during an Extreme Heat Wave: Observational Analysis. J. Meteorol. Res. 2022, 36, 387–400. [Google Scholar] [CrossRef]
- Liu, J.P.; Ren, Y.Q.; Tao, H.; Liu, T.; Chen, H. The response of heatwave to carbon emission in China. China Environ. Sci. 2021, 42, 415–424. [Google Scholar]
- Bobb, J.F.; Peng, R.D.; Bell, M.L.; Dominici, F. Heat-Related Mortality and Adaptation to Heat in the United States. Environ. Health Perspect. 2014, 122, 811–816. [Google Scholar] [CrossRef]
- Chen, K.; Huang, L.; Zhou, L.; Ma, Z.W.; Bi, J.; Li, T.T. Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing, China. Sci. Rep. 2015, 5, 10816. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Wang, S.G.; Hu, Y.L.; Yue, M.; Zhang, T.T.; Liu, Y.; Tian, J.H.; Shang, K.Z. Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci. Total Environ. 2017, 586, 241–254. [Google Scholar] [CrossRef]
- Yan, M.L.; Xie, Y.; Zhu, H.H.; Ban, J.; Gong, J.C.; Li, T.T. The exceptional heatwaves of 2017 and all-cause mortality: An assessment of nationwide health and economic impacts in China. Sci. Total Environ. 2022, 812, 152371. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- IPCC. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Liu, Q.S.; Liu, G.H.; Huang, C.; Li, H. Risk assessment of heat waves: A review. J. Geo-Inf. Sci. 2019, 21, 1029–1039. [Google Scholar]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [Green Version]
- Raei, E.; Nikoo, M.R.; AghaKouchak, A.; Mazdiyasni, O.; Sadegh, M. GHWR, a multi-method global heatwave and warm-spell record and toolbox. Sci. Data. 2018, 5, 180206. [Google Scholar] [CrossRef] [Green Version]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milošević, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Nat. Hazards (Dordr) 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.T.; Ge, Q.; Hao, Z. Protected changes in risk of heat waves throughout Belt and Road Region in the 21st century. Chin Sci Bull. 2021, 66, 3045–3058. [Google Scholar] [CrossRef]
- Yao, Y.L.; Wang, C.Z. Variatioateau Summer Marine Heatwaves in the South China Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Yin, C.; Yang, F.; Wang, J.; Ye, Y.X. Spatiotemporal distribution and risk assessment of heatwaves based on apparent temperature in the One Belt and One Road Region. Remote Sens. 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Liu, Q.S.; Huang, C.; Li, H. Spatiotemporal Variation Analysis of the Fine-Scale Heat Wave Risk along the Jakarta-Bandung High-Speed Railway in Indonesia. Int. J. Environ. Res. 2021, 18, 12153. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Q.S.; Wu, X.L.; Huang, C.; Li, H. The Risk of Heat Wave along the Jakarta-Bandung High-Speed Railway in Indonesia. Trop. Geogr. 2021, 41, 1–16. (In Chinese) [Google Scholar]
- Ian, L.M. Design With Nature; The Natural History Press: Huntington Beach, CA, USA, 1969. [Google Scholar]
- Wu, X.L.; Liu, Q.S.; Huang, C.; Li, H. Mapping Heat-Health Vulnerability Based on Remote Sensing: A Case Study in Karachi. Remote Sens. 2022, 14, 1590. [Google Scholar] [CrossRef]
- Beijing Climate Centre (BCC) of China Meteorological Administration (CMA). China’s Blue Book on Climate Change (2021), China; Beijing Climate Centre: Beijing, China, 2021. [Google Scholar]
- Ding, T.; Qian, W.H.; Yan, Z.W. Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol. 2010, 30, 1452–1462. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, T.; Zhang, X.B. Substantial Increase in Heat Wave Risks in China in a Future Warmer World. Earths Future 2018, 6, 1528–1538. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.X.; Huo, A.D.; Zhang, D.; Yi, X.; Chen, S.M.; Chen, S.B.; Chen, J. Assessing heat wave risk in Ningxia segment based on remote sensing. Arid. Land Geogr. 2022, 45, 512–521. (In Chinese) [Google Scholar]
- Wang, S. Research on Spatial Distribution Assessment of High Temperature and Heat Wave Risk in the Yangtze River Delta Region. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2021. [Google Scholar]
- Zhan, L.F.; Wang, Y.J.; Sun, H.M.; Zhai, J.Q.; Zhan, M.J. Study on the Change Characteristics of and Population Exposure to Heatwave Events on the North China Plain. Adv. Meteorol. 2019, 2019, e7069195. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.X.; Dong, X.; Xiong, K.; Feng, C.; Qi, Q.L.; Darko, A.; Sharifi, A.; Pathak, M. Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing, China. Sustain. Cities Soc. 2022, 79, 103685. [Google Scholar] [CrossRef]
- Wang, A.Q.; Tao, H.; Wu, Q.Y.; Huang, J.L.; Zhang, B.L.; Wang, Y.Y. Increasing urban and rural population exposures to warm-season concurrent hot days and nights on the North China Plain. Int. J. Climatol. 2022, 42, 7938–7950. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Z.; Shi, Y.; Tian, Y.M.; Zhai, P.M. Detectable Increases in Sequential Flood-Heatwave Events Across China During 1961–2018. Geophys. Res. Lett. 2021, 48, e2021GL092549. [Google Scholar] [CrossRef]
- The Rising LAB. Index Model of Cities’ Business Attractiveness in China 2021. 2021. Available online: https://www.datayicai.com/report/detail/267 (accessed on 18 November 2022).
- Tanır Kayıkçı, E.; Zengin Kazancı, S. Comparison of regression-based and combined versions of Inverse Distance Weighted methods for spatial interpolation of daily mean temperature data. Arab. J. Geosci. 2016, 9, 690. [Google Scholar] [CrossRef]
- Qian, Y.L.; Lv, H.Q.; Zhang, Y.H. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software. J. Meteorol. Environ. 2010, 26, 7–15. [Google Scholar]
- Shu, S.J.; Liu, C.S.; Shi, R.H.; Gao, W. Research on spatial interpolation of meteorological elements in Anhui Province based on ANUSPLIN. Proc. SPIE 2011, 8156, 183–194. [Google Scholar]
- Hutchinson, M.F.; Gessler, P.E. Splines—More than just a smooth interpolator. Geoderma 1994, 62, 45–67. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.X.; Feng, Z.Z.; Yang, S.Q. Analysing the spatiotemporal characteristics of climate comfort in China based on 2005–2018 MODIS data. Theor. Appl. Climatol. 2021, 143, 1235–1249. [Google Scholar] [CrossRef]
- Price, D.T.; McKenney, D.W.; Nalder, I.A.; Hutchinson, M.F.; Kesteven, J.L. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric For Meteorol. 2000, 101, 81–94. [Google Scholar] [CrossRef]
- Jia, Y.; Cui, P. Contrastive analysis of temperature interpolation at different time scales in the Alpine Region by Anusplin. Plateau Meteor. 2018, 37, 757–766. (In Chinese) [Google Scholar]
- Yi, G.H.; Zhang, T.B.; He, Y.X.; Ye, H.; Li, J.J.; Bie, X.J.; Liu, D. Applicability analysis of four spatial interpolation methods for air temperature. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2020, 47, 115–128. [Google Scholar]
- Hutchinson, M.F.; Xu, T.B. ANUSPLIN Version 4.4 User Guide; The Australian National University: Canberra, Australia, 2013. [Google Scholar]
- Zhao, M.Y.; Yu, J.; Hu, Y.Y. Spatial interpolation of temperature in Chongqing area based on local thin-disk smooth spline function. J. Shaanxi Meteor. 2021, 1, 50–55. (In Chinese) [Google Scholar]
- Tom, E.C.; Bosen, J.R. The discomfort index. Weatherwise 1959, 12, 59–60. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Lee, D.; Brenner, T. Perceived temperature in the course of climate change: An analysis of global heat index from 1979 to 2013. Earth Syst. Sci. Data 2015, 7, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Buzan, J.R.; Oleson, K.; Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 2015, 8, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Requena, A.I.; Burn, D.H.; Coulibaly, P. Estimates of gridded relative changes in 24-h extreme rainfall intensities based on pooled frequency analysis. J. Hydrol. 2019, 577, 123940. [Google Scholar] [CrossRef]
- Wikipedia. High Temperature in China in 2013. 2021. Available online: https://zh.wikipedia.org/w/index.php?ti\B8%AD%E5%9B%BD%E9%AB%98%E6%B8%A9&oldid=63893117 (accessed on 20 September 2022).
- China Meteorological Administration. Interpretation: Who is “Smoldering” the Earth When Heatwaves Are Raging? 2018. Available online: http://www.cma.gov.cn/2011xwzx/spxw/201808/t20180804_475250.html (accessed on 15 August 2022).
- Bibi, S.; Wang, L.; Li, X.P.; Zhou, J.; Chen, D.L.; Yao, T.D. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.X.; Bräuning, A.; Thomas, A.; Li, J.B.; Cao, K.F. Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int. J. Climatol. 2011, 31, 2078–2090. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.M.; Qin, D.H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Chang. Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yang, Z.M.; Wu, L.Y.; Yang, K. Summer high temperature extremes over Northeastern China predicted by spring soil moisture. Sci. Rep. 2019, 9, 12577. [Google Scholar] [CrossRef] [Green Version]
- He, B.J.; Wang, J.S.; Zhu, J.; Qi, J.D. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sust. Energ. Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Zong, L.; Liu, S.H.; Yang, Y.J.; Ren, G.Y.; Yu, M.; Zhang, Y.H.; Li, Y.B. Synergistic Influence of Local Climate Zones and Wind Speeds on the Urban Heat Island and Heat Waves in the Megacity of Beijing, China. Front. Earth Sci. 2021, 9, 673786. [Google Scholar] [CrossRef]
- National Climate Center, C.M.A. The TOP 10 Furnace Cities in China—Hottest Cities in Summer. 2017. Available online: https://www.chinahighlights.com/travelguide/article-furnace-cities.htm (accessed on 9 September 2022).
- Liu, X.H.; Huang, Y. The characteristics of climate change and atmospheric circulation characteristics of high temperature days in Jinhua. Atmos. Sci. Res. Appl. 2015, 1, 92–99. [Google Scholar]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.J.; Huang, J.B.; Luo, Y.; Zhao, Z.C.; Xu, Y. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol. 2017, 128, 507–522. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; You, Q.L.; Mao, G.X.; Chen, C.C.; Ye, Z.W. Short-term concurrent drought and heatwave frequency with 1.5 and 2.0 °C global warming in humid subtropical basins: A case study in the Gan River Basin, China. Clim. Dyn. 2019, 52, 4621–4641. [Google Scholar] [CrossRef]
- An, N.; Zuo, Z.Y. Changing structures of summertime heatwaves over China during 1961–2017. Sci. China Earth Sci. 2021, 64, 1242–1253. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Dessy, J.B.; Vecchi, G.A.; Oppenheimer, M. Temporally Compound Heat Wave Events and Global Warming: An Emerging Hazard. Earths Future 2019, 7, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected Heat Stress Under 1.5 °C and 2 °C Global Warming Scenarios Creates Unprecedented Discomfort for Humans in West Africa. Earths Future 2018, 6, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards (Dordr) 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Xu, Z.W.; Tong, S.L. Decompose the association between heatwave and mortality: Which type of heatwave is more detrimental? Environ. Res. 2017, 156, 770–774. [Google Scholar] [CrossRef]
- Calleja-Agius, J.; England, K.; Calleja, N. The effect of global warming on mortality. Early Hum. Dev. 2021, 155, 105222. [Google Scholar] [CrossRef]
- Liu, C.Q.; Yavar, Z.; Sun, Q.H. Cardiovascular response to thermoregulatory challenges. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1793–H1812. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Xu, Z.W.; Bambrick, H.; Su, H.; Tong, S.L.; Hu, W.B. Heatwave and elderly mortality: An evaluation of death burden and health costs considering short-term mortality displacement. Environ. Int. 2018, 115, 334–342. [Google Scholar] [CrossRef]
- Huang, C.R.; Barnett, A.G.; Xu, Z.W.; Chu, C.; Wang, X.M.; Turner, L.R.; Tong, S.L. Managing the Health Effects of Temperature in Response to Climate Change: Challenges Ahead. Environ. Health Perspect. 2013, 121, 415–419. [Google Scholar] [CrossRef] [PubMed]
Date | Variable | Slope | R2 | P | MAE | NMAE | RMSE | NRMSE |
---|---|---|---|---|---|---|---|---|
22 May 1994 | RH | 0.9883 | 0.9585 | 1.2 × 10−47 | 3.6425 | 0 | 4.8385 | 0 |
5 May 2002 | RH | 0.9906 | 0.9393 | 8.9 × 10−43 | 4.4610 | 0.6736 | 5.6748 | 0.4558 |
22 May 2010 | RH | 0.9853 | 0.9390 | 1 × 10−42 | 4.4661 | 0.6777 | 5.8611 | 0.5574 |
22 May 2016 | RH | 0.9855 | 0.9427 | 5.25 × 10−43 | 3.9316 | 0.2379 | 5.3401 | 0.2734 |
May 1997 | RH | 0.9940 | 0.9078 | 4.58 × 10−142 | 4.8122 | 0.9625 | 6.3506 | 0.8241 |
May 1999 | RH | 1.0043 | 0.9064 | 3.53 × 10−141 | 4.6614 | 0.8384 | 6.4561 | 0.8816 |
May 2016 | RH | 0.9981 | 0.9156 | 8.96 × 10−148 | 4.6932 | 0.8646 | 6.5814 | 0.9499 |
1997 | RH | 0.9933 | 0.8652 | 0 | 4.8577 | 1 | 6.6733 | 1 |
1990 | RH | 0.9945 | 0.8645 | 0 | 4.6707 | 0.8461 | 6.4122 | 0.8577 |
17 August 1990 | MT | 1.0033 | 0.9717 | 4.19 × 10−53 | 0.8313 | 0 | 1.0669 | 0 |
10 May 1995 | MT | 1.0051 | 0.9654 | 2.98 × 10−50 | 0.9118 | 0.2746 | 1.3134 | 0.4205 |
31 July 2012 | MT | 1.0081 | 0.9664 | 2.17 × 10−51 | 0.9017 | 0.2399 | 1.1743 | 0.1831 |
27 September 2014 | MT | 0.9985 | 0.9659 | 3.55 × 10−51 | 1.0061 | 0.5960 | 1.3341 | 0.4559 |
September 1992 | MT | 0.9996 | 0.9532 | 6.97 × 10−182 | 1.0220 | 0.6503 | 1.4879 | 0.7182 |
September 2003 | MT | 1.0012 | 0.9544 | 4.55 × 10−184 | 1.0433 | 0.7229 | 1.5320 | 0.7934 |
September 2019 | MT | 1.0023 | 0.9486 | 1.24 × 10−177 | 0.9876 | 0.5330 | 1.4638 | 0.6772 |
1990 | MT | 0.9988 | 0.9409 | 0 | 1.1018 | 0.9227 | 1.6530 | 1 |
2003 | MT | 0.9994 | 0.9433 | 0 | 1.1245 | 1 | 1.6410 | 0.9796 |
Index | City | Index | City | Index | City | Index | City |
---|---|---|---|---|---|---|---|
1 | Jinhua, Zhejiang | 14 | Chongqing | 27 | Zhongshan, Guangdong | 40 | City of Yantai |
2 | * Zhengzhou, Henan | 15 | Hefei, Anhui | 28 | * Nanning, Guangxi | 41 | Guiyang, Guizhou |
3 | Nanchang, Jiangxi | 16 | * Xuzhou, Jiangsu | 29 | * Nantong, Jiangsu | 42 | * Xiamen, Fujian |
4 | * Wuhan, Hubei | 17 | * Suzhou, Jiangsu | 30 | Taizhou, Zhejiang | 43 | Taiyuan, Shanxi |
5 | Shaoxing, Zhejiang | 18 | * Foshan, Guangdong | 31 | Beijing | 44 | Harbin, Heilongjiang |
6 | * Changsha, Hunan | 19 | Jinan, Shandong | 32 | * Huizhou, Guangdong | 45 | Dalian, Liaoning |
7 | Shijiazhuang, Hebei | 20 | Tianjin | 33 | Chengdu, Sichuan | 46 | Lanzhou, Gansu |
8 | * Nanjing, Jiangsu | 21 | * Yangzhou, Jiangsu | 34 | Fuzhou, Fujian | 47 | Changchun, Jilin |
9 | * Wuxi, Jiangsu | 22 | Dongguan, Guangdong | 35 | Wenzhou, Zhejiang | 48 | * Kunming, Yunnan |
10 | * Changzhou, Jiangsu | 23 | * Shanghai | 36 | Shenzhen, Guangdong | 49 | * Quanzhou, Fujian |
11 | * Jiaxing, Zhejiang | 24 | * Guangzhou, Guangdong | 37 | Shenyang, Liaoning | ||
12 | Hangzhou, Zhejiang | 25 | Ningbo, Zhejiang | 38 | Zhuhai, Guangdong | ||
13 | Haikou, Hainan | 26 | Xi’an, Shaanxi | 39 | Qingdao, Shandong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Liu, Q.; Li, H.; Huang, C. Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019. Int. J. Environ. Res. Public Health 2023, 20, 1532. https://doi.org/10.3390/ijerph20021532
Wu W, Liu Q, Li H, Huang C. Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019. International Journal of Environmental Research and Public Health. 2023; 20(2):1532. https://doi.org/10.3390/ijerph20021532
Chicago/Turabian StyleWu, Wei, Qingsheng Liu, He Li, and Chong Huang. 2023. "Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019" International Journal of Environmental Research and Public Health 20, no. 2: 1532. https://doi.org/10.3390/ijerph20021532
APA StyleWu, W., Liu, Q., Li, H., & Huang, C. (2023). Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019. International Journal of Environmental Research and Public Health, 20(2), 1532. https://doi.org/10.3390/ijerph20021532