Impact of Long Working Hours on Mental Health: Evidence from China
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Variable Settings
2.3. Analytic Strategy
3. Results
3.1. Descriptive Analysis
3.2. Regression Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Availability of data and materials
References
- Dattani, S.; Ritchie, H.; Roser, M. Mental health. Published Online at OurWorldInData. org. Available online: https://ourworldindata.org/mental-health (accessed on 3 February 2022).
- Lee, S.; McCann, D.; Messenger, J.C. Working Time around the World. Trend in Working Hours, Laws and Policies in a Global Comparative Perspective; International Labor Office: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization (WHO). Available online: https://www.who.int/china/health-topics/mental-health (accessed on 3 February 2022).
- Mclsaac, M.A.; Reaume, M.; Phillips, S.P.; Michaelson, V.; Steeves, V.; Davison, C.M.; Vafaei, A.; King, N.; Pickett, W. A novel application of a data mining technique to study intersections in the social determinants of mental health among young Canadians. SSM Popul. Health 2021, 16, 100946. [Google Scholar] [CrossRef] [PubMed]
- Kopasker, D.; Montagna, C.; Bender, K.A. Economic insecurity: A socioeconomic determinant of mental health. SSM Popul. Health 2018, 6, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Sparks, K.; Cooper, C.; Fried, Y.; Shirom, A. The effects of hours of work on health: A meta-analytic review. J. Occup. Organ. Psychol. 1997, 70, 391–408. [Google Scholar] [CrossRef]
- Bannai, A.; Tamakoshi, A. The association between long working hours and health: A systematic review of epidemiological evidence. Scand. J. Work Environ. Health 2014, 40, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Piao, X.; Oshio, T. Impact of social participation on health among middle-aged and elderly adults: Evidence from longitudinal survey data in China. BMC Public Health 2020, 20, 502. [Google Scholar] [CrossRef] [Green Version]
- Verduin, F.; Smid, G.E.; Wind, T.R.; Scholte, W.F. In search of links between social capital, mental health and sociotherapy: A longitudinal study in Rwanda. Soc. Sci. Med. 2014, 121, 1–9. [Google Scholar] [CrossRef]
- Symoens, S.; Colman, E.; Bracke, P. Divorce, conflict, and mental health: How the quality of intimate relationships is linked to post-divorce well-being. J. Appl. Soc. Psychol. 2014, 44, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Jace, C.E.; Makridis, C.A. Does marriage protect mental health? Evidence from the COVID-19 pandemic. Soc. Sci. Q. 2021, 102, 2499–2515. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, F. Motherhood health penalty: Impact of fertility on physical and mental health of Chinese women of childbearing age. Front. Public Health 2022, 10, 787844. [Google Scholar] [CrossRef]
- Kim, Y.M.; Cho, S. Socioeconomic status, work-life conflict, and mental health. Am. J. Ind. Med. 2020, 63, 703–712. [Google Scholar] [CrossRef]
- Pitt, R.N.; Alp, Y.T.; Shell, I.A. The mental health consequences of work-life and life-work conflicts for STEM postdoctoral trainees. Front. Psychol. 2021, 12, 750490. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Chan, A.H.S.; Ngan, S.C. The effect of long working hours and overtime on occupational health: A meta-analysis of evidence from 1998 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Kuroda, S.; Owan, H. Mental health effect of long work hours, night and weekend work, and short rest periods. Soc. Sci. Med. 2020, 246, 11274. [Google Scholar] [CrossRef]
- Grosch, J.W.; Caruso, C.C.; Roger, R.N.; Rosa, R.R.; Sauter, S.L. Long hours of work in the US: Associations with demographic and organizational characteristics, psychosocial working conditions, and health. Am. J. Ind. Med. 2006, 49, 943–952. [Google Scholar] [CrossRef]
- Afonso, P.; Fonseca, M.; Pires, J.F. Impact of working hours on sleep and mental health. Occup. Med. 2017, 67, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarumi, K.; Hagihara, A.; Morimoto, K. Moderating effects of psychological job strain on the relationship between working hours and health: An examination of white-collar workers employed by a Japanese manufacturing company. J. Occup. Health 2004, 46, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, M.; Ferrie, J.E.; Singh-Manoux, A.; Shipley, M.J.; Stansfeld, S.A.; Marmot, M.G.; Ahola, K.; Vahtera, J.; Kivimäki, M. Long working hours and symptoms of anxiety and depression: A 5-year follow-up of the Whitehall II study. Psychol. Med. 2011, 41, 2485–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtz, A.; Lombardi, D.A.; Willetts, J.L.; Folkard, S.; Christiani, D.C. Gender differences in the effect of weekly working hours on occupational injury risk in the United States working population. Scand. J. Work Environ. Health 2012, 38, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Tayama, J.; Li, J.; Munakata, M. Working long hours is associated with higher prevalence of diabetes in urban male Chinese workers: The rosai karoshi study. Stress Health 2014, 32, 84–87. [Google Scholar] [CrossRef]
- Park, S.; Kook, H.; Seok, H.; Lee, J.H.; Lim, D.; Cho, D.H.; Oh, S.K. The negative impact of long working hours on mental health in young Korean workers. PLoS ONE 2020, 15(8), e0236931. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, J.; Liu, K.; Baggs, J.G.; Liu, J.; Liu, X.; You, L. The associations of occupational hazards and injuries with work environments and overtime for nurses in China. Res. Nurs. Health 2018, 41, 21882. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Y.J.; Chen, B.R.; Shi, H.J.; Wang, H.; Khurwolah, M.R.; Xie, Z.Y.; Yang, Y.; Wang, L.S. Study on association of working hours and occupational physical activity with the occurrence of coronary heart disease in a Chinese population. PLoS ONE 2017, 12, e185598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karasek, R.A. Job demands, Job decision Latitude, and mental strain. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Siegrist, J. Adverse health effects of high-effect/low-reward and conditions. J. Occup. Health Psychol. 1996, 1, 27–41. [Google Scholar] [CrossRef]
- Gronau, R. Leisure, home production, and work: The theory of the allocation of time revisited. J. Political Econ. 1977, 85, 1099–1123. [Google Scholar] [CrossRef]
- Becker, G.S. Human capital, effort, and the sexual division of labor. J. Labor Econ. 1985, 3, 33–58. [Google Scholar] [CrossRef]
- Hill, E.J.; Erickson, J.J.; Holmes, E.K.; Ferris, M. Workplace Flexibility, Work Hours, and Work-Life Conflict: Finding an Extra Day or Two. J. Fam. Psychol. 2010, 24, 349–358. [Google Scholar] [CrossRef]
- Henly, J.R.; Lambert, S.J. Unpredictable work timing in retail jobs: Implications for employee work–life conflict. Ind. Labor Relat. Rev. 2014, 67, 986–1016. [Google Scholar] [CrossRef]
- Wynn, A.T.; Rao, A.H. Failures of flexibility: How perceived control motivates the individualization of work–life conflict. Ind. Labor Relat. Rev. 2020, 73, 61–90. [Google Scholar] [CrossRef]
- Xiao, Y.; Cooke, F.L. Work–life balance in China? Social policy, employer strategy and individual coping mechanisms. Asia Pac. J. Hum. Resour. 2012, 50, 6–22. [Google Scholar] [CrossRef]
- Mishra, V.; Smyth, R. Working hours in Chinese enterprises: Evidence from matched employer–employee data. Ind. Relat. J. 2013, 44, 57–77. [Google Scholar] [CrossRef]
- Ma, X. Internet use and income gaps between urban and rural residents in China. J. Asian Pac. Econ. 2022, 1–21. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Y.; Riad, A. Gender differences in depressive traits among rural and urban Chinese adolescent students: Secondary data analysis of nationwide survey CFPS. Int. J. Environ. Res. Public Health 2021, 18, 9124. [Google Scholar] [CrossRef]
- Tang, S.; Yao, L.; Ye, C.; Li, Z.; Yang, J.; Tang, K.; Qian, D. Can health service equity alleviate the health expenditure poverty of Chinese patients? Evidence from the CFPS and China health statistics yearbook. BMC Health Serv. Res. 2021, 21, 718. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Oshio, T. The impact of social insurance on health among middle-aged and older adults in rural China: A longitudinal study using a three-wave nationwide survey. BMC Public Health 2020, 20, 1842. [Google Scholar] [CrossRef] [PubMed]
- Contoyannis, P.; Jones, A.M.; Rice, N. The dynamics of health in the British household panel survey. J. Appl. Econ. 2004, 19, 473–503. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econ. 2005, 20, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J. Econometric Analysis of cross Section and Panel Data; The MIT Press: Cambridge, UK, 2020. [Google Scholar]
- Rothman, K.J.; Poole, C. Science and policy making. Am. J. Public Health 1985, 75, 340–341. [Google Scholar] [CrossRef] [Green Version]
- Green, W.H. Econometric Analysis; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ma, X. Female Employment and Gender Gap in China; Springer Nature: Singapore, 2021. [Google Scholar]
- Connelly, R.; Dong, X.; Jacobsen, J.; Zhao, Y. The care economy in post-reform China: Feminist research on unpaid and paid work and well-being. Fem. Econ. 2018, 24, 1–30. [Google Scholar] [CrossRef]
- Murakami, T.; Wada, K.; Gilmour, S. Mortality risks among blue- and white-collar workers: A time series study among Japanese men aged 25-64 years from 1980 to 2015. J. Occup. Health 2021, 63, e12215. [Google Scholar]
- Toppinen-Tanner, S.; Kalimo, R.; Mutanen, P. The process of burnout in white-collar and blue-collar jobs: Eight-year prospective study of exhaustion. J. Organ. Behav. 2002, 23, 555–570. [Google Scholar] [CrossRef]
- International Labor Organization (ILO). Measuring Informality: A Statistical Manual on the Informal Sector and Informal Employment; International Labor Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Hunt, M.; Auriemma, J.; Cashaw, A.C.A. Self-report bias and underreporting of depression on the BDI-II. J. Pers. Assess. 2003, 80, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.G.; Olds, T.; Plotnikoff, R.; Vandelanotte, C.; Edney, S.; Ryan, J.; Maher, C. Validity and bias on the online active Australia survey: Activity level and participant factors associated with self-report bias. BMC Med. Res. Methodol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, I.; Ma, X.; Mizobata, S. Ownership structure and firm performance in emerging markets: A comparative meta-analysis of East European EU member states, Russia, and China. Econ. Syst. 2022, 46, 100945. [Google Scholar] [CrossRef]
- Ma, X.; Iwasaki, I. Does party membership bring a wage premium in China? A meta-analysis. J. Chin. Econ. Bus. Stud. 2021, 19, 55–94. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Yue, L.; Xu, J.; Liu, X.; Li, W.; Cheng, H.; He, G. Impact of perception reduction of employment opportunities on employment pressure of college students under COVID-19 epidemic–joint moderating effects of employment policy support and job-searching self-efficacy. Front. Psychol. 2022, 13, 986070. [Google Scholar] [CrossRef]
- Simionescu, M.; Raisiene, A.G. A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states? Technol. Forecast. Soc. Change 2021, 173, 121170. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Luo, H.; He, L.; Bai, Y.; Zheng, F.; Zhang, L.; Ma, J.; Niu, Z.; Qin, Y.; et al. Depressive symptoms, sleep quality and diet during the 2019 novel coronavirus epidemic in China: A survey of medical students. Front. Public Health 2020, 8, 588578. [Google Scholar] [CrossRef]
- Vujčić, I.; Safiye, T.; Milikić, B.; Popović, E.; Dubljanin, D.; Dubljanin, E.; Dubljanin, J.; Cabarkapa, M. Coronavirus disease 2019 (COVID-19) epidemic and mental health status in the general adult population of Serbia: A cross-sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 1957. [Google Scholar] [CrossRef]
(a) Total | (b) WH ≥ 50 | (c) WH < 50 | Difference | ||
---|---|---|---|---|---|
(b)–(c) | t-test | ||||
WH (hours) | 46.15 | 64.95 | 29.83 | 35.12 | p < 0.000 |
LWH | 46% | ||||
MI | 32% | 33% | 31% | 2% | p < 0.000 |
Demographic factors | |||||
Education (years) | 8.13 | 8.01 | 8.24 | −0.23 | p < 0.000 |
Age (years) | 42.04 | 41.17 | 42.79 | −1.62 | p < 0.000 |
Women | 49% | 42% | 55% | −13% | p < 0.000 |
Urban | 45% | 45% | 45% | 0% | p < 0.135 |
Ethnicity (Han) | 96% | 95% | 96% | −1% | p < 0.051 |
Party membership | 5% | 4% | 6% | −2% | p < 0.000 |
Family factors | |||||
Married | 90% | 90% | 90% | 0% | p < 0.052 |
Number of family members | 4.44 | 4.47 | 4.42 | 0.05 | p < 0.000 |
Large company size | 9% | 8% | 9% | −1% | p < 0.006 |
Occupation | |||||
Manager and technician | 7% | 5% | 9% | −4% | p < 0.000 |
Service | 21% | 22% | 19% | 3% | p < 0.000 |
Operation worker | 26% | 35% | 19% | 16% | p < 0.000 |
Others | 46% | 38% | 52% | −14% | p < 0.000 |
Industry sector | |||||
Manufactural | 17% | 20% | 14% | 6% | p < 0.000 |
Social insurance | |||||
Pension | 61% | 60% | 62% | −2% | p < 0.002 |
Medical insurance | 92% | 92% | 93% | −1% | p < 0.028 |
Regions | |||||
West | 31% | 33% | 30% | 3% | p < 0.000 |
Central | 29% | 28% | 30% | −2% | p < 0.000 |
East | 40% | 39% | 40% | −1% | p < 0.061 |
N | 21,093 | 9805 | 11,288 |
(1) Logit | (2) LVt-1_Logit | (2) LVt-2_Logit | |||||||
---|---|---|---|---|---|---|---|---|---|
OR. | 95% CI | OR. | 95% CI | OR. | 95% CI | ||||
MIt-1 | 2.84 | ** | (2.54,3.17) | 2.67 | ** | (2.38,2.98) | 2.88 | ** | (2.51,3.29) |
LWH(WH ≥ 50) | 1.22 | ** | (1.11,1.33) | 1.12 | * | (1.01,1.24) | 1.12 | * | (1.01,1.24) |
Covariates | Yes | Yes | Yes | ||||||
N | 11010 | 11010 | 7060 | ||||||
Log likelihood | −5994.556 | −4552.136 | −4403.115 | ||||||
Pseudo R2 | 0.103 | 0.117 | 0.055 |
(1) Logit | (2) LVt_1_Logit | (2) LVt_2_Logit | |||||||
---|---|---|---|---|---|---|---|---|---|
OR. | 95% CI | OR. | 95% CI | OR. | 95% CI | ||||
(1) Change the definition of LWH (WH ≥ 60) | |||||||||
MIt-1 | 2.82 | ** | (2.53,3.16) | 2.67 | ** | (2.39,2.99) | 2.88 | ** | (2.51,3.29) |
LWH(WH ≥ 60) | 1.23 | ** | (1.12,1.36) | 1.11 | † | (0.98,1.25) | 1.16 | * | (1.03,1.30) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 | ||||||
(2) Change to use a set of dummy variables of LWH | |||||||||
MIt-1 | 2.82 | ** | (2.52,3.16) | 2.66 | ** | (2.38,2.97) | 2.88 | ** | (2.52,3.30) |
WH (Ref. WH<35 h) | 1 | 1 | 1 | ||||||
WH35-39 | 0.88 | † | (0.76,1.01) | 0.79 | ** | (0.66,0.95) | 1.02 | (0.86,1.21) | |
WH40-49 | 0.97 | (0.85,1.11) | 0.90 | (0.76,1.06) | 1.09 | (0.93,1.27) | |||
WH50-59 | 1.08 | (0.95,1.23) | 0.99 | (0.85,1.15) | 1.11 | (0.95,1.28) | |||
WH ≥ 60 | 1.22 | ** | (1.08,1.37) | 1.03 | † | (0.87,1.17) | 1.23 | ** | (1.07,1.42) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 | ||||||
(3) Change the definition of MI (TMH ≥ 12) | |||||||||
MIt-1 | 2.65 | ** | (2.29,3.08) | 2.62 | ** | (2.32,2.96) | 2.98 | ** | (2.43,3.65) |
LWH(WH ≥ 50) | 1.20 | ** | (1.10,1.31) | 1.12 | * | (1.02,1.26) | 1.13 | * | (1.02,1.25) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 | ||||||
(4) Change the definition of MI (TMH ≥ 16) | |||||||||
MIt-1 | 1.77 | ** | (1.42,2.20) | 2.14 | ** | (1.82,2.52) | 1.73 | ** | (1.42,2.41) |
LWH(WH ≥ 50) | 1.21 | ** | (1.11,1.32) | 1.14 | * | (0.98,1.25) | 1.13 | * | (1.02,1.25) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 | ||||||
(5) Change the definition of MI (TMH ≥ 20) | |||||||||
MIt-1 | 1.37 | ** | (1.07,1.77) | 1.75 | ** | (1.42,2.16) | 1.45 | * | (1.01,2.07) |
LWH (WH ≥ 50) | 1.21 | ** | (1.11,1.32) | 1.15 | * | (1.03,1.28) | 1.13 | * | (1.02,1.25) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 | ||||||
(6) Using the samples excluding farmers | |||||||||
MIt-1 | 2.91 | ** | (2.50,3.38) | 2.76 | ** | (2.36,3.23) | 3.01 | ** | (2.48,3.66) |
LWH(WH ≥ 50) | 1.39 | ** | (1.20,1.61) | 1.17 | † | (0.98,1.39) | 1.13 | † | (0.96,1.34) |
Covariates | Yes | Yes | Yes | ||||||
N | 6681 | 6681 | 3996 | ||||||
(7) Using the logit regression model | |||||||||
MIt-1 | 2.74 | ** | (2.29,3.28) | 2.62 | ** | (2.18,3.13) | 3.04 | ** | (2.42,3.82) |
LWH(WH ≥ 50) | 0.20 | ** | (0.11,0.29) | 0.12 | * | (0.01,0.22) | 0.11 | * | (0.01,0.22) |
Covariates | Yes | Yes | Yes | ||||||
N | 11,010 | 11,010 | 7060 |
(1) Men | (2) Women | |||||
---|---|---|---|---|---|---|
OR. | 95% CI | OR. | 95% CI | |||
MIt-1 | 2.84 | ** | (2.41,3.35) | 2.53 | ** | (2.17,2.95) |
LWH(WH ≥ 50) | 1.11 | (0.95,1.30) | 1.13 | † | (0.98,1.31) | |
Covariates | Yes | Yes | ||||
N | 5756 | 5254 | ||||
Log likelihood | −2148.93 | −2394.02 | ||||
Pseudo R2 | 0.11 | 0.10 |
(1) White Collar | (2) Pink Collar | (3) Blue Collar | |||||||
---|---|---|---|---|---|---|---|---|---|
OR. | 95% CI | OR. | 95% CI | OR. | 95% CI | ||||
MIt-1 | 2.66 | ** | (1.66,4.26) | 2.34 | ** | (1.80,3.04) | 3.22 | ** | (2.53,4.10) |
LWH(WH ≥ 50) | 1.65 | * | (1.05,2.59) | 1.04 | (0.82,1.33) | 1.09 | (0.87,1.36) | ||
Covariates | Yes | Yes | Yes | ||||||
N | 921 | 2287 | 2754 | ||||||
Log-likelihood | −297.83 | −890.01 | −1101.25 | ||||||
Pseudo R2 | 0.14 | 0.10 | 0.16 |
(1) Self-Employed Individual | (2) Employee in Micro-Firm | (3) Employee in Large Firm | |||||||
---|---|---|---|---|---|---|---|---|---|
OR. | 95% CI | OR. | 95% CI | OR. | 95% CI | ||||
MIt-1 | 2.66 | ** | (1.89,3.72) | 3.18 | ** | (2.37,4.26) | 2.14 | ** | (1.38,3.31) |
LWH(WH ≥ 50) | 1.03 | (0.75,1.43) | 1.29 | * | (0.97,1.70) | 1.02 | (0.67,1.57) | ||
Covariates | Yes | Yes | Yes | ||||||
N | 1438 | 1567 | 978 | ||||||
Log likelihood | −551.00 | −672.91 | −329.78 | ||||||
Pseudo R2 | 0.13 | 0.13 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X. Impact of Long Working Hours on Mental Health: Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 1641. https://doi.org/10.3390/ijerph20021641
Ma X. Impact of Long Working Hours on Mental Health: Evidence from China. International Journal of Environmental Research and Public Health. 2023; 20(2):1641. https://doi.org/10.3390/ijerph20021641
Chicago/Turabian StyleMa, Xinxin. 2023. "Impact of Long Working Hours on Mental Health: Evidence from China" International Journal of Environmental Research and Public Health 20, no. 2: 1641. https://doi.org/10.3390/ijerph20021641
APA StyleMa, X. (2023). Impact of Long Working Hours on Mental Health: Evidence from China. International Journal of Environmental Research and Public Health, 20(2), 1641. https://doi.org/10.3390/ijerph20021641