The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Types of Studies
2.1.2. Types of Participants
2.1.3. Types of Exposures
2.1.4. Types of Controls
2.1.5. Types of Outcome Measures
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
2.6. Data Analysis
2.7. Assessment of Heterogeneity
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Methodological Quality Assessment
3.3.1. Case-Control Studies (n = 4)
3.3.2. Other Types of Studies (n = 13)
Author (Country) | Study Type | COMPARISON | Population (IQR) | Assessment Tool (Duration) | HRV Parameters (Unit) |
---|---|---|---|---|---|
Sari 2020 (Turkey) [49] | case-control study | G1: symptomatic COVID-19 patients (n = 25) G2: asymptomatic COVID-19 patients (n = 25) G3: matched controls (n = 51) | G1 & G2: 38.5 ± 8.46 G3: 39.9 ± 15.3 | ECG (Holter recording) (24 h) | 1. SDNN (ms); 2. SDANN (ms); 3. RMSSD (ms); 4. SDNN Index; 5. pNN50 (%); 6. CCVLF; 7. CCVHF; 8. LF/HF |
Aragón-Benedí 2021 (Spain) [50] | prospective cohort study | G1: critically ill COVID-19 who survived (n = 7) G2: critically ill COVID-19 who died (n = 7) | G1: 64 (60, 73) G2: 71 (57, 72) | HRV-derived analgesia nociception index (4 min) | 1. Power (ms), index for SDNN; 2. mean ANI, index for HFnorm |
Bellavia 2021 (Italy) [51] | cross-sectional study | G1: COVID-19 patients (n = 20) G2: COVID-19 negative controls (n = 20) | G1: 56.05 ± 19.15 G2: 52.55 ± 13.71 | ECG (bipolar leads) (10 min in supine position, and 3 min during active standing) | 1. SDNN (ms); 2. SDANN (ms); 3. pNN50 (%); 4. RMSSD (ms); 5. LF (ms2); 6. HF (ms2) |
Gadaleta 2021 (USA) [52] | cross-sectional study | G1: COVID-19 patients (n = 198) G2: COVID-19 negative controls (n = 1614) | NR | Commercially available wearable device (Fitbit) (NR) | Average daily Z-score of HRV value |
Hirten 2021 (USA) [53] | prospective cohort study | G1: COVID-19 patients (n = 13) G2: COVID-19 negative controls (n = 284) | 36.3 ± 9.8 | Commercially available wearable device (Apple watch) (NR) | 1. MESOR of SDNN (ms); 2. mean amplitude of the circadian pattern of SDNN (ms); 3. mean acrophase of the circadian pattern of SDNN (ms) |
Junarta 2021 (USA) [54] | retrospective review | G1(after): chronic atrial fibrillation + COVID-19 hospitalization G2(before): chronic atrial fibrillation + pre-COVID-19 Total N = 38 | 78.60 ± 11.37 | ECG (NR) | 1. SDSD (ms); 2. RMSSD (ms); 3. pNN50 (%) |
Kaliyaperumal 2021 (India) [55] | case-control study | Analysis 1 G1: COVID-19 patients (n = 63) G2: matched controls (n = 43) Analysis 2 G3: symptomatic COVID-19 patients (n = 33) G4: asymptomatic COVID-19 patients (n = 33) | G1: 48.39 ± 16.3 G2: 50.1 ± 10.5 G3: 57.59 ± 13.5 G4: 38.57 ± 13.1 | ECG (bipolar leads) (5 min) | 1. HF (log data); 2. LF (ms2); 3. HF/LF; 4. LF/HF; 5. pNN50 (%); 6. RMSSD (log data); 7. SDNN (log data) |
Kamaleswaran 2021 (USA) [56] | retrospective review | G1: critically ill COVID-19 who survived G2: critically ill COVID-19 who died Total N = 85 | NR | ECG (5 min) | 1. LF/HF; 2. VLF (ms2); 3. RMSSD (ms); 4. pNN50 (%) |
Khalpey 2021 (USA) [57] | retrospective review | G1: symptomatic COVID-19 patients G2: asymptomatic COVID-19 patients with silent hypoxia G3: asymptomatic COVID-19 negative patients with silent hypoxia G4: symptomatic COVID-19 negative patientsTotal N = 200 | NR | ECG (bipolar leads) (10 s) | 1. RMSSD (ms); 2. SDNN (ms); 3. HRV triangular index |
Lonini 2021 (USA) [58] | retrospective review | G1: COVID-19 patients (n = 15) G2: healthy controls (n = 14) | NR | Wearable wireless sensor (up to 2 min) | HRV (s) |
Milovanovic 2021 (Serbia) [59] | case-control study | G1: mild COVID-19 patients (n = 30) G2: severe COVID-19 patients (n = 45) G3: matched controls (n = 77) | G1: M 40.71 ± 16.57, F 46.05 ± 16.78 G2: M 51.27 ± 17.60, F 52.18 ± 19.64 G3: M 44.11 ± 17.83, F 45.27 ± 18.94 | Task Force© Monitor (device for continuous noninvasive hemodynamic and autonomic assessment) (NR) | 1. LFnorm (nu); 2. HFnorm (nu); 3. VLF (ms2); 4. LF (ms2); 5. HF (ms2); 6. LF/HF |
Pan 2021 (China) [60] | cross-sectional study | G1: mild COVID-19 patients (n = 13) G2: severe COVID-19 patients (n = 21) | G1: 47.5 ± 14.2 G2: 61.5 ± 15.0 | ECG (24 h) | 1. SDNN (ms); 2. SDANN (ms); 3. RMSSD (ms); 4. pNN50 (%); 5. LF (ms2); 6. HF (ms2); 7. LF/HF |
Topal 2021 (Turkey) [61] | retrospective review | G1: confirmed COVID-19 patients (n = 53) G2: suspected COVID-19 patients (n = 42) G3: healthy controls (n = 20) | G1: 51.0 ± 13.1 G2: 53.6 ± 18.6 G3: NR | ECG (Holter recording) (24 h) | 1. SDNN (ms); 2. SDNN index (ms); 3. SDANN (ms); 4. RMSSD (ms); 5. NN50 count; 6. pNN50 (%); 7. HRV triangular index; 8. LF (ms2); 9. HF (ms2); 10. LF/HF ratio |
Hirten 2022 (USA) [62] | prospective cohort study | G1: COVID-19 patients (n = 49) G2: COVID-19 negative controls (n = 358) | G1: 37.3 ± 10.55 G2: 37.9 ± 9.73 | Commercially available wearable device (Apple watch) (NR) | 1. SDNN (ms); 2. HRV COSINOR parameters (MESOR, Amplitude, and Acrophase) |
Ranard 2022 (USA) [63] | retrospective review | G1: COVID-19 patients with sudden cardiac death (n = 12) G2: COVID-19 patients without sudden cardiac death (n = 18) | G1: median 66 G2: median 73.5 | Philips Intellivue MX800 monitors (5 min) | RMSSD (ms) |
Risch 2022 (Switzerland) [64] | prospective cohort study | COVID-19 patients G1: Baseline; G2: Incubation; G3: Presymptomatic; G4: Symptomatic; G5: Recovery Total N = 66 | 43.66 ± 5.64 | Commercially available wearable device (Ava-bracelet) (NR) | 1. SDNN (ms); 2. RMSSD (ms); 3. LF/HF |
Skow 2022 (USA) [65] | case-control study | G1: Omicron COVID-19 patients (n = 23) G2: matched controls (n = 13) | G1: 23 ± 3 G2: 26 ± 4 | ECG (5 min) | 1. HF (ms2); 2. LF (ms2) |
Author | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sari 2020 [49] | Yes | No | No | NR | CD | Yes | NR | CD | Yes | No | No | CD |
Kaliyaperumal 2021 [55] | Yes | Yes | No | NR | CD | Yes | CD | CD | Yes | Yes | No | Yes |
Milovanovic 2021 [59] | Yes | Yes | No | NR | CD | Yes | NR | CD | Yes | Yes | No | Yes |
Skow 2022 [65] | Yes | Yes | No | NR | CD | Yes | NR | CD | Yes | Yes | No | Yes |
Author | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aragón-Benedí 2021 [50] | Yes | Yes | Yes | CD | Yes | Yes | Yes | NA | Yes | No | Yes | No | Yes | No |
Bellavia 2021 [51] | Yes | Yes | Yes | CD | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Gadaleta 2021 [52] | Yes | No | CD | CD | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Hirten 2021 [53] | Yes | Yes | CD | CD | No | Yes | Yes | NA | Yes | No | Yes | No | No | No |
Junarta 2021 [54] | Yes | Yes | NA | NA | No | Yes | Yes | NA | No | No | Yes | No | NA | No |
Kamaleswaran 2021 [56] | Yes | Yes | NA | NA | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Khalpey 2021 [57] | Yes | No | NA | NA | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Lonini 2021 [58] | Yes | No | NA | NA | No | Yes | Yes | NA | No | No | Yes | No | NA | Yes |
Pan 2021 [60] | Yes | Yes | CD | CD | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Topal 2021 [61] | Yes | Yes | NA | NA | No | Yes | Yes | NA | Yes | No | Yes | No | NA | No |
Hirten 2022 [62] | Yes | Yes | CD | CD | No | Yes | Yes | NA | Yes | No | Yes | No | No | No |
Ranard 2022 [63] | Yes | Yes | NA | NA | No | Yes | Yes | NA | No | No | Yes | No | NA | No |
Risch 2022 [64] | Yes | Yes | Yes | CD | Yes | Yes | Yes | NA | Yes | No | Yes | No | No | Yes |
3.4. Impact on HRV Parameters
3.4.1. HRV Parameters Investigated
3.4.2. Impact on vmHRV Parameters
3.4.3. Impact on Other HRV Parameters
3.5. Clinical Relevance of HRV Parameters in COVID-19 Patients
3.5.1. ANS Imbalance of COVID-19 Patients
3.5.2. Prognosis of COVID-19 Patients
3.6. Assessment the Heterogeneity
3.6.1. Qualitative Analysis
3.6.2. Quantitative Analysis
4. Discussion
4.1. Findings of This Review
- (1)
- Methodological quality of included studies: The methodological quality of the included observational studies was not optimal. Among the included studies, only two [50,64] justified the sample size, and in all studies, the blinding of analysis was not guaranteed. In addition, in studies other than case-control studies, there were only two studies [58,64] that measured potential confounding variables and adjusted statistically for their impact on the outcome.
- (2)
- HRV parameters investigated: The most frequently investigated HRV parameter in relation to SARS-CoV-2 infection was RMSSD, followed by LF/HF ratio, LF power, HF power, and pNN50.
- (3)
- Impact on vmHRV parameters: Among the significant differences found, compared to negative controls, a consistent finding of the vmHRV parameter associated with SARS-CoV-2 infection was low HF power. Mixed results were observed for RMSSD, and studies on HFnorm were lacking. In relation to the different severity or prognosis of COVID-19, it was reported that the RMSSD and HF power were significantly lower in symptomatic COVID-19 patients compared to asymptomatic COVID-19 patients, and that the RMSSD was significantly lower and the HFnorm was significantly higher in died COVID-19 patients than in survived patients. However, consistent findings were rare.
- (4)
- Impact on other HRV parameters: Some included studies have found significantly lower SDNN and pNN50 in patients with COVID-19 compared to negative controls, but mixed results were observed for LF/HF ratio and LF power. Significantly lower SDNN was observed in symptomatic patients compared to asymptomatic COVID-19 patients and in severe patients compared to mild COVID-19 patients. In the comparison of died and survived COVID-19 patients, no significant difference in SDNN was found, but low SDNN was significantly associated with worse prognosis of COVID-19 patients, including fewer survival days.
- (5)
- Heterogeneity of included studies: Included studies were heterogeneous in terms of study design, clinical characteristics of participants, and HRV measurement method. Also, in the quantitative analysis, substantial heterogeneity was observed for RMSSD, HF power, SDNN, LF power, and LF/HF ratio.
4.2. Clinical Interpretation
4.3. Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallah, S.I.; Ghorab, O.K.; Al-Salmi, S.; Abdellatif, O.S.; Tharmaratnam, T.; Iskandar, M.A.; Sefen, J.A.N.; Sidhu, P.; Atallah, B.; El-Lababidi, R.; et al. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Paidas, M.J.; Sampath, N.; Schindler, E.A.; Cosio, D.S.; Ndubizu, C.O.; Shamaladevi, N.; Kwal, J.; Rodriguez, S.; Ahmad, A.; Kenyon, N.S.; et al. Mechanism of Multi-Organ Injury in Experimental COVID-19 and Its Inhibition by a Small Molecule Peptide. Front. Pharmacol. 2022, 13, 864798. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, T.; Hassani, F.; Ghaffari, N.; Ebrahimi, B.; Yarahmadi, A.; Hassanzadeh, G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J. Mol. Histol. 2020, 51, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Long COVID syndrome-associated brain fog. J. Med. Virol. 2022, 94, 979–984. [Google Scholar] [CrossRef]
- Scala, I.; Rizzo, P.A.; Bellavia, S.; Brunetti, V.; Colò, F.; Broccolini, A.; Della Marca, G.; Calabresi, P.; Luigetti, M.; Frisullo, G. Autonomic Dysfunction during Acute SARS-CoV-2 Infection: A Systematic Review. J. Clin. Med. 2022, 11, 3883. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Golchoobian, R. Potential autonomic nervous system dysfunction in COVID-19 patients detected by heart rate variability is a sign of SARS-CoV-2 neurotropic features. Mol. Biol. Rep. 2022, 49, 8131–8137. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Qadri, Y.J.; Ghadimi, K.; MacLeod, D.B.; Molinger, J.; Piccini, J.P.; Whittle, J.; Wischmeyer, P.E.; Patel, M.R.; Ulloa, L. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. J. Cardiovasc. Transl. Res. 2020, 13, 894–899. [Google Scholar] [CrossRef]
- Becker, R.C. Autonomic dysfunction in SARS-CoV-2 infection acute and long-term implications COVID-19 editor’s page series. J. Thromb. Thrombolysis 2021, 52, 692–707. [Google Scholar] [CrossRef]
- Carod-Artal, F.J. Infectious diseases causing autonomic dysfunction. Clin. Auton. Res. 2018, 28, 67–81. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Taralov, Z.Z.; Terziyski, K.V.; Kostianev, S.S. Heart Rate Variability as a Method for Assessment of the Autonomic Nervous System and the Adaptations to Different Physiological and Pathological Conditions. Folia Med. 2015, 57, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar] [PubMed]
- Jarczok, M.N.; Weimer, K.; Braun, C.; Williams, D.P.; Thayer, J.F.; Gündel, H.O.; Balint, E.M. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 2022, 143, 104907. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, N.; Dayılar Candan, H.; İnan, A.H. Psychological Distress in Patients with COVID-19 During Hospitalization. Clin. Nurs. Res. 2022, 31, 376–384. [Google Scholar] [CrossRef]
- Huang, W.; Li, M.; Luo, G.; Wu, X.; Su, B.; Zhao, L.; Zhang, S.; Chen, X.; Jia, M.; Zhu, J.; et al. The Inflammatory Factors Associated with Disease Severity to Predict COVID-19 Progression. J. Immunol. 2021, 206, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.J.; Ganta, C.K. Autonomic nervous system and immune system interactions. Compr. Physiol. 2014, 4, 1177–1200. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Zhang, Z.; Li, L.; Zhao, W.; Hababi, M.; Yang, X.; Abbasi, Q.H. A Systematic Review of Non-Contact Sensing for Developing a Platform to Contain COVID-19. Micromachines 2020, 11, 912. [Google Scholar] [CrossRef]
- Baldanti, F.; Ganguly, N.K.; Wang, G.; Möckel, M.; O’Neill, L.A.; Renz, H.; Dos Santos Ferreira, C.E.; Tateda, K.; Van Der Pol, B. Choice of SARS-CoV-2 diagnostic test: Challenges and key considerations for the future. Crit. Rev. Clin. Lab. Sci. 2022, 59, 445–459. [Google Scholar] [CrossRef]
- Owens, A.P. The Role of Heart Rate Variability in the Future of Remote Digital Biomarkers. Front. Neurosci. 2020, 14, 582145. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Staffolani, S.; Iencinella, V.; Cimatti, M.; Tavio, M. Long COVID-19 syndrome as a fourth phase of SARS-CoV-2 infection. Infez. Med. 2022, 30, 22–29. [Google Scholar] [CrossRef] [PubMed]
- NHLBI. National Heart, Lung, and Blood Institute (NHLBI). Study Quality Assessment Tools. NHLBI Website. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 5 August 2022).
- Arvind, A.; Srivastav, S. Cardiac autonomic function evaluation during the COVID-19 pandemic: A frugal innovation for Valsalva manoeuvre. Indian J. Physiol. Pharmacol. 2021, 65, 66–68. [Google Scholar] [CrossRef]
- Bland, J.S. COVID-19 Risk: Clinical Tools for Assessing and Personalizing Immunity. Integr. Med. 2021, 20, 18–23. [Google Scholar]
- Petterson, J.L.; McPhee, B.N.; Wu, Y.; O’Brien, M.W. Does COVID-19 influence the sympathetic regulation of blood pressure? J. Physiol. 2021, 599, 4951–4953. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.C. Anticipating the long-term cardiovascular effects of COVID-19. J. Thromb. Thrombolysis 2020, 50, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Drury, R.L.; Jarczok, M.; Owens, A.; Thayer, J.F. Wireless Heart Rate Variability in Assessing Community COVID-19. Front. Neurosci. 2021, 15, 564159. [Google Scholar] [CrossRef]
- Keating, B.J.; Mukhtar, E.H.; Elftmann, E.D.; Eweje, F.R.; Gao, H.; Ibrahim, L.I.; Kathawate, R.G.; Lee, A.C.; Li, E.H.; Moore, K.A.; et al. Early detection of SARS-CoV-2 and other infections in solid organ transplant recipients and household members using wearable devices. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2021, 34, 1019–1031. [Google Scholar] [CrossRef]
- Mascioli, G.; Lucca, E.; Annunziata, L.; Giacopelli, D. Remote monitoring temporal trends during COVID-19 pneumonia in patients with implanted defibrillators. J. Cardiol. Cases 2021, 24, 68–71. [Google Scholar] [CrossRef]
- Besson, C.; Guex, K.; Schmitt, L.; Gojanovic, B.; Gremeaux, V. Successful Return to Performance After COVID-19 Infection in an Elite Athlete. Int. J. Sports Physiol. Perform. 2022, 17, 667–670. [Google Scholar] [CrossRef]
- Adler, T.E.; Norcliffe-Kaufmann, L.; Condos, R.; Fishman, G.; Kwak, D.; Talmor, N.; Reynolds, H. Heart rate variability is reduced 3- and 6-months after hospitalization for COVID-19 infection. J. Am. Coll. Cardiol. 2021, 77, 3062. [Google Scholar] [CrossRef]
- Bontempi, L.; Aboelhassan, M.; Cerini, M.; Salghetti, F.; Fabbricatore, D.; Maiolo, V.; Freda, L.; Giacopelli, D.; Curnis, A. Could Home Monitoring parameters provide information about the impact of the pandemic period on CIED patients? A comparison between 2019 and 2020. J. Cardiovasc. Med. 2021, 22, 606–608. [Google Scholar] [CrossRef]
- Skazkina, V.V.; Krasikova, N.S.; Borovkova, E.I.; Ishbulatov, Y.M.; Gorshkov, A.Y.; Korolev, A.I.; Dadaeva, V.A.; Fedorovich, A.A.; Kuligin, A.V.; Drapkina, O.M.; et al. Synchronization of autonomic control loops of blood circulation in patients with COVID-19. Russ. Open Med. J. 2021, 10, e0307. [Google Scholar] [CrossRef]
- Van Der Bos, J.; Van Der Wal, I.; De Jonge, E.; Dahan, A. Nociception Measurement in Ventilated COVID and Non-covid Patients in the Intensive Care Unit. Intensive Care Med. Exp. 2021, 9. [Google Scholar] [CrossRef]
- Alavi, A.; Bogu, G.K.; Wang, M.; Rangan, E.S.; Brooks, A.W.; Wang, Q.; Higgs, E.; Celli, A.; Mishra, T.; Metwally, A.A.; et al. Real-time alerting system for COVID-19 and other stress events using wearable data. Nat. Med. 2022, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Saouma, S.; Akhrass, P.; Shah, R.R.; Parikh, V.K.; Mitra, R.L.; Beldner, S.J.; Willner, J.; Bhasin, K.; Bernstein, N.E.; Skipitaris, N.T.; et al. PO-706-05 decrease in activity of daily living during the COVID-19 pandemic correlates with a decrease in biometric variableS. Heart Rhythm. 2022, 19, S459. [Google Scholar] [CrossRef]
- Hasty, F.; García, G.; Dávila, C.H.; Wittels, S.H.; Hendricks, S.; Chong, S. Heart Rate Variability as a Possible Predictive Marker for Acute Inflammatory Response in COVID-19 Patients. Mil. Med. 2020, 186, e34–e38. [Google Scholar] [CrossRef]
- Natarajan, A.; Su, H.W.; Heneghan, C. Assessment of physiological signs associated with COVID-19 measured using wearable devices. NPJ Digit. Med. 2020, 3, 156. [Google Scholar] [CrossRef]
- Gonzalez-Duarte, A.; Garcia, M.; Michel-Chavez, A.C.; Pérez-Castañeda, S.; Rebolledo-García, D.; Calderón-Martínez, J.A.; Vigueras-Hernández, A.; Higuera-Calleja, J.; Romero-Sánchez, G. Neuroimage and autonomic abnormalities in patients with COVID-19 happy hypoxemia. Neurology 2021, 96, 3. [Google Scholar]
- Hijazi, H.; Abu Talib, M.; Hasasneh, A.; Bou Nassif, A.; Ahmed, N.; Nasir, Q. Wearable Devices, Smartphones, and Interpretable Artificial Intelligence in Combating COVID-19. Sensors 2021, 21, 8424. [Google Scholar] [CrossRef]
- Khodadadi, F.; Punait, S.; Kolacz, J.; Zand, F.; Foroutan, A.; Lewis, G.F. Use of heart rate variability to predict hospital length of stay for COVID-19 patients: A prospective observational study. Int. J. Crit. Illn. Inj. Sci. 2021, 11, 134–141. [Google Scholar] [CrossRef]
- Linarez-Ochoa, N.E.; Cerrato-Varela, K.P.; Durón, R.M.; Herrera-Paz, E.F. Electrocardiographic profiles from 24-hour monitoring of COVID-19 patients treated with hydroxychloroquine and azithromycin. Rev. Fed. Argent. Cardiol. 2021, 50, 21–26. [Google Scholar]
- Mol, M.B.A.; Strous, M.T.A.; van Osch, F.H.M.; Vogelaar, F.J.; Barten, D.G.; Farchi, M.; Foudraine, N.A.; Gidron, Y. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS ONE 2021, 16, e0258841. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Su, H.W.; Heneghan, C.; Blunt, L.; O’Connor, C.; Niehaus, L. Measurement of respiratory rate using wearable devices and applications to COVID-19 detection. NPJ Digit. Med. 2021, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Föll, S.; Lison, A.; Maritsch, M.; Klingberg, K.; Lehmann, V.; Züger, T.; Srivastava, D.; Jegerlehner, S.; Feuerriegel, S.; Fleisch, E.; et al. A Scalable Risk-Scoring System Based on Consumer-Grade Wearables for Inpatients with COVID-19: Statistical Analysis and Model Development. JMIR Form. Res. 2022, 6, e35717. [Google Scholar] [CrossRef] [PubMed]
- Jimah, T.; Kehoe, P.; Borg, H.; Pimentel, P.; Rahmani, A.; Dutt, N.; Guo, Y. A Micro-Level Analysis of Physiological Responses to COVID-19: Continuous Monitoring of Pregnant Women in California. Front. Public Health 2022, 10, 808763. [Google Scholar] [CrossRef]
- Rajanna, A.; Jc, R.; Rajoli, S. A Non-Invasive Tool to Quantify Autonomic Dysfunction, A Prognostic Indicator in COVID-19. Diagnosis 2022, 9, eA72–eA73. [Google Scholar] [CrossRef]
- Aragón-Benedí, C.; Oliver-Forniés, P.; Yamak-Altinpulluk, E.; Fajardo-Perez, M. Is the assessment of autonomic nervous system through analgesia nociception index in Covid-19 patients a predictive mortality tool? Anesth. Analg. 2021, 133, 1905–1906. [Google Scholar]
- Sari, C.; Ekmekci, C.; Şimşek, E.Ç.; Küçükukur, M.; Köse, Ş. The effect of disease severity on cardiac autonomic functions in COVID-19. Anatol. J. Cardiol. 2020, 24, 13. [Google Scholar]
- Aragón-Benedí, C.; Oliver-Forniés, P.; Galluccio, F.; Yamak Altinpulluk, E.; Ergonenc, T.; El Sayed Allam, A.; Salazar, C.; Fajardo-Pérez, M. Is the heart rate variability monitoring using the analgesia nociception index a predictor of illness severity and mortality in critically ill patients with COVID-19? A pilot study. PLoS ONE 2021, 16, e0249128. [Google Scholar] [CrossRef]
- Bellavia, S.; Scala, I.; Luigetti, M.; Brunetti, V.; Gabrielli, M.; Zileri Dal Verme, L.; Servidei, S.; Calabresi, P.; Frisullo, G.; Della Marca, G. Instrumental Evaluation of COVID-19 Related Dysautonomia in Non-Critically-Ill Patients: An Observational, Cross-Sectional Study. J. Clin. Med. 2021, 10, 5861. [Google Scholar] [CrossRef]
- Gadaleta, M.; Radin, J.M.; Baca-Motes, K.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R.; Quer, G. Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms. NPJ Digit. Med. 2021, 4, 166. [Google Scholar] [CrossRef] [PubMed]
- Hirten, R.P.; Danieletto, M.; Tomalin, L.; Choi, K.H.; Zweig, M.; Golden, E.; Kaur, S.; Helmus, D.; Biello, A.; Pyzik, R.; et al. Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study. J. Med. Internet Res. 2021, 23, e26107. [Google Scholar] [CrossRef]
- Junarta, J.; Riley, J.M.; Pavri, B.B. Describing heart rate variability in patients with chronic atrial fibrillation during hospitalization for COVID-19. J. Arrhythm. 2021, 37, 893–898. [Google Scholar] [CrossRef]
- Kaliyaperumal, D.; Rk, K.; Alagesan, M.; Ramalingam, S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: A hospital based preliminary observational study. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 247–253. [Google Scholar] [CrossRef]
- Kamaleswaran, R.; Sadan, O.; Kandiah, P.; Li, Q.; Thomas, T.; Blum, J.; Coopersmith, C.; Buchman, T. Altered heart rate variability predicts mortality early among critically ill COVID-19 patients. Crit. Care Med. 2021, 49, 99. [Google Scholar] [CrossRef]
- Khalpey, Z.I.; Khalpey, A.H.; Modi, B.; Deckwa, J. Autonomic Dysfunction in COVID-19: Early Detection and Prediction Using Heart Rate Variability. J. Am. Coll. Surg. 2021, 233, e20–e21. [Google Scholar] [CrossRef]
- Lonini, L.; Shawen, N.; Botonis, O.; Fanton, M.; Jayaraman, C.; Mummidisetty, C.K.; Shin, S.Y.; Rushin, C.; Jenz, S.; Xu, S.; et al. Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study. IEEE J. Transl. Eng. Health Med. 2021, 9, 4900311. [Google Scholar] [CrossRef]
- Milovanovic, B.; Djajic, V.; Bajic, D.; Djokovic, A.; Krajnovic, T.; Jovanovic, S.; Verhaz, A.; Kovacevic, P.; Ostojic, M. Assessment of Autonomic Nervous System Dysfunction in the Early Phase of Infection With SARS-CoV-2 Virus. Front. Neurosci. 2021, 15, 640835. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yu, Z.; Yuan, Y.; Han, J.; Wang, Z.; Chen, H.; Wang, S.; Wang, Z.; Hu, H.; Zhou, L.; et al. Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Front. Physiol. 2021, 12, 630038. [Google Scholar] [CrossRef]
- Topal, D.; Uguz, B.; Zengin, I.; Oztas, S.; Tiryakioglu, S.K. Heart Rate Variability in Hospitalized Patients with Suspected or Confirmed Diagnosis of COVID-19: A Retrospective Analysis in Comparison to Healthy Controls and in Relation to Proinflammatory Cytokines. Celal Bayar Üniversitesi Sağlık Bilim. Enstitüsü Derg. 2021, 8, 516–523. [Google Scholar] [CrossRef]
- Hirten, R.P.; Tomalin, L.; Danieletto, M.; Golden, E.; Zweig, M.; Kaur, S.; Helmus, D.; Biello, A.; Pyzik, R.; Bottinger, E.P.; et al. Evaluation of a machine learning approach utilizing wearable data for prediction of SARS-CoV-2 infection in healthcare workers. JAMIA Open 2022, 5, ooac041. [Google Scholar] [CrossRef] [PubMed]
- Ranard, B.L.; Megjhani, M.; Terilli, K.; Yarmohammadi, H.; Ausiello, J.; Park, S. Heart rate variability and adrenal size provide clues to sudden cardiac death in hospitalized COVID-19 patients. J. Crit. Care 2022, 71, 154114. [Google Scholar] [CrossRef] [PubMed]
- Risch, M.; Grossmann, K.; Aeschbacher, S.; Weideli, O.C.; Kovac, M.; Pereira, F.; Wohlwend, N.; Risch, C.; Hillmann, D.; Lung, T.; et al. Investigation of the use of a sensor bracelet for the presymptomatic detection of changes in physiological parameters related to COVID-19: An interim analysis of a prospective cohort study (COVI-GAPP). BMJ Open 2022, 12, e058274. [Google Scholar] [CrossRef]
- Skow, R.J.; Nandadeva, D.; Grotle, A.K.; Stephens, B.Y.; Wright, A.N.; Fadel, P.J. Impact of breakthrough COVID-19 cases during the omicron wave on vascular health and cardiac autonomic function in young adults. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H59–H64. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Rangon, C.M.; Niezgoda, A. Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering 2022, 9, 352. [Google Scholar] [CrossRef]
- Acanfora, D.; Nolano, M.; Acanfora, C.; Colella, C.; Provitera, V.; Caporaso, G.; Rodolico, G.R.; Bortone, A.S.; Galasso, G.; Casucci, G. Impaired Vagal Activity in Long-COVID-19 Patients. Viruses 2022, 14, 1035. [Google Scholar] [CrossRef]
- Hassani, M.; Fathi Jouzdani, A.; Motarjem, S.; Ranjbar, A.; Khansari, N. How COVID-19 can cause autonomic dysfunctions and postural orthostatic syndrome? A Review of mechanisms and evidence. Neurol. Clin. Neurosci. 2021, 9, 434–442. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Miller, P.; Meymandi, S.; Chin, A.; Epps, J.; Gordon, S.; Gornbein, J.; Harper, R.M. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: The SUDEP-7 Inventory. Epilepsy Behav. 2010, 19, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Billman, G.E.; Schwartz, P.J.; Stone, H.L. Baroreceptor reflex control of heart rate: A predictor of sudden cardiac death. Circulation 1982, 66, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. Off. J. Int. Soc. Holter Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Molnar, J.; Weiss, J.S.; Rosenthal, J.E. Does heart rate identify sudden death survivors? Assessment of heart rate, QT interval, and heart rate variability. Am. J. Ther 2002, 9, 99–110. [Google Scholar] [CrossRef] [PubMed]
- de Castilho, F.M.; Ribeiro, A.L.P.; Nobre, V.; Barros, G.; de Sousa, M.R. Heart rate variability as predictor of mortality in sepsis: A systematic review. PLoS ONE 2018, 13, e0203487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, C.-Y. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. Int. J. Environ. Res. Public Health 2023, 20, 909. https://doi.org/10.3390/ijerph20020909
Kwon C-Y. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. International Journal of Environmental Research and Public Health. 2023; 20(2):909. https://doi.org/10.3390/ijerph20020909
Chicago/Turabian StyleKwon, Chan-Young. 2023. "The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups" International Journal of Environmental Research and Public Health 20, no. 2: 909. https://doi.org/10.3390/ijerph20020909
APA StyleKwon, C. -Y. (2023). The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. International Journal of Environmental Research and Public Health, 20(2), 909. https://doi.org/10.3390/ijerph20020909