Multi-Tasking Policy Coordination and Corporate Environmental Performance: Evidence from China
Abstract
:1. Introduction
2. Research Hypotheses
3. Research Design
3.1. Data Sources and Sample
3.2. Main Variable Definition
3.2.1. Economic-Growth-Target Pressure
3.2.2. Hard Constraints of Environmental Protection Target
3.2.3. Firm-Level Pollutant Emission Intensity
3.3. Estimation Framework
3.4. Summary Statistics
3.4.1. Sample Composition
3.4.2. Descriptive Statistics
4. Policy Targets Coordination and Firm Pollution Emission
4.1. Baseline Regression Results
4.2. IV Estimations
4.3. Other Robustness Tests
5. Underlying Mechanism: Environmental Regulation
6. How to Reverse Negative Environmental Externalities of Economic Growth Targets
6.1. Self-Constraining Characteristics of Environmental Policy Targets
6.2. Explicit Constraint Characteristics of EPT
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A. Variable Definitions
Variables | Definition |
---|---|
Emission variables | |
Emission | The amount of total SO2 emission (in kilograms) scaled by total output (per thousand CNY), adjusted for inflation. |
Emissionsale | The amount of total SO2 emission (in kilograms) scaled by operating income (per thousand CNY), adjusted for inflation. |
LnSO2 | the logarithm of SO2 emissions (in kilograms) at the firm level |
Independent variables | |
EGT | Economic growth target pressure, a dummy variable taking the value of one if the GDP growth target set by the municipal government in a given year is higher than the provincial GDP growth target and 0 otherwise |
EPThc | The environmental policy target’s hard constraint variable, assigning a value of one to the sample observations from 2007 to 2013, with years before 2007 assigned a value of zero |
EPTsc | If local officials voluntarily disclose the emission reduction numerical targets of major pollutants in the government work report after 2007, the EPTsc value is 1; otherwise, it is 0. |
EPTnsc | if the local officials did not disclose numerical targets of major pollutants in the government work report after 2007, EPTnsc takes the value 1; otherwise, it is 0. |
EPTp1 | Mentioning the specific pollutant (sulfur dioxide or nitrogen oxides) control target in government work reports under the hard constraints of environmental protection targets |
EPTp2 | Mentioning the energy consumption per unit of GDP control target only in government work reports under the hard constraints of environmental protection targets |
EPTp3 | Mentioning the completion of the higher-level government target only in government work reports under the hard constraints of environmental protection targets |
EPTp4 | Facing hard constraints from the higher government but not actively mentioning the environmental protection target |
EPTn1 | Mentioning specific numerical control targets of specific pollutants or energy consumption per unit of GDP in government work reports under the hard constraints of environmental protection targets |
EPTn2 | Mentioning environmental protection targets but not specific numerical control targets in government work reports under the hard constraints of environmental protection targets |
EPTn3 | Not actively mentioning environmental protection targets under the hard constraints of environmental protection targets |
Instrumental variable | |
EGTiv | The proportion of the top-down amplification of another city’s economic growth target in the same province as the instrumental variable |
Mechanism variables | |
DirtyExit | A dummy variable, taking a value of one if the number of heavy polluting firms exiting the city in a given year is higher than the city-level median and zero otherwise |
Firm-level control variables | |
SIZE | The natural logarithm of total assets at the firm level |
ROA | Net income scaled by total assets at the firm level |
LEV | Total debt scaled by total assets at the firm level |
AGE | The natural logarithm of the age of the firm |
SOE | An indicator variable set to one if the firm owner is a state-owned firm and zero otherwise. |
Municipal and provincial control variables | |
MKTIDX | The provincial-level marketization degree constructed by the existing literature [34] |
ERS | Provincial environmental regulation index following the existing literature [35], investment in industrial pollution control divided by total environmental pollution emissions |
PERGDP | GDP per capita at the prefecture-level city |
References
- Lyu, C.; Wang, K.; Zhang, F.; Zhang, X. GDP management to meet or beat growth targets. J. Account. Econ. 2018, 66, 318–338. [Google Scholar] [CrossRef]
- Liu, D.; Xu, C.; Yu, Y.; Rong, K.; Zhang, J. Economic growth target, distortion of public expenditure and business cycle in China. China Econ. Rev. 2020, 63, 101373. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.Y. Subnational leaders and economic growth: Evidence from Chinese cities. J. Econ. Growth 2015, 20, 405–436. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, C.; Weng, X.; Zhou, L.A. Target setting in tournaments: Theory and evidence from China. Econ. J. 2019, 129, 2888–2915. [Google Scholar] [CrossRef]
- Konisky, D.M.; Woods, N.D. Environmental free riding in state water pollution enforcement. State Politics Policy Q. 2012, 12, 227–251. [Google Scholar] [CrossRef]
- Grooms, K.K. Enforcing the Clean Water Act: The effect of state-level corruption on compliance. J. Environ. Econ. Manag. 2015, 73, 50–78. [Google Scholar] [CrossRef]
- Piotroski, J.D.; Wong, T.J. Institutions and Information Environment of Chinese Listed Firms. In Capitalizing China; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Kim, I.; Wan, H.; Wang, B.; Yang, T. Institutional investors and corporate environmental, social, and governance policies: Evidence from toxics release data. Manag. Sci. 2019, 65, 4901–4926. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, H.; Welker, M.; Zhang, N.; Zhao, Y. Gone with the wind: An externality of earnings pressure. J. Account. Econ. 2021, 72, 101403. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, D.; Gong, Y. Target of local economic growth and total factor productivity. Manag. World 2019, 35, 26–42. [Google Scholar]
- Shen, F.; Liu, B.; Luo, F.; Wu, C.; Chen, H.; Wei, W. The effect of economic growth target constraints on green technology innovation. J. Environ. Manag. 2021, 292, 112765. [Google Scholar] [CrossRef] [PubMed]
- Locke, E. Motivation, cognition, and action: An analysis of studies of task goals and knowledge. Appl. Psychol. 2000, 49, 408–429. [Google Scholar] [CrossRef]
- Holmstrom, B.; Milgrom, P. Multitask principal-agent analyses: Incentive contracts, asset ownership, and job design. J. Law Econ. Organ. 1991, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, O.; Shleifer, A. Federalism with and without political centralization: China versus Russia. IMF Staff. Pap. 2001, 48, 171–179. [Google Scholar]
- Tsui, K.Y.; Wang, Y. Between separate stoves and a single menu: Fiscal decentralization in China. China Q. 2004, 177, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Qian, Y.; Weingast, B. Regional decentralization and fiscal incentives: Federalism, Chinese style. J. Public Econ. 2005, 89, 1719–1742. [Google Scholar] [CrossRef]
- Xu, C. The fundamental institutions of China’s reforms and development. J. Econ. Lit. 2011, 49, 1076–1151. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Gao, Y. The environmental consequences of domestic and foreign investment: Evidence from China. Energy Policy 2017, 108, 271–280. [Google Scholar] [CrossRef]
- Greenstone, M.; List, J.A.; Syverson, C. The Effects of Environmental Regulation on the Competitiveness of US Manufacturing (No. w18392); National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar]
- Xu, Y. Improvements in the Operation of SO2 Scrubbers in China’s Coal Power Plants. Environ. Sci. Technol. 2011, 45, 380–385. [Google Scholar] [CrossRef]
- Karplus, V.J.; Wu, M. Crackdowns in Hierarchies: Evidence from China’s Environmental Inspections. In MIT Sloan Research Paper No. 5700-19; MIT Sloan School of Management: Cambridge, MA, USA, 2019. [Google Scholar]
- Tao, F.; Zhao, J.; Zhou, H. Does environmental regulation improve the quantity and quality of green innovation: Evidence from the target responsibility system of environmental protection. China Ind. Econ. 2021, 2, 136–154. [Google Scholar]
- Chen, Y.J.; Li, P.; Lu, Y. Career concerns and multitasking local bureaucrats: Evidence of a target-based performance evaluation system in China. J. Dev. Econ. 2018, 133, 84–101. [Google Scholar] [CrossRef]
- He, G.; Wang, S.; Zhang, B. Watering down environmental regulation in China. Q. J. Econ. 2020, 135, 2135–2185. [Google Scholar] [CrossRef]
- Brandt, L.; Van Biesebroeck, J.; Zhang, Y. Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing. J. Dev. Econ. 2012, 97, 339–351. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, Y.; Xu, H. Political turnover and firm pollution discharges: An empirical study. China Econ. Rev. 2019, 58, 101363. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Zhou, L.A. Relative performance evaluation and the turnover of provincial leaders in China. Econ. Lett. 2005, 88, 421–425. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, L.A.; Zhu, G. Strategic interaction in political competition: Evidence from spatial effects across Chinese cities. Reg. Sci. Urban Econ. 2016, 57, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, Z.; Huang, L. Economic growth target and environmental regulation intensity: Evidence from 284 cities in China. Environ. Sci. Pollut. Res. 2021, 29, 10235–10249. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Z.; Sun, P.B.; Xuan, Y. Do Constraints on Local Governments’ Environmental Targets Affect Industrial Transformation and Upgrading. J. Econ. Res. 2020, 55, 57–72. [Google Scholar]
- Dewatripont, M.; Jewitt, I.; Tirole, J. The economics of career concerns, part II: Application to missions and accountability of government agencies. Rev. Econ. Stud. 1999, 66, 199–217. [Google Scholar] [CrossRef]
- Alesina, A.; Tabellini, G. Bureaucrats or politicians? Part II: Multiple policy tasks. J. Public Econ. 2008, 92, 426–447. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Wang, X.; Yu, J. Marketization Index of China’s Provinces: NERI Report 2016; Social Sciences Academic Press (CHINA): Beijing, China, 2017. (In Chinese) [Google Scholar]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
Panel A Year Distribution | |||
Year | # of Observations | % of Observations | Mean of SO2 Emission |
2003 | 23,086 | 7.16% | 1.53 |
2004 | 26,102 | 8.10% | 1.46 |
2005 | 25,747 | 7.99% | 1.25 |
2006 | 30,188 | 9.37% | 0.93 |
2007 | 40,330 | 12.52% | 0.78 |
2008 | 36,246 | 11.25% | 0.68 |
2009 | 36,111 | 11.21% | 0.56 |
2011 | 40,282 | 12.50% | 0.38 |
2012 | 37,622 | 11.68% | 0.36 |
2013 | 26,498 | 8.22% | 0.53 |
Total | 322,212 | 100.00% | 0.79 |
Panel B Industry Distribution | |||
Industry Name | # of Observations | % of Observations | Mean of SO2 Emission |
Mining and Washing of Coal | 9088 | 2.82% | 0.35 |
Extraction of Petroleum and Natural Gas | 171 | 0.05% | 0.22 |
Mining of Ferrous Metal Ores | 3907 | 1.21% | 0.28 |
Mining of Non-ferrous Metal Ores | 3195 | 0.99% | 0.22 |
Mining and Processing of Nonmetal Ores | 1982 | 0.62% | 1.08 |
Other Mining | 8 | 0.00% | 0.02 |
Processing of Food from Agricultural Products | 20,944 | 6.50% | 0.27 |
Manufacture of Foods | 11,004 | 3.42% | 0.36 |
Manufacture of Beverage | 8568 | 2.66% | 0.45 |
Manufacture of Tobacco | 568 | 0.18% | 0.36 |
Manufacture of Textile | 28,061 | 8.71% | 0.66 |
Manufacture of Textile Wearing Apparel | 4353 | 1.35% | 0.30 |
Manufacture of Leather | 5069 | 1.57% | 0.15 |
Manufacture of Timbers | 4629 | 1.44% | 0.48 |
Manufacture of Furniture | 1404 | 0.44% | 0.11 |
Manufacture of Paper | 15,660 | 4.86% | 1.29 |
Printing, Reproduction of Recording Media | 2014 | 0.63% | 0.11 |
Manufacture of Articles for Culture, Education and Sport Activities | 1535 | 0.48% | 0.09 |
Processing of Petroleum, Coking, Processing of Nuclear Fuel | 3806 | 1.18% | 1.73 |
Manufacture of Chemical Raw Material and Chemical Products | 38,717 | 12.02% | 0.67 |
Manufacture of Medicines | 12,912 | 4.01% | 0.28 |
Manufacture of Chemical Fiber | 1597 | 0.50% | 0.38 |
Manufacture of Rubber | 3861 | 1.20% | 0.38 |
Manufacture of Plastic | 8566 | 2.66% | 0.51 |
Manufacture of Nonmetallic Mineral Products | 40,137 | 12.46% | 2.21 |
Manufacture and Processing of Ferrous Metals | 10,440 | 3.24% | 0.64 |
Manufacture & Processing of Non-ferrous Metals | 7887 | 2.45% | 0.59 |
Manufacture of Metal Products | 13,048 | 4.05% | 0.16 |
Manufacture of General Purpose Machinery | 13,649 | 4.24% | 0.16 |
Manufacture of Special Purpose Machinery | 5531 | 1.72% | 0.11 |
Manufacture of Transport Equipment | 10,834 | 3.36% | 0.09 |
Manufacture of Electrical Machinery and Equipment | 9175 | 2.85% | 0.07 |
Manufacture of Communication Equipment | 8222 | 2.55% | 0.04 |
Manufacture of Measuring Instrument | 2030 | 0.63% | 0.06 |
Manufacture of Artwork | 3868 | 1.20% | 0.13 |
Recycling and Disposal of Waste | 439 | 0.14% | 0.21 |
Production and Supply of Electric and Heat Power | 4851 | 1.51% | 7.98 |
Production and Distribution of Gas | 142 | 0.04% | 1.46 |
Production and Distribution of Water | 340 | 0.11% | 0.20 |
Total | 322,212 | 100.00% | 0.79 |
Variables | # of Observations | Mean | Std. | Min | p25 | p50 | p75 | Max |
---|---|---|---|---|---|---|---|---|
Emission | 322,212 | 0.786 | 2.560 | 0.000 | 0.000 | 0.060 | 0.413 | 24.460 |
EGT | 322,212 | 0.840 | 0.367 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
EPThc | 322,212 | 0.767 | 0.422 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
SIZE | 322,212 | 17.990 | 1.648 | 14.740 | 16.780 | 17.840 | 19.070 | 22.290 |
ROA | 322,212 | 0.106 | 0.156 | 0.000 | 0.015 | 0.047 | 0.122 | 0.774 |
LEV | 322,212 | 0.546 | 0.260 | 0.023 | 0.359 | 0.556 | 0.733 | 1.539 |
AGE | 322,212 | 2.284 | 0.758 | 0.000 | 1.792 | 2.303 | 2.708 | 4.111 |
SOE | 322,212 | 0.156 | 0.363 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
PERGDP | 322,212 | 1.149 | 0.883 | −0.739 | 0.523 | 1.121 | 1.749 | 3.369 |
MKTIDX | 322,212 | 7.556 | 1.744 | 4.170 | 6.230 | 7.500 | 8.810 | 11.390 |
ERS | 322,212 | 0.386 | 0.166 | 0.126 | 0.250 | 0.386 | 0.464 | 0.991 |
Model (1) | Model (2) | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
EGT | 0.048 *** | 0.060 *** | 0.151 *** | 0.154 *** |
(2.68) | (3.32) | (4.51) | (4.56) | |
EGT × EPThc | −0.142 *** | −0.131 *** | ||
(−4.13) | (−3.73) | |||
SIZE | −0.143 *** | −0.141 *** | −0.143 *** | −0.141 *** |
(−33.61) | (−33.26) | (−33.61) | (−33.27) | |
ROA | −1.011 *** | −0.980 *** | −1.007 *** | −0.977 *** |
(−36.18) | (−35.08) | (−35.99) | (−34.96) | |
LEV | 0.140 *** | 0.130 *** | 0.139 *** | 0.129 *** |
(5.42) | (5.04) | (5.40) | (5.02) | |
AGE | 0.056 *** | 0.054 *** | 0.056 *** | 0.054 *** |
(5.90) | (5.65) | (5.92) | (5.66) | |
SOE | 0.068 *** | 0.068 *** | 0.069 *** | 0.069 *** |
(3.42) | (3.40) | (3.47) | (3.45) | |
PERGDP | −0.554 *** | −0.532 *** | ||
(−9.18) | (−8.69) | |||
MKTIDX | −0.100 *** | −0.102 *** | ||
(−9.25) | (−9.34) | |||
ERS | −0.300 *** | −0.320 *** | ||
(−10.12) | (−10.85) | |||
Constant | 3.206 *** | 4.685 *** | 3.212 *** | 4.683 *** |
(39.18) | (38.28) | (39.25) | (38.26) | |
Year FE | Yes | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
R-squared | 0.259 | 0.260 | 0.259 | 0.260 |
Observations | 322,212 | 322,212 | 322,212 | 322,212 |
First-Stage | Second-Stage | First-Stage | Second-Stage | |
---|---|---|---|---|
Dependent Variable | EGT | Emission | EGT | Emission |
(1) | (2) | (3) | (5) | |
4.806 *** | 7.788 *** | |||
(7.10) | (8.37) | |||
EPThc | −3.051 *** | |||
(−9.68) | ||||
EGTiv | 0.108 *** | 0.190 *** | ||
(13.00) | (16.81) | |||
EGTiv × EPThc | −0.135 *** | |||
(−14.24) | ||||
SIZE | −0.001 *** | −0.137 *** | −0.001 *** | −0.137 *** |
(−2.94) | (−30.75) | (−3.24) | (−29.96) | |
ROA | 0.039 *** | −1.170 *** | 0.039 *** | −1.136 *** |
(14.81) | (−28.53) | (14.97) | (−26.72) | |
LEV | −0.004 ** | 0.149 *** | −0.004 ** | 0.141 *** |
(−2.47) | (5.51) | (−2.54) | (5.08) | |
AGE | 0.000 | 0.052 *** | 0.000 | 0.056 *** |
(0.65) | (5.24) | (0.56) | (5.43) | |
SOE | −0.001 | 0.073 *** | −0.001 | 0.094 *** |
(−0.80) | (3.53) | (−0.55) | (4.35) | |
PERGDP | −0.014 ** | −0.539 *** | −0.012 ** | −0.016 |
(−2.37) | (−7.98) | (−2.05) | (−0.19) | |
MKTIDX | 0.022 *** | −0.197 *** | 0.022 *** | −0.244 *** |
(17.81) | (−10.66) | (17.80) | (−10.99) | |
ERS | 0.048 *** | −0.559 *** | 0.061 *** | −1.086 *** |
(10.90) | (−10.82) | (12.89) | (−11.62) | |
Year FE | Yes | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
Observations | 322,212 | 322,212 | 322,212 | 322,212 |
Underidentification test | 164.149 | 135.653 | ||
Cragg–Donald F-statistic | 352.804 | 143.934 | ||
Kleibergen–Paap rk F-statistic | 169.020 | 69.598 |
Dependent Variable | COD | IWG | IWW | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
EGT | 0.241 | 0.939 *** | 0.016 *** | 0.034 *** | 0.228 *** | 0.208 *** |
(1.09) | (2.59) | (4.64) | (7.45) | (6.12) | (3.44) | |
EGT × EPThc | −1.000 *** | −0.031 *** | 0.018 | |||
(−2.84) | (−6.67) | (0.28) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.147 | 0.147 | 0.320 | 0.320 | 0.219 | 0.262 |
Observations | 384,861 | 384,861 | 320,523 | 320,523 | 388,452 | 388,449 |
Excluding Observations with Operating Income Less than 20 Million CNY | Excluding Observations if Variable Emission = 0 | Excluding the Sample of 2013 | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
EGT | 0.014 | 0.104 *** | 0.078 *** | 0.149 *** | 0.051 ** | 0.148 *** |
(0.84) | (3.15) | (3.37) | (3.46) | (2.56) | (4.38) | |
EGT × EPThc | −0.107 *** | −0.101 ** | −0.144 *** | |||
(−3.19) | (−2.20) | (−4.10) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.316 | 0.291 | 0.277 | 0.277 | 0.266 | 0.266 |
Observations | 272,400 | 272,403 | 233,085 | 233,085 | 295,714 | 295,714 |
Logarithm of SO2 Emissions | Emission Scaled by Income | Firm Fixed Effects | ||||
---|---|---|---|---|---|---|
Dependent Variable | LnSO2 | Emission_Sale | Emission | |||
(1) | (2) | (3) | (4) | (5) | (6) | |
EGT | 0.100 *** | 0.187 *** | 0.055 *** | 0.161 *** | 0.027 * | 0.147 *** |
(3.48) | (4.03) | (2.88) | (4.45) | (1.67) | (4.84) | |
EGT × EPThc | −0.120 ** | −0.147 *** | −0.164 *** | |||
(−2.48) | (−3.92) | (−5.53) | ||||
TCP | ||||||
TCP_EPThc | ||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.297 | 0.297 | 0.255 | 0.255 | 0.747 | 0.748 |
Observations | 322,212 | 322,212 | 322,179 | 322,179 | 291,257 | 291,257 |
Panel A: Firm Level | |||||||||
Desulfurization Facilities | Desulfurization Capacity | Desulfurization Ratio | |||||||
LnDnum | LnDcap | RemoveRate | |||||||
(1) | (2) | (3) | (4) | (5) | (6) | ||||
EGT | −0.004 * | −0.023 *** | −0.105 *** | −0.146 *** | −0.033 *** | −0.064 *** | |||
(−1.78) | (−5.55) | (−6.75) | (−7.07) | (−3.42) | (−7.54) | ||||
EGT × EPThc | 0.030 *** | 0.068 *** | 0.045 *** | ||||||
(6.84) | (3.22) | (5.26) | |||||||
SIZE | 0.018 *** | 0.018 *** | 0.111 *** | 0.111 *** | 0.015 *** | 0.015 *** | |||
(32.13) | (32.15) | (28.46) | (28.46) | (12.03) | (12.03) | ||||
ROA | −0.004 | −0.005 | −0.083 *** | −0.084 *** | −0.019 | −0.020 | |||
(−1.21) | (−1.39) | (−2.62) | (−2.67) | (−1.35) | (−1.42) | ||||
LEV | 0.017 *** | 0.017 *** | 0.137 *** | 0.137 *** | 0.057 *** | 0.057 *** | |||
(7.23) | (7.24) | (7.81) | (7.81) | (8.40) | (8.43) | ||||
AGE | 0.004 *** | 0.004 *** | 0.015 ** | 0.015 ** | 0.005 ** | 0.004 ** | |||
(4.31) | (4.26) | (2.29) | (2.27) | (2.16) | (2.14) | ||||
SOE | 0.027 *** | 0.027 *** | 0.138 *** | 0.138 *** | 0.031 *** | 0.030 *** | |||
(11.26) | (11.14) | (8.50) | (8.45) | (5.63) | (5.58) | ||||
PERGDP | −0.006 | −0.011 * | 0.133 *** | 0.123 *** | 0.081 *** | 0.072 *** | |||
(−1.03) | (−1.74) | (3.69) | (3.38) | (3.34) | (2.96) | ||||
MKTIDX | 0.008 *** | 0.007 *** | 0.002 | 0.001 | −0.014 *** | −0.014 *** | |||
(5.90) | (5.75) | (0.18) | (0.13) | (−3.10) | (−3.03) | ||||
ERS | −0.006 | 0.002 | −0.003 | 0.014 | −0.176 *** | −0.169 *** | |||
(−1.05) | (0.34) | (−0.07) | (0.41) | (−12.32) | (−11.83) | ||||
Constant | −0.327 *** | −0.326 *** | −1.854 *** | −1.853 *** | −0.156 *** | −0.154 *** | |||
(−22.34) | (−22.31) | (−18.46) | (−18.45) | (−3.29) | (−3.26) | ||||
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | |||
Ind FE | Yes | Yes | Yes | Yes | Yes | Yes | |||
City FE | Yes | Yes | Yes | Yes | Yes | Yes | |||
R-squared | 0.174 | 0.175 | 0.156 | 0.156 | 0.096 | 0.096 | |||
Observations | 133,772 | 133,772 | 133,772 | 133,772 | 228,464 | 228,464 | |||
Panel B: Industry Level | |||||||||
Model (1) | Model (2) | ||||||||
High Exits of Dirty Industries | Low Exits of Dirty Industries | High Exits of Dirty Industries | Low Exits of Dirty Industries | ||||||
(1) | (2) | (3) | (4) | ||||||
EGT | 0.020 | 0.256 *** | 0.096 ** | 0.251 *** | |||||
(1.04) | (5.89) | (2.56) | (3.46) | ||||||
EGT × EPThc | −0.103 *** | 0.009 | |||||||
(−2.62) | (0.10) | ||||||||
SIZE | −0.135 *** | −0.153 *** | −0.135 *** | −0.153 *** | |||||
(−30.33) | (−20.35) | (−30.33) | (−20.35) | ||||||
ROA | −1.020 *** | −0.897 *** | −1.017 *** | −0.897 *** | |||||
(−32.16) | (−19.59) | (−32.03) | (−19.60) | ||||||
LEV | 0.111 *** | 0.152 *** | 0.110 *** | 0.152 *** | |||||
(3.95) | (3.38) | (3.94) | (3.38) | ||||||
AGE | 0.059 *** | 0.035 ** | 0.059 *** | 0.035 ** | |||||
(5.85) | (2.03) | (5.86) | (2.03) | ||||||
SOE | 0.032 | 0.118 *** | 0.033 | 0.118 *** | |||||
(1.54) | (3.42) | (1.58) | (3.43) | ||||||
PERGDP | −0.507 *** | −0.531 *** | −0.488 *** | −0.532 *** | |||||
(−7.90) | (−4.85) | (−7.43) | (−4.82) | ||||||
MKTIDX | −0.083 *** | −0.103 *** | −0.083 *** | −0.103 *** | |||||
(−6.77) | (−4.57) | (−6.80) | (−4.54) | ||||||
ERS | −0.291 *** | −0.702 *** | −0.312 *** | −0.702 *** | |||||
(−8.99) | (−7.20) | (−9.73) | (−7.20) | ||||||
Constant | 4.452 *** | 4.803 *** | 4.441 *** | 4.801 *** | |||||
(32.20) | (22.48) | (32.10) | (22.44) | ||||||
Year FE | Yes | Yes | Yes | Yes | |||||
Ind FE | Yes | Yes | Yes | Yes | |||||
City FE | Yes | Yes | Yes | Yes | |||||
R-squared | 0.243 | 0.297 | 0.243 | 0.297 | |||||
Observations | 219,967 | 100,757 | 219,967 | 100,757 |
Self-Constraints of EPT | Mention of Specific Pollutants of EPT | Mention of Specific Numerical Targets of EPT | |
---|---|---|---|
(1) | (2) | (3) | |
EGT × EPTsc | −0.246 *** | ||
(−5.77) | |||
EGT × EPTnsc | −0.068 * | ||
(−1.91) | |||
EPTsc | 0.164 *** | ||
(5.35) | |||
EGT × EPTp1 | −0.248 *** | ||
(−5.81) | |||
EGT × EPTp2 | −0.080 ** | ||
(−2.13) | |||
EGT × EPTp3 | −0.105 ** | ||
(−1.97) | |||
EGT × EPTp4 | −0.063 | ||
(−1.41) | |||
EPTp1 | 0.159 *** | ||
(4.17) | |||
EPTp2 | −0.016 | ||
(−0.46) | |||
EPTp3 | 0.086 * | ||
(1.69) | |||
EGT × EPTn1 | −0.175 *** | ||
(−4.60) | |||
EGT × EPTn2 | −0.055 | ||
(−1.44) | |||
EGT × EPTn3 | −0.049 | ||
(−1.12) | |||
EPTn1 | 0.069 ** | ||
(2.02) | |||
EPTn2 | 0.021 | ||
(0.59) | |||
EGT | 0.157 *** | 0.163 *** | 0.150 *** |
(4.63) | (4.77) | (4.48) | |
SIZE | −0.141 *** | −0.141 *** | −0.141 *** |
(−33.26) | (−33.27) | (−33.26) | |
ROA | −0.978 *** | −0.978 *** | −0.979 *** |
(−34.98) | (−35.01) | (−35.01) | |
LEV | 0.130 *** | 0.130 *** | 0.129 *** |
(5.03) | (5.04) | (5.01) | |
AGE | 0.054 *** | 0.054 *** | 0.054 *** |
(5.67) | (5.66) | (5.64) | |
SOE | 0.069 *** | 0.069 *** | 0.068 *** |
(3.46) | (3.45) | (3.43) | |
PERGDP | −0.542 *** | −0.538 *** | −0.544 *** |
(−8.83) | (−8.76) | (−8.84) | |
MKTIDX | −0.098 *** | −0.098 *** | −0.103 *** |
(−9.05) | (−8.98) | (−9.42) | |
ERS | −0.291 *** | −0.288 *** | −0.310 *** |
(−9.67) | (−9.53) | (−10.41) | |
Constant | 4.610 *** | 4.601 *** | 4.664 *** |
(37.66) | (37.35) | (37.74) | |
Year FE | Yes | Yes | Yes |
Ind FE | Yes | Yes | Yes |
City FE | Yes | Yes | Yes |
R-squared | 0.260 | 0.260 | 0.260 |
Observations | 322,212 | 322,212 | 322,212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Tian, C.; Pang, F. Multi-Tasking Policy Coordination and Corporate Environmental Performance: Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 923. https://doi.org/10.3390/ijerph20020923
Xie H, Tian C, Pang F. Multi-Tasking Policy Coordination and Corporate Environmental Performance: Evidence from China. International Journal of Environmental Research and Public Health. 2023; 20(2):923. https://doi.org/10.3390/ijerph20020923
Chicago/Turabian StyleXie, Hongji, Cunzhi Tian, and Fangying Pang. 2023. "Multi-Tasking Policy Coordination and Corporate Environmental Performance: Evidence from China" International Journal of Environmental Research and Public Health 20, no. 2: 923. https://doi.org/10.3390/ijerph20020923
APA StyleXie, H., Tian, C., & Pang, F. (2023). Multi-Tasking Policy Coordination and Corporate Environmental Performance: Evidence from China. International Journal of Environmental Research and Public Health, 20(2), 923. https://doi.org/10.3390/ijerph20020923