Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Catalysts
2.2. Fenton-Type Process Water Samples
2.3. Acute Toxicity Bioassays
2.3.1. Seed Germination—Lactuca sativa
2.3.2. Algal Growth—Selenastrum capricornutum
2.3.3. Acute Toxicity Bioassay with Daphnia magna
2.3.4. Determination of the Mutagenicity Index (MI) Using the Ames Test
2.4. Data Analysis
3. Results and Discussion
3.1. Effluent Characterization
3.2. Acute Toxicity Bioassays
Seed Germination—Lactuca sativa
3.3. Algal Growth—Selenastrum capricornutum
3.4. Acute Toxicity Bioassay with Daphnia magna
3.5. Mutagenicity Index (MI) Using the Ames Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and Personal Care Products as Emerging Contaminants: Need for Combined Treatment Strategy. J. Hazard. Mater. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.P.; Kumar, P.; Khan, M.A.; Singh, S. Emerging Electrochemical Portable Methodologies on Carbon-Based Electrocatalyst for the Determination of Pharmaceutical and Pest Control Pollutants: State of the Art. J. Environ. Chem. Eng. 2023, 11, 109023. [Google Scholar] [CrossRef]
- WHO. World Health Organization Antimicrobial Resistance; Department of Agriculture and Water Resources: Geneva, Switzerland, 2018. [Google Scholar]
- Madani, N.A.; Carpenter, D.O. Effects of Glyphosate and Glyphosate-Based Herbicides like RoundupTM on the Mammalian Nervous System: A Review. Environ. Res. 2022, 214, 113933. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Annamalai, P.; Parven, A.; Megharaj, M. Glyphosate Use in Urban Landscape Soils: Fate, Distribution, and Potential Human and Environmental Health Risks. J. Environ. Manag. 2021, 292, 112786. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A. Advanced Oxidation Process: A Remediation Technique for Organic and Non-Biodegradable Pollutant. Results Surf. Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- Domingues, E.; Jesus, F.; Alvim, M.; Cotas, C.; Mazierski, P.; Pereira, J.L.; Gomes, J. PPCPs Abatement Using TiO2-Based Catalysts by Photocatalytic Oxidation and Ozonation: The Effect of Nitrogen and Cerium Loads on the Degradation Performance and Toxicity Impact. Sci. Total Environ. 2023, 887, 164000. [Google Scholar] [CrossRef]
- Moradi, N.; Vazquez, C.L.; Hernandez, H.G.; Brdjanovic, D.; van Loosdrecht, M.C.M.; Rincón, F.R. Removal of Contaminants of Emerging Concern from the Supernatant of Anaerobically Digested Sludge by O3 and O3/H2O2: Ozone Requirements, Effects of the Matrix, and Toxicity. Environ. Res. 2023, 235, 116597. [Google Scholar] [CrossRef] [PubMed]
- Orege, J.I.; Oderinde, O.; Kifle, G.A.; Ibikunle, A.A.; Raheem, S.A.; Ejeromedoghene, O.; Okeke, E.S.; Olukowi, O.M.; Orege, O.B.; Fagbohun, E.O.; et al. Recent Advances in Heterogeneous Catalysis for Green Biodiesel Production by Transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef]
- Bohórquez Echeverry, P.; Campos Pinilla, C. Evaluación de Lactuca Sativa Y Selenastrum Capricornutum Como Indicadores de Toxicidad En Aguas. Univ. Sci. 2007, 12, 83–98. [Google Scholar]
- Chan-Keb, C.A.; Agraz-Hernández, C.M.; Perez-Balan, R.A.; Gómez-Solano, M.I.; Maldonado-Montiel, T.D.N.J.; Ake-Canche, B.; Gutiérrez-Alcántara, E.J. Acute Toxicity of Water and Aqueous Extract of Soils from Champotón River in Lactuca sativa L. Toxicol. Rep. 2018, 5, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Arias, J.; López, J.; Santos, L.; Venegas, C.; Duarte, M.; Ortíz-Ardila, A.; de Parra, N.; Campos, C.; Zambrano, C.C. Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water 2020, 12, 2523. [Google Scholar] [CrossRef]
- Blake, D.; Nar, M.; D’Souza, N.A.; Glenn, J.B.; Klaine, S.J.; Roberts, A.P. Treatment with Coated Layer Double Hydroxide Clays Decreases the Toxicity of Copper-Contaminated Water. Arch. Environ. Contam. Toxicol. 2014, 66, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez-Echeverry, P.; Duarte-Castañeda, M.; León-López, N.; Caicedo-Carrascal, F.; Vásquez-Vásquez, M.; Campos-Pinilla, C. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants. Univ. Sci. 2012, 17, 152–166. [Google Scholar] [CrossRef]
- Xu, J.; Wei, D.; Wang, F.; Bai, C.; Du, Y. Bioassay: A Useful Tool for Evaluating Reclaimed Water Safety. J. Environ. Sci. 2020, 88, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Sanches, M.V.; Freitas, R.; Oliva, M.; Cuccaro, A.; Monni, G.; Mezzetta, A.; Guazzelli, L.; Pretti, C. Toxicity of Ionic Liquids in Marine and Freshwater Microorganisms and Invertebrates: State of the Art. Environ. Sci. Pollut. Res. 2023, 30, 39288–39318. [Google Scholar] [CrossRef]
- Ames, B.N.; Lee, F.D.; Durston, W.E. An Improved Bacterial Test System for the Detection and Classification of Mutagens and Carcinogens. Proc. Natl. Acad. Sci. USA 1973, 70, 782–786. [Google Scholar] [CrossRef]
- Levy, D.D.; Zeiger, E.; Escobar, P.A.; Hakura, A.; van der Leede, B.M.; Kato, M.; Moore, M.M.; Sugiyama, K. Recommended Criteria for the Evaluation of Bacterial Mutagenicity Data (Ames Test). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 848, 403074. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Montes, M.; Molina, R.; Moreno, S. Modified Clays as Catalysts for the Catalytic Oxidation of Ethanol. Appl. Clay Sci. 2014, 95, 18–24. [Google Scholar] [CrossRef]
- Hincapié, G.; López, D.; Moreno, A. Infrared Analysis of Methanol Adsorption on Mixed Oxides Derived from Mg/Al Hydrotalcite Catalysts for Transesterification Reactions. Catal. Today 2018, 302, 277–285. [Google Scholar] [CrossRef]
- Yamagishi, T.; Yamaguchi, H.; Suzuki, S.; Horie, Y.; Tatarazako, N. Cell Reproductive Patterns in the Green Alga Pseudokirchneriella Subcapitata (=Selenastrum Capricornutum) and Their Variations under Exposure to the Typical Toxicants Potassium Dichromate and 3,5-DCP. PLoS ONE 2017, 12, e0171259. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Thakur, I.S.; Kaushik, A. Bioassays for Toxicological Risk Assessment of Landfill Leachate: A Review. Ecotoxicol. Environ. Saf. 2017, 141, 259–270. [Google Scholar] [CrossRef]
- Dutka, B. Short-Term Root Elongation Toxicity Bioassay. Methods for Toxicological Analysis of Waters. In Wastewaters and Sediments; National Water Research Institute (NWRI), Environment Canada: Burlington, ON, USA, 1989. [Google Scholar]
- Farré, M.; Barceló, D. Toxicity Testing of Wastewater and Sewage Sludge by Biosensors, Bioassays and Chemical Analysis. TrAC Trends Anal. Chem. 2003, 22, 299–310. [Google Scholar] [CrossRef]
- EPA. Test Method Green Alga, Selenastrum capricornutum, Growth Test. In Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms; EPA/600/ 4-91/002; EPA: Washington, DC, USA, 1994. [Google Scholar]
- Cifuentes, A.; Silva, J.; Bay-Schmith, E.; Larrain, A. Selección de Cepas de Microalgas Para Ser Utilizadas En Bioensayos de Toxicidad. Gayana Ocean. 1998, 6, 1–9. [Google Scholar]
- Dutka, B. Daphnia Magna 48 Hours Static Bioassay Method for Acute Toxicity in Environmental Samples. In Methods for Microbiological and Toxicological Analysis of Water, Wastewaters and Sediments; Dutka, B., Ed.; National Water Research Institute (NWRI) Environment Canada: Burlington, ON, Canada, 1989; pp. 55–59. [Google Scholar]
- Williams, L.R.; Preston, J.E. Interim Procedures for Conducting the Salmonella/Microsomal Mutagenicity Assay (Ames Test); Environmental Protection Agency, Ed.; US Environmental Protection Agency, Environmental Monitoring Systems Laboratory: Las Vegas, NV, USA, 1983. [Google Scholar]
- Ames, B.N.; Kammen, H.O.; Yamasaki, E. Hair Dyes Are Mutagenic: Identification of a Variety of Mutagenic Ingredients. Proc. Natl. Acad. Sci. USA 1975, 72, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Rede, D.; Santos, L.H.M.L.M.; Ramos, S.; Oliva-Teles, F.; Antão, C.; Sousa, S.R.; Delerue-Matos, C. Individual and Mixture Toxicity Evaluation of Three Pharmaceuticals to the Germination and Growth of Lactuca Sativa Seeds. Sci. Total Environ. 2019, 673, 102–109. [Google Scholar] [CrossRef]
- Busto, R.V.; Roberts, J.; Hunter, C.; Escudero, A.; Helwig, K.; Coelho, L.H.G. Mechanistic and Ecotoxicological Studies of Amoxicillin Removal through Anaerobic Degradation Systems. Ecotoxicol. Environ. Saf. 2020, 192, 110207. [Google Scholar] [CrossRef] [PubMed]
- Qutob, M.; Shakeel, F.; Alam, P.; Alshehri, S.; Ghoneim, M.M.; Rafatullah, M. A Review of Radical and Non-Radical Degradation of Amoxicillin by Using Different Oxidation Process Systems. Environ. Res. 2022, 214, 113833. [Google Scholar] [CrossRef] [PubMed]
- Caverzan, A.; Passaia, G.; Rosa, S.B.; Ribeiro, C.W.; Lazzarotto, F.; Margis-Pinheiro, M. Plant Responses to Stresses: Role of Ascorbate Peroxidase in the Antioxidant Protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Palma, J.M.; Gómez, M.; Del Río, L.A.; Sandalio, L.M. Cadmium Causes the Oxidative Modification of Proteins in Pea Plants. Plant Cell Environ. 2002, 25, 677–686. [Google Scholar] [CrossRef]
- Blackburn, L.G.; Boutin, C. Subtle Effects of Herbicide Use in the Context of Genetically Modified Crops: A Case Study with Glyphosate (Roundup®). Ecotoxicology 2003, 12, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Potential Toxic Effects of Glyphosate and Its Commercial Formulations below Regulatory Limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Utzig, L.M.; Lima, R.M.; Gomes, M.F.; Ramsdorf, W.A.; Martins, L.R.R.; Liz, M.V.; Freitas, A.M. Ecotoxicity Response of Chlorpyrifos in Aedes Aegypti Larvae and Lactuca Sativa Seeds after UV/H2O2 and UVC Oxidation. Ecotoxicol. Environ. Saf. 2019, 169, 449–456. [Google Scholar] [CrossRef]
- Skanes, B.; Warriner, K.; Prosser, R.S. Hazard Assessment Using an In-Silico Toxicity Assessment of the Transformation Products of Boscalid, Pyraclostrobin, Fenbuconazole and Glyphosate Generated by Exposure to an Advanced Oxidative Process. Toxicol. In Vitro 2021, 70, 105049. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Vargas, A.; Ramírez-Sierra, C.F.; Duarte Castañeda, M.; Beltrán-Villarraga, M.; Medina-Córdoba, L.K.; Florido-Cuellar, A.E.; Cardona-Bedoya, J.A.; Campos-Pinilla, M.C.; Pedroza-Rodriguez, A.M. A Novel Textile Wastewater Treatment Using Ligninolytic Co-Culture and Photocatalysis with TiO2. Univ. Sci. 2018, 23, 437–464. [Google Scholar] [CrossRef]
- Alcalá-Delgado, A.G.; Lugo-Lugo, V.; Linares-Hernández, I.; Martínez-Miranda, V.; Fuentes-Rivas, R.M.; Ureña-Nuñez, F. Industrial Wastewater Treated by Galvanic, Galvanic Fenton, and Hydrogen Peroxide Systems. J. Water Process Eng. 2018, 22, 1–12. [Google Scholar] [CrossRef]
- Pérez-Parada, A.; Agüera, A.; Gómez-Ramos, M.D.; García-Reyes, J.F.; Heinzen, H.; Fernández-Alba, A.R. Behavior of Amoxicillin in Wastewater and River Water: Identification of Its Main Transformation Products by Liquid Chromatography/Electrospray Quadrupole Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Aryee, A.A.; Han, R.; Qu, L. Occurrence, Detection and Removal of Amoxicillin in Wastewater: A Review. J. Clean. Prod. 2022, 368, 133140. [Google Scholar] [CrossRef]
- Fu, L.; Huang, T.; Wang, S.; Wang, X.; Su, L.; Li, C.; Zhao, Y. Toxicity of 13 Different Antibiotics towards Freshwater Green Algae Pseudokirchneriella Subcapitata and Their Modes of Action. Chemosphere 2017, 168, 217–222. [Google Scholar] [CrossRef]
- Fernández, C.; Asselborn, V.; Parodi, E.R. Toxic Effects of Chlorpyrifos, Cypermethrin and Glyphosate on the Non-Target Organism Selenastrum Capricornutum (Chlorophyta). Acad. Bras. Cienc. 2021, 93, 1–17. [Google Scholar] [CrossRef] [PubMed]
- WHO. Environmental Health Criteria 159 (Glyphosate); World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Fernández-Alba, A.R.; Hernando, D.; Agüera, A.; Cáceres, J.; Malato, S. Toxicity Assays: A Way for Evaluating AOPs Efficiency. Water Res. 2002, 36, 4255–4262. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of Water and Wastewater by Advanced Oxidation Processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Reno, U.; Regaldo, L.; Vidal, E.; Mariani, M.; Zalazar, C.; Gagneten, A.M. Water Polluted with Glyphosate Formulations: Effectiveness of a Decontamination Process Using Chlorella Vulgaris Growing as Bioindicator. J. Appl. Phycol. 2016, 28, 2279–2286. [Google Scholar] [CrossRef]
- Koba-Ucun, O.; Ölmez Hanci, T.; Arslan-Alaton, I.; Arefi-Oskoui, S.; Khataee, A.; Kobya, M.; Orooji, Y. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules 2021, 26, 395. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Lin, K.; Chen, J.; Hu, Q.; Yang, B.; Li, J.; Gan, J. Causes and Mechanisms on the Toxicity of Layered Double Hydroxide (LDH) to Green Algae Scenedesmus Quadricauda. Sci. Total Environ. 2018, 635, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, N.I.; MacCormack, T.J. Ecophysiological Perspectives on Engineered Nanomaterial Toxicity in Fish and Crustaceans. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2017, 193, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Buchman, J.T.; Hudson-Smith, N.V.; Landy, K.M.; Haynes, C.L. Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. ACC Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Déniel, M.; Errien, N.; Daniel, P.; Caruso, A.; Lagarde, F. Current Methods to Monitor Microalgae-Nanoparticle Interaction and Associated Effects. Aquat. Toxicol. 2019, 217, 105311. [Google Scholar] [CrossRef]
- Fairchild, J.F.; Ruessler, D.S.; Haverland, P.S.; Carlson, A.R. Comparative Sensitivity of Selenastrum Capricornutum and Lemna Minor to Sixteen Herbicides. Arch. Environ. Contam. Toxicol. 1997, 32, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-H.; Kim, K.; Hwang, S.-J. Differential Effects of the Allelochemical Juglone on Growth of Harmful and Non-Target Freshwater Algae. Appl. Sci. 2020, 10, 2873. [Google Scholar] [CrossRef]
- Yisa, A.G.; Chia, M.A.; Gadzama, I.M.K.; Oniye, S.J.; Sha’aba, R.I.; Gauje, B. Immobilization, Oxidative Stress and Antioxidant Response of Daphnia Magna to Amoxicillin and Ciprofloxacin. Environ. Toxicol. Pharmacol. 2023, 98, 104078. [Google Scholar] [CrossRef] [PubMed]
- Mezzelani, M.; Regoli, F. The Biological Effects of Pharmaceuticals in the Marine Environment. Ann. Rev. Mar. Sci. 2022, 14, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Cuhra, M.; Traavik, T.; Bøhn, T. Clone- and Age-Dependent Toxicity of a Glyphosate Commercial Formulation and Its Active Ingredient in Daphnia Magna. Ecotoxicology 2013, 22, 251–262. [Google Scholar] [CrossRef]
- Janssens, L.; Stoks, R. Stronger Effects of Roundup than Its Active Ingredient Glyphosate in Damselfly Larvae. Aquat. Toxicol. 2017, 193, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, G.; Hansson, L.-A.; Montenegro, K. Reduced Grazing Rates in Daphnia Pulex Caused by Contaminants: Implications for Trophic Cascades. Environ. Toxicol. Chem. 2004, 23, 2641. [Google Scholar] [CrossRef]
- Dubuc, J.; Coudert, L.; Lefebvre, O.; Neculita, C.M. Electro-Fenton Treatment of Contaminated Mine Water to Decrease Thiosalts Toxicity to Daphnia Magna. Sci. Total Environ. 2022, 835, 155323. [Google Scholar] [CrossRef]
- Rueda-Márquez, J.J.; Levchuk, I.; Manzano, M.; Sillanpää, M. Toxicity Reduction of Industrial and Municipal Wastewater by Advanced Oxidation Processes (Photo-Fenton, UVC/H2O2, Electro-Fenton and Galvanic Fenton): A Review. Catalysts 2020, 10, 612. [Google Scholar] [CrossRef]
- Piazza, V.; Uheida, A.; Gambardella, C.; Garaventa, F.; Faimali, M.; Dutta, J. Ecosafety Screening of Photo-Fenton Process for the Degradation of Microplastics in Water. Front. Mar. Sci. 2022, 8, 791431. [Google Scholar] [CrossRef]
- Leelapongwattana, S.; Bordeerat, N.K. Induction of Genotoxicity and Mutagenic Potential of Heavy Metals in Thai Occupational Workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 856–857, 503231. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Bielen, A.; Šimatović, A.; Kosić-Vukšić, J.; Senta, I.; Ahel, M.; Babić, S.; Jurina, T.; González Plaza, J.J.; Milaković, M.; Udiković-Kolić, N. Negative Environmental Impacts of Antibiotic-Contaminated Effluents from Pharmaceutical Industries. Water Res. 2017, 126, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Thorne, D.; Crooks, I.; Hollings, M.; Seymour, A.; Meredith, C.; Gaca, M. The Mutagenic Assessment of an Electronic-Cigarette and Reference Cigarette Smoke Using the Ames Assay in Strains TA98 and TA100. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 812, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Huang, Z.; Zhou, F.; Li, Y.; Bi, X.; Bian, Q.; Sun, S. Heterogeneous Fenton-like Degradation of Amoxicillin Using MOF-Derived Fe0 Embedded in Mesoporous Carbon as an Effective Catalyst. J. Clean. Prod. 2021, 313, 127754. [Google Scholar] [CrossRef]
- Pan, G.; Sun, Z. Cu-Doped g-C3N4 Catalyst with Stable Cu0 and Cu+ for Enhanced Amoxicillin Degradation by Heterogeneous Electro-Fenton Process at Neutral PH. Chemosphere 2021, 283, 131257. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.P.; Popelier, P.L.A.; Harvey, J.; Giddings, A.; Foster, G.; Kranz, M. Evaluation of Aromatic Amines with Different Purities and Different Solvent Vehicles in the Ames Test. Regul. Toxicol. Pharmacol. 2015, 71, 244–250. [Google Scholar] [CrossRef]
- Egorova, O.V.; Ilyushina, N.A.; Rakitskii, V.N. Mutagenicity Evaluation of Pesticide Analogs Using Standard and 6-Well Miniaturized Bacterial Reverse Mutation Tests. Toxicol. In Vitro 2020, 69, 105006. [Google Scholar] [CrossRef]
- Iqbal, M.; Nisar, J. Cytotoxicity and Mutagenicity Evaluation of Gamma Radiation and Hydrogen Peroxide Treated Textile Effluents Using Bioassays. J. Environ. Chem. Eng. 2015, 3, 1912–1917. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhatti, I.A. Gamma Radiation/H2O2 Treatment of a Nonylphenol Ethoxylates: Degradation, Cytotoxicity, and Mutagenicity Evaluation. J. Hazard. Mater. 2015, 299, 351–360. [Google Scholar] [CrossRef]
- Stalter, D.; Magdeburg, A.; Oehlmann, J. Comparative Toxicity Assessment of Ozone and Activated Carbon Treated Sewage Effluents Using an in Vivo Test Battery. Water Res. 2010, 44, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Toxicity Changes of Wastewater during Various Advanced Oxidation Processes Treatment: An Overview. J. Clean. Prod. 2021, 315, 128202. [Google Scholar] [CrossRef]
Catalyst— Pollutant | % Contaminant Removal | Active Phase Leaching mg/L | Final Reaction pH | % Inhibition L. sativa | % Inhibition S. capricornutum | % Lethality D. magna | Mutagenicity Index | |
---|---|---|---|---|---|---|---|---|
TA 98 | TA 100 | |||||||
DC-Fe Amx | 89 | 0.9 | 6.90 | 34.69 | 100 | 100 | <2 | <2 |
DC-Cu Amx | 80 | 8.2 | 7.65 | 8.94 | 100 | 100 | <2 | <2 |
LDH-Fe Amx | 100 | 0.06 | 8.48 | 42.76 | 100 | 100 | >2 | >2 |
LDH-Cu Amx | 100 | 0.6 | 8.56 | 36.65 | 100 | 100 | <2 | >2 |
AMX 10 mg/L | - | - | - | 51.86 | 13 | 0 | <2 | <2 |
DC-Fe Gly | 26 | 0.2 | 7.22 | 54.68 | 100 | 100 | <2 | <2 |
DC-Cu Gly | 88 | 3.9 | 7.23 | 58.04 | 100 | 100 | <2 | <2 |
LDH-Fe Gly | 30 | 0.6 | 6.75 | 48.89 | 100 | 100 | <2 | <2 |
LDH-Cu Gly | 71 | 0.3 | 6.98 | 40 | 100 | 100 | <2 | <2 |
GLY 5 mg/L | - | - | - | 43.23 | 100 | 100 | <2 | <2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo, L.; Venegas, C.; Guarin Trujillo, E.; Diaz Granados-Ramírez, M.A.; Martin, A.; Vesga, F.-J.; Pérez-Flórez, A.; Celis, C. Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. Int. J. Environ. Res. Public Health 2023, 20, 7172. https://doi.org/10.3390/ijerph20247172
Lugo L, Venegas C, Guarin Trujillo E, Diaz Granados-Ramírez MA, Martin A, Vesga F-J, Pérez-Flórez A, Celis C. Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. International Journal of Environmental Research and Public Health. 2023; 20(24):7172. https://doi.org/10.3390/ijerph20247172
Chicago/Turabian StyleLugo, Lorena, Camilo Venegas, Elizabeth Guarin Trujillo, Maria Alejandra Diaz Granados-Ramírez, Alison Martin, Fidson-Juarismy Vesga, Alejandro Pérez-Flórez, and Crispín Celis. 2023. "Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate" International Journal of Environmental Research and Public Health 20, no. 24: 7172. https://doi.org/10.3390/ijerph20247172
APA StyleLugo, L., Venegas, C., Guarin Trujillo, E., Diaz Granados-Ramírez, M. A., Martin, A., Vesga, F. -J., Pérez-Flórez, A., & Celis, C. (2023). Ecotoxicology Evaluation of a Fenton—Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. International Journal of Environmental Research and Public Health, 20(24), 7172. https://doi.org/10.3390/ijerph20247172