Influence of Interocular Differences and Alcohol Consumption on Binocular Visual Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Filters
2.3. Procedures and Alcohol Consumption
2.4. Visual Function
2.4.1. Visual Acuity and Contrast Sensitivity
2.4.2. Stereoacuity
2.4.3. Visual Discrimination Capacity
2.5. Assessment of Ocular Parameters
2.5.1. Retinal Image Quality
2.5.2. Straylight
2.6. Interocular Differences
2.7. Binocular Summation
2.8. Statistical Analysis
3. Results
3.1. Monocular Visual Function
3.2. Binocular Visual Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-156563-9. [Google Scholar]
- Khan, S.A.; Timney, B. Alcohol slows interhemispheric transmission, increases the flash-lag effect, and prolongs masking: Evidence for a slowing of neural processing and transmission. Vis. Res. 2007, 47, 1821–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watten, R.G.; Lie, I. Visual functions and acute ingestion of alcohol. Ophthalmic Physiol. Opt. 1996, 16, 460–466. [Google Scholar] [CrossRef]
- Pearson, P.; Timney, B. Effects of moderate blood alcohol concentrations on spatial and temporal contrast sensitivity. J. Stud. Alcohol 1998, 59, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Casares-Lopez, M.; Castro-Torres, J.J.; Martino, F.; Ortiz-Peregrina, S.; Ortiz, C.; Anera, R.G. Contrast sensitivity and retinal straylight after alcohol consumption: Effects on driving performance. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Quintyn, J.C.; Massy, J.; Quillard, M.; Brasseur, G. Effects of low alcohol consumption on visual evoked potential, visual field and visual contrast sensitivity. Acta Ophthalmol. Scand. 1999, 77, 23–26. [Google Scholar] [CrossRef]
- Nicholson, M.E.; Andre, J.T.; Tyrrell, R.A.; Wang, M.Q.; Leibowitz, H.W. Effects of moderate dose alcohol on visual contrast sensitivity for stationary and moving targets. J. Stud. Alcohol 1995, 56, 261–266. [Google Scholar] [CrossRef]
- Timney, B.; Ferreira, M.; Matson, S. A Signal Detection Analysis of the Effects of Alcohol on Visual Contrast Sensitivity. Perception 2016, 45, 1358–1374. [Google Scholar] [CrossRef]
- Castro, J.J.; Ortiz, C.; Pozo, A.M.; Anera, R.G.; Soler, M. A visual test based on a freeware software for quantifying and displaying night-vision disturbances: Study in subjects after alcohol consumption. Theor. Biol. Med. Model. 2014, 11, S1. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.J.; Pozo, A.M.; Rubino, M.; Anera, R.G.; Jimenez del Barco, L. Retinal-Image Quality and Night-Vision Performance after Alcohol Consumption. J. Ophthalmol. 2014, 2014, 704823. [Google Scholar] [CrossRef] [Green Version]
- Martino, F.; Castro-Torres, J.J.; Casares-Lopez, M.; Ortiz-Peregrina, S.; Ortiz, C.; Anera, R.G. Deterioration of binocular vision after alcohol intake influences driving performance. Sci. Rep. 2021, 11, 8904. [Google Scholar] [CrossRef]
- Brecher, G.A.; Hartman, A.P.; Leonard, D.D. Effect of alcohol on binocular vision. Am. J. Ophthalmol. 1955, 39, 44–52. [Google Scholar] [CrossRef]
- Hogan, R.E.; Linfield, P.B. The effects of moderate doses of ethanol on heterophoria and other aspects of binocular vision. Ophthalmic Physiol. Opt. 1983, 3, 21–31. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Casares-Lopez, M.; Ortiz, C.; Castro-Torres, J.J.; Martino, F.; Jimenez, J.R. Comparison of the effects of alcohol and cannabis on visual function and driving performance. Does the visual impairment affect driving? Drug Alcohol Depend. 2022, 237, 109538. [Google Scholar] [CrossRef]
- Charlton, S.G.; Starkey, N.J. Driving while drinking: Performance impairments resulting from social drinking. Accid. Anal. Prev. 2015, 74, 210–217. [Google Scholar] [CrossRef]
- Sheedy, J.E.; Bailey, I.L.; Buri, M.; Bass, E. Binocular vs. monocular task-performance. Am. J. Optom. Physiol. Opt. 1986, 63, 839–846. [Google Scholar] [CrossRef]
- Kulp, M.T.; Schmidt, P.P. Visual predictors of reading performance in kindergarten and first grade children. Optom. Vis. Sci. 1996, 73, 255–262. [Google Scholar] [CrossRef]
- O’Connor, A.R.; Birch, E.E.; Anderson, S.; Draper, H.; Grp, F.R. The Functional Significance of Stereopsis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2019–2023. [Google Scholar] [CrossRef]
- O’Connor, A.R.; Birch, E.E.; Anderson, S.; Draper, H. Relationship between Binocular Vision, Visual Acuity, and Fine Motor Skills. Optom. Vis. Sci. 2010, 87, 942–947. [Google Scholar] [CrossRef]
- Fielder, A.R.; Moseley, M.J. Does stereopsis matter in humans? Eye 1996, 10, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Home, R. Binocular summation—study of contrast sensitivity, visual-acuity and recognition. Vis. Res. 1978, 18, 579–585. [Google Scholar] [CrossRef]
- Blake, R.; Sloane, M.; Fox, R. Further developments in binocular summation. Percept. Psychophys. 1981, 30, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Sabesan, R.; Zheleznyak, L.; Yoon, G. Binocular visual performance and summation after correcting higher order aberrations. Biomed. Opt. Express 2012, 3, 3176–3189. [Google Scholar] [CrossRef] [PubMed]
- Heravian, J.S.; Jenkins, T.C.A.; Douthwaite, W.A. Binocular summation in visually evoked-responses and visual-acuity. Ophthalmic Physiol. Opt. 1990, 10, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.H.; Meese, T.S.; Mansouri, B.; Hess, R.F. Binocular summation of contrast remains intact in strabismic amblyopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5332–5338. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.J.; Soler, M.; Ortiz, C.; Jimenez, J.R.; Anera, R.G. Binocular summation and visual function with induced anisocoria and monovision. Biomed. Opt. Express 2016, 7, 4250–4262. [Google Scholar] [CrossRef] [Green Version]
- Martino, F.; Castro-Torres, J.J.; Casares-Lopez, M.; Ortiz-Peregrina, S.; Ortiz, C.; Jimenez, J.R. Effect of interocular differences on binocular visual performance after inducing forward scattering. Ophthalmic Physiol. Opt. 2022, 42, 730–743. [Google Scholar] [CrossRef]
- Saladin, J.J. Stereopsis from a performance perspective. Optom. Vis. Sci. 2005, 82, 186–205. [Google Scholar] [CrossRef]
- Castro, J.J.; Jimenez, J.R.; Ortiz, C.; Alarcon, A. Retinal-image quality and maximum disparity. J. Mod. Opt. 2010, 57, 103–106. [Google Scholar] [CrossRef]
- Westheimer, G. Clinical evaluation of stereopsis. Vis. Res. 2013, 90, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.R.; Castro, J.J.; Jimenez, R.; Hita, E. Interocular differences in higher-order aberrations on binocular visual performance. Optom. Vis. Sci. 2008, 85, 174–179. [Google Scholar] [CrossRef]
- Glennerster, A.; Rogers, B.J.; Bradshaw, M.F. Cues to viewing distance for stereoscopic depth constancy. Perception 1998, 27, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Martino, F.; Pereira-da-Mota, A.F.; Amorim-de-Sousa, A.; Castro-Torres, J.J.; González-Meijome, J.M. Pupil size effect on binocular summation for visual acuity and light disturbance. Int. Ophthalmol. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.J.; Jimenez, J.R.; Hita, E.; Ortiz, C. Influence of interocular differences in the Strehl ratio on binocular summation. Ophthalmic Physiol. Opt. 2009, 29, 370–374. [Google Scholar] [CrossRef]
- Jimenez, J.R.; Castro, J.; Salas, C.; Jimenez, R.; Anera, R. Effect of interocular differences in higher-order aberrations on binocular visual performance. Perception 2007, 36, 68. [Google Scholar]
- Chang, Y.-H.; Lee, J.B.; Kim, N.S.; Lee, D.W.; Chang, J.H.; Han, S.-H. The effects of interocular differences in retinal illuminance on vision and binocularity. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.R.; Anera, R.G.; Jimenez, R.; Salas, C. Impact of interocular differences in corneal asphericity on binocular summation. Am. J. Ophthalmol. 2003, 135, 279–284. [Google Scholar] [CrossRef]
- Schor, C.; Heckmann, T. Interocular differences in contrast and spatial-frequency—effects on stereopsis and fusion. Vis. Res. 1989, 29, 837. [Google Scholar] [CrossRef]
- So, K.Y.; Tran, T.; Craven, A.; Tran, K.; Wu, T.H.; Levi, D.M.; Li, R.W. Interocular acuity differences alter the size tuning function of stereopsis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 752. [Google Scholar]
- Castro, J.J.; Jimenez, J.R.; Ortiz, C.; Casares-Lopez, M.; Ortiz-Peregrina, S. The range of stereoscopic perception: Influence of binocular summation, interocular differences in optical quality and halo perception. J. Mod. Opt. 2017, 64, 1307–1314. [Google Scholar] [CrossRef]
- Han, C.; He, Z.J.; Ooi, T.L. Effect of Interocular Contrast Difference on Stereopsis in Observers with Sensory Eye Dominance. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3178–3186. [Google Scholar] [CrossRef]
- Zhao, J.-l.; Xiao, F.; Zhao, H.-X.; Dai, Y.; Zhang, Y.-D. Impact of intraocular scatter on stereopsis. Vis. Res. 2018, 153, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.R.; Castro, J.J.; Hita, E.; Anera, R.G. Upper disparity limit after LASIK. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2008, 25, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.J.; Ortiz, C.; Jimenez, J.R.; Ortiz-Peregrina, S.; Casares-Lopez, M. Stereopsis Simulating Small-Aperture Corneal Inlay and Monovision Conditions. J. Refract. Surg. 2018, 34, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.R.B.; Neves, H.I.F.; Lopes-Ferreira, D.P.; Jorge, J.M.M.; Gonzalez-Meijome, J.M. Adaptation to Multifocal and Monovision Contact Lens Correction. Optom. Vis. Sci. 2013, 90, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Arora, I.; Azar, D.T. Success of monovision in presbyopes: Review of the literature and potential applications to refractive surgery. Surv. Ophthalmol. 1996, 40, 491–499. [Google Scholar] [CrossRef]
- van den Berg, T.J.T.P.; Franssen, L.; Kruijt, B.; Coppens, J.E. History of ocular straylight measurement: A review. Z. Fur Med. Phys. 2013, 23, 6–20. [Google Scholar] [CrossRef]
- Abrahamsson, M.; Sjostrand, J. Impairment of contrast sensitivity function (csf) as a measure of disability glare. Investig. Ophthalmol. Vis. Sci. 1986, 27, 1131–1136. [Google Scholar]
- Patterson, E.J.; Bargary, G.; Barbur, J.L. Understanding disability glare: Light scatter and retinal illuminance as predictors of sensitivity to contrast. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2015, 32, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Fan-Paul, N.I.; Li, J.; Miller, J.S.; Florakis, G.J. Night vision disturbances after corneal refractive surgery. Surv. Ophthalmol. 2002, 47, 533–546. [Google Scholar] [CrossRef]
- Obrart, D.P.S.; Lohmann, C.P.; Fitzke, F.W.; Klonos, G.; Corbett, M.C.; Kerrmuir, M.G.; Marshall, J. Disturbances in night-vision after excimer-laser photorefractive keratectomy. Eye 1994, 8, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.J.; Saleh, G.M.; Litwin, A.S.; Sciscio, A.; Beckingsale, A.B.; Fitzke, F.W. Glare and halo with refractive correction. Clin. Exp. Optom. 2008, 91, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.J.; Jimenez, J.R.; Ortiz, C.; Alarcon, A.; Anera, R.G. New testing software for quantifying discrimination capacity in subjects with ocular pathologies. J. Biomed. Opt. 2011, 16, 015001. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.R.; Ortiz, C.; Perez-Ocon, F.; Castro, J.J. Objective and subjective optical-quality measurements in subjects with keratitis and age-related macular degeneration. J. Mod. Opt. 2008, 55, 2371–2380. [Google Scholar] [CrossRef]
- Jimenez, J.R.; Ortiz, C.; Perez-Ocon, F.; Jimenez, R. Optical Image Quality and Visual Performance for Patients with Keratitis. Cornea 2009, 28, 783–788. [Google Scholar] [CrossRef]
- Nguyen, D.-D.; Luo, L.-J.; Yang, C.-J.; Lai, J.-Y. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS Nano 2023, 17, 168–183. [Google Scholar] [CrossRef]
- Ortiz, C.; Jimenez, J.R.; Perez-Ocon, F.; Castro, J.J.; Anera, R.G. Retinal-Image Quality and Contrast-Sensitivity Function in Age-Related Macular Degeneration. Curr. Eye Res. 2010, 35, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Pennos, A.; Ginis, H.; Hervella, L.; Villegas, E.A.; Canizares, B.; Maria Marin, J.; Pallikaris, I.; Artal, P. Optical Measurement of Straylight in Eyes With Cataract. J. Refract. Surg. 2016, 32, 846–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz Filgueira, C.; Sanchez, R.F.; Issolio, L.A.; Colombo, E.M. Straylight and Visual Quality on Early Nuclear and Posterior Subcapsular Cataracts. Curr. Eye Res. 2016, 41, 1209–1215. [Google Scholar] [CrossRef]
- Pardhan, S.; Gilchrist, J. Binocular contrast summation and inhibition in amblyopia—the influence of the interocular difference on binocular contrast sensitivity. Doc. Ophthalmol. 1992, 82, 239–248. [Google Scholar] [CrossRef]
- Holmes, J.M.; Clarke, M.P. Amblyopia. Lancet 2006, 367, 1343–1351. [Google Scholar] [CrossRef]
- de Wit, G.C.; Franssen, L.; Coppens, J.E.; van den Berg, T. Simulating the straylight effects of cataracts. J. Cataract Refract. Surg. 2006, 32, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ikaunieks, G.; Colomb, M.; Ozolinsh, M. Light scattering in artificial fog and simulated with light scattering filter. Ophthalmic Physiol. Opt. 2009, 29, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.M.; Archer, S.M.; Artal, P. Optical Characterization of Bangerter Foils. Investig. Ophthalmol. Vis. Sci. 2010, 51, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.L.; Archer, S.M.; Furr, B.A.; Martonyi, E.J.; Del Monte, M.A. Bangerter foils in the treatment of moderate amblyopia. Am. Orthopt. J. 2001, 51, 84–91. [Google Scholar] [CrossRef]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; Delafuente, J.R.; Grant, M. Development of the alcohol-use disorders identification test (audit)—who collaborative project on early detection of persons with harmful alcohol-consumption-2. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef]
- Verhoog, S.; Dopmeijer, J.M.; de Jonge, J.M.; van der Heijde, C.M.; Vonk, P.; Bovens, R.; de Boer, M.R.; Hoekstra, T.; Kunst, A.E.; Wiers, R.W.; et al. The Use of the Alcohol Use Disorders Identification Test—Consumption as an Indicator of Hazardous Alcohol Use among University Students. Eur. Addict. Res. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Lopes-Ferreira, D.; Neves, H.; Queiros, A.; Faria-Ribeiro, M.; Peixoto-de-Matos, S.C.; Gonzalez-Meijome, J.M. Ocular Dominance and Visual Function Testing. Biomed Res. Int. 2013, 2013, 238943. [Google Scholar] [CrossRef] [Green Version]
- Castro-Torres, J.J.; Martino, F.; Casares-Lopez, M.; Ortiz-Peregrina, S.; Ortiz, C. Visual performance after the deterioration of retinal image quality: Induced forward scattering using Bangerter foils and fog filters. Biomed. Opt. Express 2021, 12, 2902–2918. [Google Scholar] [CrossRef]
- Rutstein, R.P.; Quinn, G.E.; Lazar, E.L.; Beck, R.W.; Bonsall, D.J.; Cotter, S.A.; Crouch, E.R.; Holmes, J.M.; Hoover, D.L.; Leske, D.A.; et al. A randomized trial comparing Bangerter filters and patching for the treatment of moderate amblyopia in children. Ophthalmology 2010, 117, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Hackett, M.A.; Gorczynski, L.Y.; Martin, T.L. The effect of non-alcoholic food and beverage consumption on preliminary breath alcohol testing by the Drager Alcotest 6810 and Alco-Sensor FST. Can. Soc. Forensic Sci. J. 2017, 50, 131–145. [Google Scholar] [CrossRef]
- Watson, P.E.; Watson, I.D.; Batt, R.D. Prediction of blood-alcohol concentrations in human-subjects—updating the widmark equation. J. Stud. Alcohol 1981, 42, 547–556. [Google Scholar] [CrossRef]
- Ramon Jimenez, J.; Villa, C.; Gonzalez Anera, R.; Gutierrez, R.; Jimenez del Barco, L. Binocular visual performance after LASIK. J. Refract. Surg. 2006, 22, 679–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moganeswari, D.; Thomas, J.; Srinivasan, K.; Jacob, G.P. Test Re-Test Reliability and Validity of Different Visual Acuity and Stereoacuity Charts Used in Preschool Children. J. Clin. Diagn. Res. 2015, 9, NC01–NC05. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Peregrina, S.; Ortiz, C.; Casares-Lopez, M.; Castro-Torres, J.J.; Jimenez del Barco, L.; Anera, R.G. Impact of Age-Related Vision Changes on Driving. Int. J. Environ. Res. Public Health 2020, 17, 7416. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Peregrina, S.; Ortiz, C.; Salas, C.; Casares-Lopez, M.; Soler, M.; Anera, R.G. Intraocular scattering as a predictor of driving performance in older adults with cataracts. PLoS ONE 2020, 15, e0227892. [Google Scholar] [CrossRef]
- Anera, R.G.; Castro, J.J.; Jimenez, J.R.; Villa, C.; Alarcon, A. Optical Quality and Visual Discrimination Capacity After Myopic LASIK With a Standard and Aspheric Ablation Profile. J. Refract. Surg. 2011, 27, 597–601. [Google Scholar] [CrossRef]
- Martinez-Roda, J.A.; Vilaseca, M.; Ondategui, J.C.; Almudi, L.; Asaad, M.; Mateos-Pena, L.; Arjona, M.; Pujol, J. Double-pass technique and compensation-comparison method in eyes with cataract. J. Cataract Refract. Surg. 2016, 42, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Vilaseca, M.; Jose Romero, M.; Arjona, M.; Oscar Luque, S.; Carlos Ondategui, J.; Salvador, A.; Gueell, J.L.; Artal, P.; Pujol, J. Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system. Br. J. Ophthalmol. 2012, 96, 1204–1210. [Google Scholar] [CrossRef]
- Artal, P.; Benito, A.; Perez, G.M.; Alcon, E.; De Casas, A.; Pujol, J.; Marin, J.M. An Objective Scatter Index Based on Double-Pass Retinal Images of a Point Source to Classify Cataracts. PLoS ONE 2011, 6, e16823. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, T.J.T.P.; De Waard, P.J.W.; Ijspeert, J.K.; De Jong, P.T.V.M. Intraocular light scattering assessed quantitatively in age related cataract. Investig. Ophthalmol. Vis. Sci. 1989, 30, 499. [Google Scholar]
- Van den Berg, T.J.T.P.; Van Rijn, L.J.; Michael, R.; Heine, C.; Coeckelbergh, T.; Nischler, C.; Wilhelm, H.; Grabner, G.; Emesz, M.; Barraquer, R.I.; et al. Straylight effects with aging and lens extraction. Am. J. Ophthalmol. 2007, 144, 358–363. [Google Scholar] [CrossRef]
- Franssen, L.; Coppens, J.E.; van den Berg, T. Compensation comparison method for assessment of retinal straylight. Investig. Ophthalmol. Vis. Sci. 2006, 47, 768–776. [Google Scholar] [CrossRef] [Green Version]
- van den Berg, T.J.T.P.; Franssen, L.; Coppens, J.E. Straylight in the human eye: Testing objectivity and optical character of the psychophysical measurement. Ophthalmic Physiol. Opt. 2009, 29, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.R.; Castro, J.J.; Anera, R.G.; Ortiz, C.; Alarcon, A. Maximum disparity and interocular differences in retinal-image quality. Perception 2009, 38, 153. [Google Scholar]
- Pardhan, S. A comparison of binocular summation in the peripheral visual field in young and older patients. Curr. Eye Res. 1997, 16, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, J.; Thompson, B.; Deng, D.; Yuan, J.; Chan, L.; Hess, R.F.; Yu, M. The Effect of Bangerter Filters on Binocular Function in Observers with Amblyopia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Casares-Lopez, M.; Castro-Torres, J.J.; Ortiz-Peregrina, S.; Martino, F.; Ortiz, C. Changes in Visual Performance under the Effects of Moderate-High Alcohol Consumption: The Influence of Biological Sex. Int. J. Environ. Res. Public Health 2021, 18, 6790. [Google Scholar] [CrossRef]
- Williamson, I.; Keating, P.; Bjerre, A. The effect of induced monocular blur by bangerter filters on measures of visual acuity and stereoacuity. Strabismus 2021, 29, 74–80. [Google Scholar] [CrossRef]
- Odell, N.V.; Leske, D.A.; Hatt, S.R.; Adams, W.E.; Holmes, J.M. The effect of Bangerter filters on optotype acuity, Vernier acuity, and contrast sensitivity. J. Aapos 2008, 12, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Puell, M.C.; Perez-Carrasco, M.J.; Palomo-Alvarez, C.; Antona, B.; Barrio, A. Relationship between halo size and forward light scatter. Br. J. Ophthalmol. 2014, 98, 1389–1392. [Google Scholar] [CrossRef] [Green Version]
- Pardhan, S.; Gilchrist, J. The effect of monocular defocus on binocular contrast sensitivity. Ophthalmic Physiol. Opt. 1990, 10, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Pearson, P.; Timney, B. Alcohol does not affect visual contrast gain mechanisms. Vis. Neurosci. 1999, 16, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; McGwin, G., Jr. Vision and driving. Vis. Res. 2010, 50, 2348–2361. [Google Scholar] [CrossRef] [PubMed]
Monocular Visual Function | Filter | Baseline | aAC | t/Z; p-Value |
---|---|---|---|---|
VA (mon) | DE (no filter) | 1.2 ± 0.1 | 1.0 ± 0.1 | Z(25) = −4.228; p < 0.001 |
NDE (no filter) | 1.2 ± 0.2 | 0.9 ± 0.1 | Z(25) = −4.317; p < 0.001 | |
DE with BPM2 | 0.9 ± 0.2 | 0.8 ± 0.2 | t(25) = 2.703; p = 0.012 | |
DE with BF_0.8 | 0.8 ± 0.1 | 0.6 ± 0.1 | Z(25) = −4.362; p < 0.001 | |
CSF (mon) | DE (no filter) | 149 ± 15 | 126 ± 20 | Z(25) = −4.460; p < 0.001 |
NDE (no filter) | 146 ± 16 | 117 ± 26 | Z(25) = −4.408; p < 0.001 | |
DE with BPM2 | 105 ± 33 | 85 ± 30 | t(25) = 2.996; p = 0.006 | |
DE with BF_0.8 | 93 ± 20 | 77 ± 26 | t(25) = 2.944; p = 0.007 | |
VDI (mon) | DE (no filter) | 0.151 ± 0.059 | 0.273 ± 0.158 | Z(25) = −3.943; p < 0.001 |
NDE (no filter) | 0.177 ± 0.071 | 0.310 ± 0.155 | Z(25) = −4.057; p < 0.001 | |
DE with BPM2 | 0.271 ± 0.172 | 0.543 ± 0.242 | Z(25) = −4.229; p < 0.001 | |
DE with BF_0.8 | 0.540 ± 0.173 | 0.745 ± 0.204 | Z(25) = −3.377; p < 0.001 |
Binocular Visual Function | Filter | Baseline | aAC | t/Z; p-Value |
---|---|---|---|---|
VA (bin) | No filter | 1.4 ± 0.1 | 1.1 ± 0.1 | Z(25) = −4.396; p < 0.001 |
BPM2 on DE | 1.2 ± 0.1 | 1.0 ± 0.2 | Z(25) = −3.891; p < 0.001 | |
BF_0.8 on DE | 1.1 ± 0.1 | 1.0 ± 0.2 | Z(25) = −3.449; p = 0.001 | |
BF_0.8 on BE | 0.9 ± 0.1 | 0.7 ± 0.2 | Z(25) = −3.743; p < 0.001 | |
CSF (bin) | No filter | 162 ± 10 | 147 ± 16 | Z(25) = −4.168; p < 0.001 |
BPM2 on DE | 150 ± 14 | 128 ± 25 | Z(25) = −3.983; p < 0.001 | |
BF_0.8 on DE | 145 ± 14 | 130 ± 24 | t(25) = 3.305; p = 0.003 | |
BF_0.8 on BE | 108 ± 16 | 97 ± 24 | t(25) = 2.535; p = 0.018 | |
VDI (bin) | No filter | 0.112 ± 0.028 | 0.205 ± 0.098 | Z(25) = −4.130; p < 0.001 |
BPM2 on DE | 0.153 ± 0.058 | 0.296 ± 0.165 | Z(25) = −3.899; p < 0.001 | |
BF_0.8 on DE | 0.194 ± 0.094 | 0.348 ± 0.156 | Z(25) = −4.184; p < 0.001 | |
BF_0.8 on BE | 0.440 ± 0.162 | 0.642 ± 0.232 | t(25) = −4.494; p < 0.001 |
Interocular Differences | Filter | Baseline | aAC | t/Z; p-Value |
---|---|---|---|---|
OSI | No filter | 0.22 ± 0.20 | 0.25 ± 0.21 | Z(25) = −0.644; p = 0.519 |
BPM2 on DE | 0.30 ± 0.22 | 0.61 ± 0.49 | Z(25) = −2.740; p = 0.006 | |
BF_0.8 on DE | 3.33 ± 0.95 | 3.38 ± 1.26 | t(25) = −0.196; p = 0.846 | |
BF_0.8 on BE | 0.81 ± 0.64 | 1.76 ± 2.31 | Z(25) = −1.892; p = 0.058 | |
MTF cut-off (cpd) | No filter | 9.03 ± 6.57 | 7.14 ± 6.46 | Z(25) = −1.333; p = 0.182 |
BPM2 on DE | 6.63 ± 6.98 | 7.54 ± 7.34 | Z(25) = −0.292; p = 0.77 | |
BF_0.8 on DE | 27.16 ± 10.27 | 22.98 ± 9.54 | t(25) = 2.789; p = 0.01 | |
BF_0.8 on BE | 1.98 ± 1.64 | 2.70 ± 1.97 | Z(25) = −1.486; p = 0.137 | |
SR | No filter | 0.05 ± 0.04 | 0.04 ± 0.03 | Z(25) = −1.090; p = 0.276 |
BPM2 on DE | 0.05 ± 0.04 | 0.04 ± 0.04 | Z(25) = −0.902; p = 0.367 | |
BF_0.8 on DE | 0.14 ± 0.06 | 0.10 ± 0.04 | t(25) = 3.670; p = 0.001 | |
BF_0.8 on BE | 0.01 ± 0.01 | 0.01 ± 0.01 | Z(25) = −2.046; p = 0.041 | |
log(s) | No filter | 0.08 ± 0.09 | 0.08 ± 0.08 | Z(25) = −0.764; p = 0.445 |
BPM2 on DE | 0.26 ± 0.12 | 0.31 ± 0.21 | Z(25) = −0.737; p = 0.461 | |
BF_0.8 on DE | 0.28 ± 0.19 | 0.31 ± 0.13 | t(25) = −0.858; p = 0.399 | |
BF_0.8 on BE | 0.23 ± 0.10 | 0.12 ± 0.12 | Z(25) = −2.974; p = 0.003 |
Experimental Condition | Filter | Binocular Summation | ||
---|---|---|---|---|
VA | CSF | VDI | ||
Baseline | No filter | 1.11 ± 0.08 | 1.10 ± 0.12 | 1.35 ± 0.41 |
BPM2 on DE | 1.00 ± 0.11 | 1.03 ± 0.10 | 1.21 ± 0.44 | |
BF_0.8 on DE | 0.96 ± 0.11 | 1.00 ± 0.13 | 1.01 ± 0.43 | |
BF_0.8 on BE | 1.19 ± 0.19 | 1.19 ± 0.19 | 1.31 ± 0.42 | |
aAC | No filter | 1.09 ± 0.12 | 1.19 ± 0.14 | 1.30 ± 0.32 |
BPM2 on DE | 1.06 ± 0.16 | 1.12 ± 0.22 | 1.13 ± 0.38 | |
BF_0.8 on DE | 1.03 ± 0.16 | 1.15 ± 0.25 | 0.92 ± 0.28 | |
BF_0.8 on BE | 1.17 ± 0.27 | 1.33 ± 0.31 | 1.25 ± 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino, F.; Castro-Torres, J.J.; Casares-López, M.; Ortiz-Peregrina, S.; Granados-Delgado, P.; Jiménez, J.R. Influence of Interocular Differences and Alcohol Consumption on Binocular Visual Performance. Int. J. Environ. Res. Public Health 2023, 20, 1751. https://doi.org/10.3390/ijerph20031751
Martino F, Castro-Torres JJ, Casares-López M, Ortiz-Peregrina S, Granados-Delgado P, Jiménez JR. Influence of Interocular Differences and Alcohol Consumption on Binocular Visual Performance. International Journal of Environmental Research and Public Health. 2023; 20(3):1751. https://doi.org/10.3390/ijerph20031751
Chicago/Turabian StyleMartino, Francesco, José J. Castro-Torres, Miriam Casares-López, Sonia Ortiz-Peregrina, Pilar Granados-Delgado, and José R. Jiménez. 2023. "Influence of Interocular Differences and Alcohol Consumption on Binocular Visual Performance" International Journal of Environmental Research and Public Health 20, no. 3: 1751. https://doi.org/10.3390/ijerph20031751
APA StyleMartino, F., Castro-Torres, J. J., Casares-López, M., Ortiz-Peregrina, S., Granados-Delgado, P., & Jiménez, J. R. (2023). Influence of Interocular Differences and Alcohol Consumption on Binocular Visual Performance. International Journal of Environmental Research and Public Health, 20(3), 1751. https://doi.org/10.3390/ijerph20031751