Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Methodology
2.2. Eligibility Criteria and Study Selection
3. Results
3.1. Data from In Vitro Studies
3.2. Data from Animals
3.3. Environmental/Occupational-Based Studies (Epidemiological Studies)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
mir: | denotes pre-miRNA |
miR: | denotes the mature form |
miR-xxx (e.g., miR-125): | the number indicates the order of naming. Nothing about function or similarity in structure to other miRNAs. |
miR-xxx letter (e.g., miR-125a): | the letter denotes a variation of 1–2 nucleotides in sequence |
miR-xxx-number (e.g., miR-125-1 and miR-125-2): | the number denotes different region of the genome from which is transcribed |
miR-xxx-5p: | originate from the 5′ arm of the pre-miRNA |
miR-xxx-3p: | originate from the 3′ arm of the pre-miRNA |
xxx-miR-xxx (e.g., hsa-miR-125): | three-letter prefix denotes species of origin, for example hsa = Homo sapiens; mmu = Mus musculus. |
References
- Meng, Q.; Yan, J.; Wu, R.; Liu, H.; Sun, Y.; Wu, N.; Xiang, J.; Zheng, L.; Zhang, J.; Han, B. Sustainable production of benzene from lignin. Nat. Commun. 2021, 12, 4534. [Google Scholar] [CrossRef]
- Yardley-Jones, A.; Anderson, D.; Parke, D.V. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. Br. J. Ind. Med. 1991, 48, 437–444. [Google Scholar] [CrossRef]
- Weisel, C.P. Benzene exposure: An overview of monitoring methods and their findings. Chem. Biol. Interact. 2010, 184, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ANNEX XVII TO REACH—Conditions of Restriction (echa.europa.eu). Available online: https://echa.europa.eu/documents/10162/7c8cf4ac-baf9-a05a-2cc7-c9bca4a9d5b7 (accessed on 7 November 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 7 November 2022).
- Legislative Decree 81/08, Concerning the Protection of Health and Safety in the Workplace. Available online: https://www.ispettorato.gov.it/it-it/strumenti-e-servizi/Documents/TU-81-08-Ed.-Agosto-2022.pdf (accessed on 7 November 2022).
- Directive 2004/37/CE, Protection form the Risk Related to Exposure to Carcinogens of or Mutagens at Work. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:229:0023:0034:EN:PDF (accessed on 7 November 2022).
- Committee for Risk Assessment RAC. Opinion on Scientific Evaluation of Occupational Exposure Limits for Benzene ECHA/RAC/O-000000-1412-86-187/F Adopted 9 March 2018; All News—ECHA (europa.eu)]. Available online: https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiTl_DM_9P8AhWb7zgGHYDKAwsQFnoECAcQAQ&url=https%3A%2F%2Fecha.europa.eu%2Fdocuments%2F10162%2F13641%2Fbenzene_opinion_en.pdf%2F4fec9aac-9ed5-2aae-7b70-5226705358c7&usg=AOvVaw1U440xgnDWitP5pAi0OvVg (accessed on 7 November 2022).
- IARC Monographs Volume 120: Benzene- LYON, FRANCE—2018. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Benzene-2018 (accessed on 7 November 2022).
- Patton, A.N.; Levy-Zamora, M.; Fox, M.; Koehler, K. Benzene Exposure and Cancer Risk from Commercial Gasoline Station Fueling Events Using a Novel Self-Sampling Protocol. Int. J. Environ. Res. Public Health 2021, 18, 1872. [Google Scholar] [CrossRef] [PubMed]
- Keenan, J.J.; Gaffney, S.; Gross, S.A.; Ronk, C.J.; Paustenbach, D.J.; Galbraith, D.; Kerger, B.D. An evidence-based analysis of epidemiologic associations between lymphatic and hematopoietic cancers and occupational exposure to gasoline. Hum. Exp. Toxicol. 2013, 32, 1007–1027. [Google Scholar] [CrossRef] [PubMed]
- Poli, D.; Mozzoni, P.; Pinelli, S.; Cavallo, D.; Papaleo, B.; Caporossi, L. Sex Difference and Benzene Exposure: Does It Matter? Int. J. Environ. Res. Public. Health 2022, 19, 2339. [Google Scholar] [CrossRef]
- Ross, D. The role of metabolism and specific metabolites in benzene-induced toxicity: Evidence and issues. J. Toxicol. Environ. Health 2000, 61, 357–372. [Google Scholar] [CrossRef]
- Carbonari, D.; Chiarella, P.; Mansi, A.; Pigini, D.; Iavicoli, S.; Tranfo, G. Biomarkers of susceptibility following benzene exposure: Influence of genetic polymorphisms on benzene metabolism and health effects. Biomark. Med. 2016, 10, 145–163. [Google Scholar] [CrossRef]
- Di Leva, G.; Calin, G.A.; Croce, C.M. MicroRNAs: Fundamental facts and involvement in human diseases. Birth Defects Res. Part C Embryo Today Rev. 2006, 78, 180–189. [Google Scholar] [CrossRef]
- Salemi, R.; Marconi, A.; Di Salvatore, V.; Franco, S.; Rapisarda, V.; Libra, M. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development (Review). Mol. Med. Rep. 2017, 15, 3366–3371. [Google Scholar] [CrossRef]
- Bollati, V.; Baccarelli, A.; Hou, L.; Bonzini, M.; Fustinoni, S.; Cavallo, D.; Byun, H.M.; Jiang, J.; Marinelli, B.; Pesatori, A.C.; et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67, 876–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabish, A.M.; Poels, K.; Hoet, P.; Godderis, L. Epigenetic factors in cancer risk: Effect of chemical carcinogens on global DNA methylation pattern in human TK6 cells. PLoS ONE 2012, 7, e34674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Ma, H.; Zhang, W.; Yu, Z.; Sheng, G.; Fu, J. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells. Environ. Toxicol. 2014, 29, 108–116. [Google Scholar] [CrossRef]
- Xing, C.; Wang, Q.F.; Li, B.; Tian, H.; Ni, Y.; Yin, S.; Li, G. Methylation and expression analysis of tumor suppressor genes p15 and p16 in benzene poisoning. Chem. Biol. Interact. 2010, 184, 306–309. [Google Scholar] [CrossRef]
- Rice, J.C.; Allis, C.D. Histone methylation versus histone acetylation: New insights into epigenetic regulation. Curr. Opin. Cell Biol. 2001, 13, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Shi, Y.F.; Yang, K.Y.; Zhuang, Y.; Zhu, R.H.; Xu, X.; Cai, G. Decreased topoisomerase Ⅱα expression and altered histone and regulatory factors of topoisomerase Ⅱα promoter in patients with chronic benzene poisoning. Toxicol. Lett. 2011, 203, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Li, Y.; Zhao, X.; Yang, S.Q.; Li, L.; Cui, N.X.; Rong, L.; Yi, Z.C. Benzene metabolite 1,2,4-benzenetriol changes DNA methylation and histone acetylation of erythroid-specific genes in K562 cells. Arch. Toxicol. 2019, 93, 137–147. [Google Scholar] [CrossRef]
- Berthelet, J.; Michail, C.; Bui, L.C.; Le Coadou, L.; Sirri, V.; Wang, L.; Dulphy, N.; Dupret, J.M.; Chomienne, C.; Guidez, F.; et al. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Mol. Pharmacol. 2021, 100, 283–294. [Google Scholar] [CrossRef]
- Moreno-Moya, J.M.; Vilella, F.; Simón, C. MicroRNA: Key gene expression regulators. Fertil. Steril. 2014, 101, 1516–1523. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods Mol. Biol. 2017, 1509, 1–10. [Google Scholar] [PubMed]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S. The nuclear RNase III Drosha initiates micrRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Gunasekaran, K.; Sasidharan, S.; Jeyamanickavel Mathan, V.; Perumal, E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol. Rep. 2020, 7, 583–595. [Google Scholar] [CrossRef]
- Winter, J.; Jung, J.; Keller, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009, 11, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Vrijens, K.; Bollati, V.; Nawrot, T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect. 2015, 123, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lema, C.; Cunningham, M.J. MicroRNAs and their implications in toxicological research. Toxicol. Lett. 2010, 198, 100–105. [Google Scholar] [CrossRef]
- Harrill, A.H.; McCullough, S.D.; Wood, C.E.; Kahle, J.J.; Chorley, B.N. MicroRNA Biomarkers of Toxicity in Biological Matrices. Toxicol. Sci. 2016, 152, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Maki, M.; Ding, R.; Yang, Y.; Zhang, B.; Xiong, L. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 2014, 4, 5150. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Linee guida per il reporting di revisioni sistematiche e meta analisi: Il PRISMA statement. Evidence 2015, 7, e1000114. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–11. [Google Scholar]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, P.; Bai, W.; Gao, A. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone). Sci. Total Environ. 2016, 571, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, P.; Guo, X.; Gao, A. MiR-34a, a promising novel biomarker for benzene toxicity, is involved in cell apoptosis triggered by 1,4-benzoquinone through targeting Bcl-2. Environ. Pollut. 2017, 221, 256–265. [Google Scholar] [CrossRef]
- Liang, B.; Chen, Y.; Yuan, W.; Qin, F.; Zhang, Q.; Deng, N.; Liu, X.; Ma, X.; Zhang, X.; Zhang, B.; et al. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch. Toxicol. 2018, 92, 259–272. [Google Scholar] [CrossRef]
- Jiang, R.; Huang, H.; Lian, Z.; Hu, Z.; Lloyd, R.S.; Fang, D.; Li, Y.; Xian, H.; Yuan, J.; Sha, Y.; et al. Exosomal miR-221 derived from hydroquinone-transformed malignant human bronchial epithelial cells is involved in cell viability of recipient cells. J. Appl. Toxicol. 2020, 40, 224–233. [Google Scholar] [CrossRef]
- Xian, H.Y.; Chen, Y.; Zhang, J.Y.; Tang, M.L.; Lian, Z.W.; Jiang, R.; Hu, Z.Q.; Li, Y.F.; Hu, D.L. Exosomes Derived from Hydroquinone-transformed Human Bronchial Epithelial Cells Inhibited Recipient Cell Apoptosis by transferring miR-221. Biomed. Environ. Sci. 2021, 34, 520–527. [Google Scholar]
- Wang, T.S.; Tian, W.; Fang, Y.; Guo, K.R.; Li, A.Q.; Sun, Y.; Wu, H.T.; Zheng, G.Q.; Feng, N.N.; Xing, C.H.; et al. Changes in miR-222 expression, DNA repair capacity, and MDM2-p53 axis in association with low-dose benzene genotoxicity and hematotoxicity. Sci. Total Environ. 2021, 765, 142740. [Google Scholar] [CrossRef]
- Yu, C.H.; Yang, S.Q.; Li, L.; Xin, Y.; Zhang, F.; Liu, X.F.; Yi, Z.C. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol. Toxicol. 2022, 23, 20. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Liu, W.; Jin, Y. Modulation of microRNA expression by volatile organic compounds in mouse lung. Environ. Toxicol. 2014, 29, 679–689. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Tan, K.; Sun, R.; Yin, L.; Pu, Y. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice. Int. J. Mol. Sci. 2015, 16, 27058–27071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.; Chen, Y.; Yang, J.; Niu, P.; Tian, L.; Gao, A. Aberrant miRNA profiles associated with chronic benzene poisoning. Exp. Mol. Pathol. 2014, 96, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, X.; Bian, Q.; Shi, Y.; Liu, Q.; Ding, L.; Zhang, H.; Zhu, B. Analysis of plasma microRNA expression profiles in a Chinese population occupationally exposed to benzene and in a population with chronic benzene poisoning. J. Thorac. Dis. 2016, 8, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Peng, X.; Liu, Y.; Zhang, W.; Peng, X.; Tang, H.; Yuan, J.; Zhu, Z.; Yang, J. Overexpression of miR-221 in peripheral blood lymphocytes in petrol station attendants: A population based cross-sectional study in southern China. Chemosphere 2016, 149, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, H.; Chen, X.; Xiong, W.; Huang, S. The chromosome open reading frame genes targeted by abnormal micrornas in microvesicles from chronic myeloid leukemia. Blood 2014, 124, 5509. [Google Scholar] [CrossRef]
- Smith, J.L.; Ries, R.E.; Hylkema, T.; Alonzo, T.A.; Gerbing, R.B.; Santaguida, M.T.; Eidenschink Brodersen, L.; Pardo, L.; Cummings, C.L.; Loeb, K.R.; et al. Comprehensive Transcriptome Profiling of Cryptic CBFA2T3-GLIS2 Fusion-Positive AML Defines Novel Therapeutic Options: A COG and TARGET Pediatric AML Study. Clin. Cancer Res. 2020, 26, 726–737. [Google Scholar] [CrossRef]
- Sisto, R.; Capone, P.; Cerini, L.; Sanjust, F.; Paci, E.; Pigini, D.; Gatto, M.P.; Gherardi, M.; Gordiani, A.; L’Episcopo, N.; et al. Circulating microRNAs as potential biomarkers of occupational exposure to low dose organic solvents. Toxicol. Rep. 2019, 6, 126–135. [Google Scholar] [CrossRef]
- Undi, R.B.; Kandi, R.; Gutti, R.K. MicroRNAs as haematopoiesis regulators. Adv. Hematol. 2013, 2013, 695754. [Google Scholar] [CrossRef] [Green Version]
- Gimenes-Teixeira, H.L.; Lucena-Araujo, A.R.; Dos Santos, G.A.; Zanette, D.L.; Scheucher, P.S.; Oliveira, L.C.; Dalmazzo, L.F.; Silva-Júnior, W.A.; Falcão, R.P.; Rego, E.M. Increased expression of miR-221 is associated with shorter overall survival in T-cell acute lymphoid leukemia. Exp. Hematol. Oncol. 2013, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Hedstrom, G.; Thunberg, U.; Berglund, M.; Simonsson, M.; Amini, R.M.; Enblad, G. Low expression of microRNA-129–5p predicts poor clinical outcome in diffuse large B cell lymphoma (DLBCL). Int. J. Hematol. 2013, 97, 465–471. [Google Scholar] [CrossRef]
- Zhi, F.; Cao, X.; Xie, X.; Wang, B.; Dong, W.; Gu, W.; Ling, Y.; Wang, R.; Yang, Y.; Liu, Y. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS ONE 2013, 8, e56718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svasti, S.; Masaki, S.; Penglong, T.; Abe, Y.; Winichagoon, P.; Fucharoen, S.; Umemura, T. Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann. Hematol. 2010, 89, 953–958. [Google Scholar] [CrossRef] [PubMed]
- De Marchis, M.L.; Ballarino, M.; Salvatori, B.; Puzzolo, M.C.; Bozzoni, I.; Fatica, A. A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia 2009, 23, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.S.; Zhang, H.; Zhang, X.J.; Feng, D.D.; Luo, X.Q.; Zeng, C.W.; Lin, K.Y.; Zhou, H.; Qu, L.H.; Zhang, P.; et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene 2012, 31, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, J.; Gao, L.; McClellan, S.; Finan, M.A.; Butler, T.W.; Owen, L.B.; Piazza, G.A.; Xi, Y. MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death Differ. 2012, 19, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Masoud, A.M.; Bihaqi, S.W.; Machan, J.T.; Zawia, N.H.; Renehan, W.E. Early-Life Exposure to Lead (Pb) Alters the Expression of microRNA that Target Proteins Associated with Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 51, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gunewardenaa, S.; Cuia, J.Y.; Klaassena, C.D.; Chorleyb, B.N.; Corton, C. Transplacental arsenic exposure produced 5-methylcytosine methylation changes and aberrant microRNA expressions in livers of male fetal mice. Toxicology 2020, 435, 152409. [Google Scholar] [CrossRef]
- Chia, K.S.; Shi, C.Y.; Lee, J.; Seow, A.; Lee, H.P. Molecular epidemiology: Issues in study design and statistical analysis. Ann. Acad. Med. Singap. 1996, 25, 55–63. [Google Scholar]
- Kroon, F.; Streten, C.; Huff, S.H. A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS ONE 2017, 12, e0174762. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Shi, K.; Yang, S.; Liu, J.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer 2018, 17, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, V.Y.; Chu, K.M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J. Gastroenterol. WJG 2014, 20, 10432–10439. [Google Scholar] [CrossRef]
- Bersimbaev, R.; Pulliero, A.; Bulgakova, O.; Asia, K.; Aripova, A.; Izzotti, A. Radon Biomonitoring and microRNA in Lung Cancer. Int. J. Mol. Sci. 2020, 21, 2154. [Google Scholar] [CrossRef] [Green Version]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- O’Connell, R.M.; Chaudhuri, A.A.; Rao, D.S.; Gibson, W.S.; Balazs, A.B.; Baltimore, D. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc. Natl. Acad. Sci. USA 2010, 107, 14235–14240. [Google Scholar] [CrossRef]
Reference | Cells Types | Exposure Conditions | miRNAs | Main Endpoints |
---|---|---|---|---|
Chen Y et al. 2016 [39] | U937 1 cell line | 1,4-BQ 2 (0, 10, 20 e 40 μM) for 24 h | miRNA-133a | 1,4-BQ 2-induced apoptotic cell death is dose-dependent. MiR-133a decreased while pro-apoptotic genes (Caspase-9 and Caspase-3) increased after 1,4-BQ 2 treatment. miR-133a is inversely correlated with Caspase-9. |
Chen Y et al. 2017 [40] | U937 1 cell line | 1,4-BQ 2 (0, 10, 20 e 40 μM) for 24 h | miRNA-34a | 1,4-BQ 2-induced apoptosis upregulates miR-34a in the U937 1 cell line; inhibition of miR-34a elevated Bcl-2 3 protein and reduced apoptosis. miR-34a is involved in benzene-induced hematotoxicity through Bcl-2. |
Liang B et al. 2018 [41] | CD34+ HPCs 4 cells and K562 5 cell line | HQ 6 at different concentrations for 24 h | miRNA-451a miRNA-486-5p miRNA-126-3p | miRNA-451a and miRNA-486-5p were upregulated during erythroid differentiation in both CD34 + HPCs 4 and K562 5 cells. Benzene exposure leads to the suppression of miR-451a and miR-486 expression. |
Jiang R et al. 2020 [42] | 16HBE 7 cell line | HQ 6 (0, 5, 10, 20, 40, 80 g/mL) for 24 h | miRNA-221 | Normal cells (16HBE 7) can be transformed into malignant ones by HQ 6. MiR-221 has an elevated expression level in HQ 6-transformed malignant cells. |
Xian HY et al. 2021 [43] | 16HBE 7 cell line and HQ 4-transformed 16HBE 7 (16HBE-t) cells | HQ 6 (0, 5, 10, 20, 40, 80 g/mL) for 24 h | miRNA-221 | The amount of miRNA-221 in 16HBE 7-t was increased compared with controls. When recipient cells ingested exosomes derived from 16HBE 7-t, miR-221 was increased and apoptosis induced by HQ 6 was inhibited. |
Wang TS et al. 2021 [44] | human HL-60 8 (p53 null) and TK6 9 (p53 wild-type) cells | 1,4-BQ 2 (2.5, 5, 10 and 20 μM) for 24 h | miRNA-222 | miRNA-222 was robustly upregulated in a dose-dependent manner in both cell lines, with significant increases starting at the 2.5 μM dose in the HL-60 8 cells and at the 10 μM dose in the TK6 9 cells. |
Yu CH et al. 2022 [45] | K562 cells 5 | 40 μM HQ 6 for 72 h | The regulatory network of miRNAs includes 23 miRNAs. | MiR-1246 and miR-224 had the potential to be major regulators in HQ 6-exposed K562 cells based on the miRNAs-mRNAs network. |
Reference | Species and Strain | Exposure Conditions | miRNAs | Main Endpoints |
---|---|---|---|---|
Wang F et al. 2014 [46] | 44 male Kunming mice | VOCs 1 exposure: benzene: 3, 3–5–10 mg/m3 2 weeks at 2 h/day. | 69 miRNAs measured in lung were Significantly differentially expressed in VOCs’ 1 exposed samples | VOCs 1 exposure potentially alters signaling pathways associated with cancer, chemokine signaling, Wnt signaling, neuroactive ligand–receptor interaction and cell adhesion molecules. |
Wei H et al. 2015 [47] | C57BL/6 mice | Benzene exposure by injection: 150 mg/kg benzene for 4 weeks. | 5 miRNAs were overexpressed, and 45 miRNAs were downregulated in bone marrow | 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group, where also decreased both the number of cells in peripheral blood and hematopoietic progenitor cells in the bone marrow. |
Liang B et al. 2018 [41] | C57BL/6J mice (32 mal and 32 female) | Benzene exposure by inhalation: 0, 1, 5, 25 ppm for 14–28 days (6 h/day and 6 days/week). | miRNA-451a miRNA-486-5p in bone marrow | The expression of miRNA-451a or miRNA-486-5p was negatively correlated with the concentration of benzene inhalation on erythroid toxicity of C57BL/6J mice. |
Reference | Population in Study | Exposure Conditions | miRNAs | Main Endpoints |
---|---|---|---|---|
Bai W et al. 2014 [48] | 4 patients of chronic benzene poisoning three benzene-exposed workers 3 health controls without benzene exposure | Airborne benzene concentration between health controls without benzene exposure and chronic benzene poisoning group is 0.06 ± 0.01 mg/m3 and 6.68 ± 2.28 mg/m3, respectively. | 6 upregulated miRNAs 7 downregulated miRNAs | Compared to health controls, hsa-miR-34a, hsa-miR-205, hsa-miR-10b, hsa-let-7d, hsa-miR-185 and hsa-miR-423-5p-2 were upregulated miRNAs in chronic benzene poisoning group, while hsa-miR-133a, hsa-miR-543, hsa-miR-130a, hsa-miR-27b, hsa-miR-223, hsa-miR-142-5p and hsa-miR-320b in chronic benzene poisoning group are downregulated miRNAs compared with controls. |
Liu Y. et al. 2016 [49] | 27 chronic benzene poisoning patients- low blood counts 54 healthy benzene-exposed individuals 54 non-exposed individuals | Subjects for microarray analysis: exposure intensity (mg/m3): 13.9 ± 6.9 Subjects for validation analysis: exposure intensity (mg/m3): 14.2 ± 8.1. | miRNA-24-3p miRNA-221-3p miRNA-122-5p miRNA-638 | miRNA-24-3p and miRNA-221-3p were significantly upregulated miRNA-122-5p and miRNA-638 were significantly downregulated in the CBP patients with respect to exposed and non-exposed. miRNA-638 was significantly upregulated and miRNA-122-5p and miRNA-221-3p were significantly downregulated in the exposed with respect to non-exposed. |
Chen Y et al. 2016 [39] | 50 benzene-exposed workers 50 controls subjects | The concentrations of air benzene in benzene-exposed workers and controls were 3.50 ± 1.60 mg/m3 and 0.06 ± 0.01 mg/m3, respectively. | miRNA-133a | miRNA-133a expression decreased in benzene-exposed workers and Caspase-9 and Caspase-3 were simultaneously upregulated. |
Hu D et al. 2016 [50] | 97 petrol station attendants as exposed group 103 general residents as control group | Air concentration of benzene (μg/m3) for exposed group: 72.99 ± 18.81 Air concentration of benzene (μg/m3) for control group: 7.47 ± 1.15 | miRNA-221 | The levels of benzene and miRNA-221 in exposure group were both significantly higher than in control group (p < 0.05) and there was a significant positive correlation between the two indexes (r = 0.851, p < 0.05). |
Chen Y et al. 2017 [40] | 314 benzene-exposed workers 288 non-exposed workers. | Air benzene concentration for exposed workers: 2.64 ± 1.60 mg/m3. Air benzene concentration for exposed workers: 0.05 ± 0.01 mg/m3 | miRNA-34a | miRNA-34a expression was elevated in benzene-exposed workers and was correlated with the airborne benzene concentration, S-PMA 1 and t, t-MA 2. |
Wang TS et al. 2021 [44] | 73 current benzene-exposed workers 8 non-exposed controls. | The maximum detected TWA 3 was 1.51 mg/m3 and the mean of TWA 3 was 0.37 mg/m3 | miRNA-222 | miRNA-222 expression was upregulated in benzene-exposed workers, together with inverse association with DRC 4. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozzoni, P.; Poli, D.; Pinelli, S.; Tagliaferri, S.; Corradi, M.; Cavallo, D.; Ursini, C.L.; Pigini, D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. Int. J. Environ. Res. Public Health 2023, 20, 1920. https://doi.org/10.3390/ijerph20031920
Mozzoni P, Poli D, Pinelli S, Tagliaferri S, Corradi M, Cavallo D, Ursini CL, Pigini D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. International Journal of Environmental Research and Public Health. 2023; 20(3):1920. https://doi.org/10.3390/ijerph20031920
Chicago/Turabian StyleMozzoni, Paola, Diana Poli, Silvana Pinelli, Sara Tagliaferri, Massimo Corradi, Delia Cavallo, Cinzia Lucia Ursini, and Daniela Pigini. 2023. "Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings" International Journal of Environmental Research and Public Health 20, no. 3: 1920. https://doi.org/10.3390/ijerph20031920
APA StyleMozzoni, P., Poli, D., Pinelli, S., Tagliaferri, S., Corradi, M., Cavallo, D., Ursini, C. L., & Pigini, D. (2023). Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. International Journal of Environmental Research and Public Health, 20(3), 1920. https://doi.org/10.3390/ijerph20031920