Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China
Abstract
:1. Introduction
2. Methodology and Data Sources
2.1. Study Area
- (1)
- Wuhan City Circle and Xiang-Jing-Yi City Belt
- (2)
- Poyang Lake City Circle
- (3)
- Chang-Zhu-Tan City Circle
2.2. Data Sources
2.3. Super SBM-DEA Model
2.4. Calculate the ESV
2.5. Index Selection
3. Results
3.1. Isotonicity Analysis
3.2. Temporal-Spatial Trends of Land-Use Eco-Efficiency
3.2.1. Land-Use Eco-Efficiency of four City Groups
- Wuhan City Circle and Xiang-Jing-Yi City Belt
- Poyang Lake City Circle
- Chang-Zhu-Tan City Circle
3.2.2. Trends of the Eco-Efficiency of Land Use
3.2.3. Focused Cities’ Eco-Efficiency of Land Use
3.3. Influencing Factors
3.3.1. Policy Summary
3.3.2. Population and Land Use
3.3.3. Techniques and Social Factors
3.4. Slacks Analysis and Optimization Adjustment
3.4.1. Land-Use Structure
3.4.2. Investment and Labor Force
3.4.3. Ecological Output and Environmental Pollution
3.4.4. Industrial Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eisenmenger, N.; Pichler, M.; Krenmayr, N.; Noll, D.; Plank, B.; Schalmann, E.; Wandl, M.T.; Gingrich, S. The Sustainable Development Goals prioritize economic growth over sustainable resource use: Critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci. 2020, 15, 1101–1110. [Google Scholar] [CrossRef]
- Ren, Y.; Fang, C.; Lin, X. Evaluation of eco-efficiency of four major urban agglomerations in eastern coastal area of China. Acta Geogr. Sin. 2017, 11, 2047–2063. [Google Scholar]
- Wang, Z.; Chen, J.; Zheng, W.; Deng, X. Dynamics of land use efficiency with ecological intercorrelation in regional development. Landsc. Urban Plan. 2018, 177, 303–316. [Google Scholar] [CrossRef]
- Kuosmanen, T. Measurement and analysis of eco-efficiency: An economist’s perspective. J. Ind. Ecol. 2005, 9, 15–18. [Google Scholar] [CrossRef]
- Müller, K.; Holmes, A.; Deurer, M.; Clothier, B.E. Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand. J. Clean. Prod. 2015, 106, 333–342. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and spatial-temporal evolution analysis of urban land use efficiency under green development orientation: Case of the Yangtze river delta urban agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- Wang, S.; Jia, M.; Zhou, Y.; Fan, F. Impacts of changing urban form on ecological efficiency in China: A comparison between urban agglomerations and administrative areas. J. Environ. 2019, 63, 1834–1856. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Y.; Tian, J. The application of minimum cumulative resistance model in the evaluation of urban ecological land use efficiency. Arab. J. Geosci. 2019, 12, 714. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Wu, T.; Wang, X.; Xu, J. Spatial-temporal characteristics of cultivated land use eco-efficiency under carbon constraints and its relationship with landscape pattern dynamics. Ecol. Indic. 2022, 141, 109140. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Zhang, Z.; Wang, S.; Zhou, H. Spatiotemporal Heterogeneity of Agricultural Land Eco-Efficiency: A Case Study of 128 Cities in the Yangtze River Basin. Water 2022, 14, 422. [Google Scholar] [CrossRef]
- Dong, J.; Wu, D. An evaluation of the impact of ecological compensation on the cross-section efficiency using SFA and DEA: A case study of Xin’an River Basin. Sustainability 2020, 12, 7966. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.; Wang, X. Analysis of the water-energy coupling efficiency in China: Based on the three-stage SBM-DEA model with undesirable outputs. Water 2019, 11, 632. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, X.; Pei, T.; Wang, Z. Potential evaluation of urban land intensive use in Beijing-Tianjin-Hebei region based on measurement of technical efficiency. Acta Geogr. Sin. 2019, 74, 1853–1865. [Google Scholar]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agron. Sustain. Dev. 2008, 28, 257–263. [Google Scholar] [CrossRef] [Green Version]
- de Araújo, R.V.; Espejo, R.A.; Constantino, M.; de Moraes, P.M.; Taveira, J.C.; Lira, F.S.; Herrera, G.P.; Costa, R. Eco-efficiency measurement as an approach to improve the sustainable development of municipalities: A case study in the Midwest of Brazil. Environ. Dev. 2021, 39, 100652. [Google Scholar] [CrossRef]
- Andrés, M.D.; Barragán, J.M.; Sanabria, J.G. Relationships between coastal urbanization and ecosystems in Spain. Cities 2017, 68, 8–17. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Peter, H. Examination of the relationship between urban form and urban eco-efficiency in China. Habitat Int. 2012, 36, 171–177. [Google Scholar] [CrossRef]
- Nita, A.; Fineran, S.; Rozylowicz, L. Researchers’ perspective on the main strengths and weaknesses of Environmental Impact Assessment (EIA) procedures. Environ. Impact Assess. Rev. 2022, 92, 106690. [Google Scholar] [CrossRef]
- da Rocha, É.G.; da Rocha, P.L.B. Scientists, environmental managers and science journalists: A hierarchical model to comprehend and enhance the environmental decision-making process. Perspect. Ecol. Conserv. 2018, 16, 169–176. [Google Scholar] [CrossRef]
- Hossu, C.A.; Oliveira, E.A. Streamline democratic values in planning systems: A study of participatory practices in European strategic spatial planning. Habitat Int. 2022, 129, 102675. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Wang, Z.; Sun, D. Spatio-temporal evolution and influencing factors of open economy development in the Yangtze River Delta area. Land. 2022, 11, 1813. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2019, 90, 104329. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.G.; Sutton, P.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Du, J.; Thill, J.C.; Peiser, R.B. Land pricing and its impact on land use efficiency in post-land-reform China: A case study of Beijing. Cities 2016, 50, 68–74. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Wang, Y.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Ding, T.; Chen, J.; Fang, Z.; Chen, Y. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Shan, L.; Jiang, Y.; Liu, C.; Zhang, J.; Zhang, G.; Cui, X. Conflict or Coordination? Spatiotemporal Coupling of Urban Population–Land Spatial Patterns and Ecological Efficiency. Front. Public Health 2022, 10, 890175. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic evolution of regional discrepancies in carbon emissions from agricultural land utilization: Evidence from Chinese provincial data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zheng, H.; Liu, H.; Wu, Q. NonLinear effects of environmental regulation on eco-efficiency under the constraint of land use carbon emissions: Evidence based on a Bootstrapping approach and Panel Threshold Model. Int. J. Environ. Res. Public Health 2019, 16, 1679. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, X. Planning for sustainable cities? A comparative content analysis of the master plans of eco, low-carbon and conventional new towns in China. Habitat Int. 2017, 63, 55–66. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, H.; Sun, D.; Li, Y. Spatial differences in and influences upon the sustainable development level of the Yangtze River Delta urban agglomeration in China. Sustainability 2018, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Shao, T.; Lai, H.; Shen, M.; Li, Y. Total-factor eco-efficiency and its influencing factors in the Yangtze River Delta urban agglomeration, China. J. Environ. Sci. 2019, 16, 3814. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yu, D. Landscape and Urban Planning Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Chen, Y.; Zhong, T.; Xu, G.; He, J. The effect of land use planning (2006–2020) on construction land growth in China. Cities 2017, 68, 37–47. [Google Scholar] [CrossRef]
- Kahn, M. Domestic pollution havens: Evidence from cancer deaths in border counties. J. Urban Econ. 2004, 56, 51–69. [Google Scholar] [CrossRef]
City Circle | City | Area (km2) | GDP ( CNY 100 Million) | City Circle | City | Area (km2) | GDP (CNY 100 Million) |
---|---|---|---|---|---|---|---|
Poyang Lake City Circle | Fuzhou | 18,799 | 1573 | Wuhan City Circle | Ezhou | 1594 | 1005 |
Ji’an | 25,373 | 2169 | Huanggang | 17,457 | 2170 | ||
Jingdezhen | 5261 | 957 | Huangshi | 4583 | 1641 | ||
Jiujiang | 19,798 | 3241 | Qianjiang | 558 | 765 | ||
Nanchang | 7402 | 5746 | Tianmen | 440 | 617 | ||
Pingxiang | 3831 | 964 | Wuhan | 8494 | 15,616 | ||
Shangrao | 22,791 | 2624 | Xiantao | 598 | 828 | ||
Xinyu | 3178 | 1001 | Xianning | 10,033 | 1525 | ||
Yichun | 18,669 | 2790 | Xiaogan | 8910 | 2194 | ||
Yingtan | 3560 | 983 | |||||
Chang-Zhu-Tan City Circle | Changde | 18,910 | 3749 | Xiang-Jing-Yi City Belt | Jingmen | 12,404 | 1906 |
Hengyang | 15,303 | 3509 | Jingzhou | 14,067 | 2369 | ||
Loudi | 8119 | 1680 | Xiangyang | 19,728 | 4602 | ||
Xiangtan | 5008 | 2343 | Yichang | 21,230 | 4261 | ||
Yiyang | 12,320 | 1853 | |||||
Yueyang | 14,858 | 4002 | |||||
Changsha | 11,816 | 12,143 | |||||
Zhuzhou | 11,272 | 3106 |
Indicators | Units | Mean | Max | Min | Std. dev. |
---|---|---|---|---|---|
Input indicators | |||||
Land resources [23,28] | |||||
Farming land | hm2 | 417,021.27 | 991,976.67 | 76,749.21 | 241,549.89 |
Construction land [7] | hm2 | 39,760.90 | 118,698.03 | 7330.41 | 23,151.40 |
Other land | hm2 | 671,166.13 | 1,815,773.94 | 21,200.49 | 510,568.82 |
Capital resource [28] | |||||
Investment in fixed assets [7,19,29,37] | CNY 10 thousand | 11,456,262.07 | 95,856,748.59 | 49,835.00 | 16,168,281.28 |
Labor resource [28,38] | |||||
Number of people employed [7] | 10 thousand persons | 233.03 | 603.79 | 47.20 | 127.93 |
Output indicators | |||||
Ecological value [39] | |||||
ESV | CNY 10 thousand | 1,558,322.27 | 4,033,055.02 | 128,802.86 | 1,109,511.41 |
Economic value [23,28,38] | |||||
First industry | CNY 100 million | 146.38 | 513.01 | 10.85 | 121.54 |
Secondary industry | CNY 100 million | 642.72 | 5557.47 | 21.30 | 890.34 |
Tertiary industry | CNY 100 million | 615.14 | 9656.40 | 20.80 | 1149.71 |
Environmental pollution [23,28] | |||||
Industrial sulfur dioxide emission | ton | 35,338.50 | 133,442.00 | 408.00 | 29,130.17 |
Industrial wastewater discharge | 10 thousand ton | 6278.34 | 40,661.00 | 229.07 | 6139.99 |
PYL (2000) | WH (2000) | XJY (2000) | CZT (2000) | PYL (2005) | WH (2005) | XJY (2005) | CZT (2005) | PYL (2010) | WH (2010) | |
---|---|---|---|---|---|---|---|---|---|---|
FAR | 17,565.81 | 12,141.54 | 356,716.81 | 115,491.05 | 143,545.48 | 203,402.96 | 647,902.37 | 111,301.54 | 282,065.76 | 24,217.07 |
CON | 7943.45 | 18,241.37 | 23,220.75 | 2165.35 | 56,315.08 | 46,447.90 | 47,722.22 | 9613.66 | 54,778.64 | 38,856.25 |
ECO | 103,009.95 | 29,752.10 | 0.00 | 36,812.74 | 380,220.94 | 227,122.64 | 243,699.72 | 30,202.43 | 76,967.56 | 0.00 |
INV | 52,359.85 | 193,986.57 | 533,404.58 | 427,900.74 | 45,640.84 | 588,068.49 | 0.00 | 606,673.91 | 0.00 | 475,709.54 |
LAB | 52.35 | 56.67 | 0.00 | 151.23 | 278.75 | 158.32 | 15.82 | 218.71 | 107.35 | 150.42 |
ESV | 2,161,125.56 | 2,076,313.64 | 1,759,700.52 | 449,768.73 | 1,204,294.50 | 60,810.98 | 268,904.44 | 80,595.93 | 1,286,006.34 | 91,228.77 |
WAS | 11.47 | 47.02 | 0.00 | 159.21 | 83.41 | 6.30 | 5.65 | 85.83 | 27.59 | 12.34 |
SUL | 135.22 | 280.56 | 143.14 | 466.28 | 1200.63 | 112.50 | 202.52 | 425.99 | 313.34 | 121.93 |
FIR | 63.17 | 102.72 | 12.14 | 38.74 | 99.71 | 30.38 | 29.13 | 93.83 | 158.70 | 281.43 |
SEC | 156.59 | 0.00 | 13.70 | 68.82 | 177.20 | 337.17 | 33.40 | 70.52 | 227.72 | 127.38 |
TER | 105.61 | 39.46 | 3.90 | 187.36 | 125.19 | 64.81 | 0.75 | 0.69 | 2335.83 | 307.32 |
XJY (2010) | CZT (2010) | PYL (2015) | WH (2015) | XJY (2015) | CZT (2015) | PYL (2020) | WH (2020) | XJY (2020) | CZT (2020) | |
FAR | 266,797.90 | 26,065.09 | 479,828.46 | 366,794.66 | 671,361.84 | 129,560.57 | 21,979.83 | 100,085.56 | 336,390.11 | 49,779.53 |
CON | 33,081.76 | 13,080.42 | 58,225.20 | 48,923.33 | 15,792.13 | 0.00 | 15,167.92 | 15,542.98 | 22,773.50 | 3786.50 |
ECO | 77,843.26 | 15,710.24 | 6259.88 | 0.00 | 0.00 | 14,871.61 | 2758.74 | 327,514.55 | 866.28 | 4449.11 |
INV | 407,062.82 | 1,875,769.44 | 5,692,966.97 | 0.00 | 0.00 | 599,826.50 | 5,822,738.28 | 6,206,309.79 | 3,606,866.86 | 7,238,377.27 |
LAB | 72.94 | 163.01 | 201.55 | 237.70 | 10.69 | 121.63 | 42.35 | 101.69 | 2.29 | 36.40 |
ESV | 640,261.14 | 499,817.29 | 374,269.74 | 62,219.58 | 303,286.41 | 359,972.31 | 2,699,105.25 | 661,178.44 | 2,066,729.26 | 3,921,942.00 |
WAS | 0.73 | 18.06 | 25.31 | 6.58 | 8.41 | 5.34 | 1.68 | 1.53 | 0.43 | 1.55 |
SUL | 5.09 | 164.73 | 257.11 | 101.04 | 32.77 | 97.04 | 17.71 | 6.08 | 1.63 | 8.47 |
FIR | 45.69 | 125.24 | 350.45 | 16.38 | 0.00 | 126.49 | 15.94 | 379.30 | 319.07 | 762.86 |
SEC | 222.26 | 698.01 | 314.30 | 955.92 | 138.91 | 1198.40 | 19.21 | 1714.26 | 225.22 | 3759.41 |
TER | 139.19 | 408.92 | 3874.85 | 2424.61 | 2212.25 | 2041.21 | 13.29 | 5138.07 | 294.33 | 5933.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Y.; Li, J. Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China. Int. J. Environ. Res. Public Health 2023, 20, 1985. https://doi.org/10.3390/ijerph20031985
Zhang J, Wang Y, Li J. Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China. International Journal of Environmental Research and Public Health. 2023; 20(3):1985. https://doi.org/10.3390/ijerph20031985
Chicago/Turabian StyleZhang, Jie, Yajing Wang, and Jiangfeng Li. 2023. "Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China" International Journal of Environmental Research and Public Health 20, no. 3: 1985. https://doi.org/10.3390/ijerph20031985
APA StyleZhang, J., Wang, Y., & Li, J. (2023). Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China. International Journal of Environmental Research and Public Health, 20(3), 1985. https://doi.org/10.3390/ijerph20031985