Body Fat Is Superior to Body Mass Index in Predicting Cardiometabolic Risk Factors in Adolescents
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design
2.2. Sample Selection
2.3. Characterization of the Population
2.4. Evaluated Variables
2.4.1. Anthropometric and Body Composition Assessment
2.4.2. Clinical and Biochemical Parameters
2.4.3. Cardiometabolic Risk Factors
2.5. Statistical Analysis
2.6. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Nutrition in Adolescence: Issues and Challenges for the Health Sector: Issues in Adolescent Health and Development; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Barbalho, E.D.V.; Pinto, F.J.M.; Da Silva, F.R.; Sampaio, R.M.M.; Dantas, D.S.G. Influência do consumo alimentar e da prática de atividade física na prevalência do sobrepeso/obesidade em adolescentes escolares. Cad. Saúde Colet 2020, 28, 12–23. [Google Scholar] [CrossRef]
- Sommer, A.; Twig, G. The Impact of Childhood and Adolescent Obesity on Cardiovascular Risk in Adulthood: A Systematic Review. Curr. Diabetes Rep. 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128.9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; WHO—Technical Report Series, 854; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Cota, B.C.; Suhett, L.G.; Leite, N.N.; Pereira, P.F.; Ribeiro, S.A.V.; Franceschini, S.D.C.C. Cardiometabolic risk and health behaviours in adolescents with normal-weight obesity: A systematic review. Public Health Nutr. 2020, 24, 870–881. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Agostinis-Sobrinho, C.; Camargo-Villalba, G.E.; González-Jiménez, N.M.; Izquierdo, M.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Normal-Weight Obesity Is Associated with Poorer Cardiometabolic Profile and Lower Physical Fitness Levels in Children and Adolescents. Nutrients 2020, 12, 1171. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Yoon, K.-H. Epidemic obesity in children and adolescents: Risk factors and prevention. Front. Med. 2018, 12, 658–666. [Google Scholar] [CrossRef]
- Asghari, G.; Hosseinpanah, F.; Serahati, S.; Haghi, S.; Azizi, F. Association between obesity phenotypes in adolescents and adult metabolic syndrome: Tehran Lipid and Glucose Study. Br. J. Nutr. 2019, 122, 1255–1261. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Physical Status. Physical Status: The Use and Gbvf Ginterpretation of Anthropometry; WHO Technical Repor Series n. 854; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- World Health Organization. Waist Circumferences and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Franceschini, S.C.C.; Priore, S.E.; Oliveira, R.M.S.; Faria, E.R.; Vitorino, S.A.S. Técnicas de Aferição de Medidas Antropométricas e de Composição Corporal; Viçosa, M.G., Ed.; UFV: Viçosa, Brazil, 2017; p. 72. [Google Scholar]
- World Health Organization—WHO. Development of a WHO Growth Reference for School-Aged Children and Adolescents; Bulletin of the World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Ashwell, M.; Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 2014, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, K.B.F. Métodos Para Avaliação do Consumo Alimentar e Sua Relação com Marcadores de Risco para a Síndrome Metabólica em Adolescentes do Sexo. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2006; p. 264. [Google Scholar]
- Williams, D.P.; Going, S.B.; Lohman, T.G.; Harsha, D.W.; Srinivasan, S.R.; Webber, L.S.; Berenson, G.S. Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am. J. Public Health 1992, 82, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Júnior, D.M.; et al. Diretrizes Brasileiras de Hipertensão Arterial—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef]
- Faludi, A.A.; Izar, M.C.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Afiune Neto, A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Golbert, A.; Vasques, A.C.J.; Faria, A.C.R.A.; Lottenberg, A.M.P.; Joaquim, A.G.; Vianna, A.G.D.; Bauer, A.; Fioretti, A.M.B.; Lerário, A.C.; Pires, A.C. Diretrizes da Sociedade Brasileira de Diabetes 2019–2020; Editora Clannad: São Paulo, Brazil, 2020. [Google Scholar]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for sta-tistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Fleck, M.P.; Bourdel, M.C. Método de simulação e escolha de fatores na análise dos principais componentes. Rev. Saúde Pública 1998, 32, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Subhash, R.L.; Keim, J.L.; Solymos, P. Resource Selection: Resource Selection (Probability) Functions for Use-Availability Data. R Package Version 0.3-5. 2019. Available online: https://CRAN.Rproject.org/package=ResourceSelection (accessed on 1 November 2021).
- Miranda, V.P.N.; De Faria, F.R.; De Faria, E.R.; Priore, S.E. Somatic maturation and body composition in female healthy adolescents with or without adjustment for body fat. Rev. Paul. Pediatr. 2014, 32, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Lopes, P.C.S.; Prado, S.R.L.D.A.; Colombo, P. Fatores de risco associados à obesidade e sobrepeso em crianças em idade escolar. Rev. Bras. Enferm. 2010, 63, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef]
- Longo-Silva, G.; Toloni, M.H.D.A.; de Menezes, R.C.E.; Asakura, L.; Oliveira, M.A.A.; Taddei, J.A.D.A.C. Introdução de refrigerantes e sucos industrializados na dieta de lactentes que frequentam creches públicas. Rev. Paul. Pediatr. 2015, 33, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2020, 8, 581461. [Google Scholar] [CrossRef]
- Sumi, A.; Iwase, M.; Nakamura, U.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Komorita, Y.; Yoshinari, M.; Kitazono, T. Impact of age at menarche on obesity and glycemic control in Japanese patients with type 2 diabetes: Fukuoka Diabetes Registry. J. Diabetes Investig. 2018, 9, 1216–1223. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=The%20prevalence%20of%20overweight%20and,19%25%20of%20boys%20were%20overweight (accessed on 20 November 2021).
- Fisberg, M.; Maximino, P. Doenças crônicas não transmissíveis na adolescência. In Nutrição e Saúde na Adolescência; Priore, S.E., Oliveira, R.M.S., Eds.; Editora Rubio: Rio de Janeiro, Bazil, 2010; pp. 269–275. [Google Scholar]
- Cobayashi, F.; Oliveira, F.L.C.; Escrivão, M.A.M.S.; Daniela, S.; Taddei, J.A.D.A.C. Obesidade e fatores de risco cardiovascular em adolescentes de escolas públicas. Arq. Bras. Cardiol. 2010, 95, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.T.; Carvalho, D.F.; Gonzaga, N.C.; Cardoso, A.S.; Noronha, J.A.F.; Carodos, M.A.A. Perfil lipídico em crianças e adolescentes com excesso de peso. Rev. Bras. Crescimento Desenvolv. Hum 2011, 21, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.M.S.; De Faria, F.R.; Pereira, P.F.; Franceschini, S.C.; Priore, S.E. Nutritional status, metabolic changes and white blood cells in adolescents. Rev. Paul. Pediatr. 2014, 32, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, M.; Da Veiga, G.V. Acurácia da gordura corporal e do perímetro da cintura para predizer alterações metabólicas de risco cardiovascular em adolescentes. Arq. Bras. Endocrinol. Metabol. 2014, 58, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin-Mares, S.; Oliosa, P.; Faria, E.; Zago-Gomes, M.; Mill, J. Association of uric acid with cardiovascular risk in Brazilian children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2020, 31, 314–321. [Google Scholar] [CrossRef]
- Twig, G.; Afek, A.; Shamiss, A.; Derazne, E.; Rabbi, M.L.; Tzur, R.; Gordon, B.; Tirosh, A. Adolescence BMI and Trends in Adulthood Mortality: A Study of 2.16 Million Adolescents. J. Clin. Endocrinol. Metab. 2014, 99, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Giudici, K.V.; Rolland-Cachera, M.-F.; Gusto, G.; Goxe, D.; Lantieri, O.; Hercberg, S.; Péneau, S. Body mass index growth trajectories associated with the different parameters of the metabolic syndrome at adulthood. Int. J. Obes. 2017, 41, 1518–1525. [Google Scholar] [CrossRef]
- Buscot, M.-J.; Thomson, R.; Juonala, M.; A Sabin, M.; Burgner, D.P.; Lehtimäki, T.; Hutri-Kähönen, N.; A Viikari, J.S.; Raitakari, O.T.; Magnussen, C.G. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur. Hear. J. 2018, 39, 2263–2270. [Google Scholar] [CrossRef]
- Quinte, G.C.; Barros, F.; Gigante, D.P.; De Oliveira, I.O.; Motta, J.V.D.S.; Horta, B.L. Overweight trajectory and cardio metabolic risk factors in young adults. BMC Pediatr. 2019, 19, 75. [Google Scholar] [CrossRef] [Green Version]
- Franco, L.P.; Morais, C.C.; Cominetti, C. Normal-weight obesity syndrome: Diagnosis, prevalence, and clinical implications. Nutr. Rev. 2016, 74, 558–570. [Google Scholar] [CrossRef]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The Concept of Normal Weight Obesity. Prog. Cardiovasc. Dis. 2013, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Morais, N.D.S.D.; Miranda, V.P.N.; Priore, S.E. Imagem corporal de adolescentes do sexo feminino e sua associação à composição corporal e ao comportamento sedentário. Ciênc Saúde Colet 2018, 23, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Ripka, W.L.; Orsso, C.E.; Haqq, A.M.; Prado, C.M.; Ulbricht, L.; Leite, N. Validity and accuracy of body fat prediction equations using anthropometrics measurements in adolescents. Eat. Weight. Disord. -Stud. Anorex. Bulim. Obes. 2020, 26, 879–886. [Google Scholar] [CrossRef]
- Prado Júnior, P.P.; Faria, F.R.; Faria, E.R.; Franceschini, S.C.C.; Priore, S.E. Cardiovascular risk and associated factors in adolescents. Nutr. Hosp. 2015, 32, 897–904. [Google Scholar]
- Olafsdottir, A.S.; Torfadottir, J.E.; Arngrimsson, S.A. Health Behavior and Metabolic Risk Factors Associated with Normal Weight Obesity in Adolescents. PLOS ONE 2016, 11, e0161451. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, P.; Törmäkangas, T.; Shi, Y.; Wu, N.; Vainionpää, A.; Alen, M.; Cheng, S. Normal-weight obesity and cardiometabolic risk: A 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity 2017, 25, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.D.; Saltarelli, W.A.; Visich, P.S.; Gordon, P.M. Strength Capacity and Cardiometabolic Risk Clustering in Adolescents. Pediatrics 2014, 133, e896–e903. [Google Scholar] [CrossRef] [Green Version]
- Lamounier, J.A. Obesidade na adolescência. In Nutrição e Saúde na Adolescência; Priore, S.E., Oliveira, R.M.S., Eds.; Editora Rubio: Rio de Janeiro, Brazil, 2010; pp. 75–92. [Google Scholar]
- Chan, K.; Siu, J.Y.-M.; Lee, A. A school-based programme promoting healthy eating. Health Educ. J. 2019, 79, 277–289. [Google Scholar] [CrossRef]
Variables | Females (n = 735) | Males (n = 308) | ||||
---|---|---|---|---|---|---|
SG (n = 373) Median (Min–Max) | CG1 (n = 209) Median (Min–Max) | CG2 (n = 153) Median (Min–Max) | SG (n = 38) Median (Min–Max) | CG1 (n = 213) Median (Min–Max) | CG2 (n = 57) Median (Min–Max) | |
Age (years) | 16 (10–19) † ‡ | 15 (10–19) | 15 (10–19) | 12 (10–19) † | 14 (10–19) | 13 (10–19) |
BMI (kg/m2) | 20.2 (15.0–24.0) † ‡ | 17.5 (12.0–23.0) | 25.5 (20.0–47.0) | 17 .7 (16.0–30.0) † ‡ | 17.6 (13.0–24.0) | 24.2 (19.0–34.0) |
BF (%) | 29.6 (25.0–42.0 † ‡ | 20.9 (9.0–25.0) | 39.9 (27.0–57.0) | 23.0 (20.0–35.0) † ‡ | 11.3 (5.0–20.0) | 30.0 (20.0–49.0) |
WHtR | 0.4 (0.3–0.5) † ‡ | 0.4 (0.3–0.5) | 0.5 (0.4–0.8) | 0.5 (0.4–0.6) † ‡ | 0.4 (0.3–0.5) | 0.5 (0.4–0.6) |
WHR | 0.8 (0.66–1.0) | 0.8 (0.66–1.1) | 0.8 (0.7–1.0) | 0.8 (0.5–1.0) † | 0.7 (0.68–0.99) | 0.8 (0.5–1.0) |
SBP (mmHg) | 101.5 (75.0–134.0) † ‡ | 97.5 (73.0–150.0) | 107.0 (85.0–165.0) | 96.7 (80.0–127.0) ‡ | 98.5 (74.0–143.0) | 106.0 (85.0–136.0) |
DBP (mmHg) | 66.0 (47.0–91.0) † ‡ | 61.0 (44.0–110.0) | 68.5 (51.0–100.0) | 59.0 (47.0–68.0) | 58.0 (40.0–97.0) | 61.5 (47.0–74.0) |
Total cholesterol (mg/dL) | 154.0 (84.0–283.0) | 151.0 (46.0–241.0) | 155.0 (91.0–239.0) | 168.0 (113.0–217.0) † | 150.0 (870.0–234.0) | 164.0 (90.0–217.0) |
LDL (mg/dL) | 87.0 (29.0–201.0) † ‡ | 84.0 (23.0–165.0) | 90.2 (40.0–167.0) | 96.8 (63.0–136.0) † | 87.2 (39.0–156.0) | 99.8 (28.0–148.0) |
HDL (mg/dL) | 52.0 (28.0–161.0) ‡ | 52.0 (26.0–97.0) | 45.0 (23.0–100.0) | 47.5 (30.0–117.0) | 49.0 (29.0–106.0) | 45.0 (30.0–71.0) |
Triglycerides (mg/dL) | 64.0 (28.0–212.0) † ‡ | 60.0 (26.0–97.0) | 76.0 (26.0–272.0) | 67.0 (25.0–210.0) † | 61.0 (14.0–130.0) | 73.0 (55.0–248.0) |
Glucose (mg/dL) | 85.0 (64.0–408.0) | 84.0 (3.0–105.0) | 86.0 (65.0–114.0) | 85.5 (75.0–101.0) | 86.0 (81.00–91.00) | 85.0 (70.0–111.0) |
HOMA-IR | 1.5 (0.0–6.0) ‡ | 1.4 (0.0–4.0) | 2.1 (1.0–11.0) | 1.4 (0.0–4.0) ‡ | 1.2 (0.0–3.0) | 2.4 (1.0–11.0) |
Android Fat (%) | 18.2 (6.0–49.0) † ‡ | 8.9 (4.0–21.0) | 35.1 (11.0–59.0) | 14.7 (7.0–72.0) † ‡ | 5.5 (4.0–18.0) | 26.2 (11.0–50.0) |
Gynoid Fat (%) | 37.8 (19.5–51.0) † ‡ | 28.3 (9.0–37.0) | 48.0 (33.0–63.0) | 31.1 (19.0–55.0) † ‡ | 16.9 (4.0–33.0) | 39.2 (29.0–58.0) |
Trunk fat (%) | 30.3 (15.3–54.0) | 29.7 (17.1–49.4) | 29.6 (18.0–51.5) | 27.7 (15.2–46.5) | 30.3 (16.8–45.2) | 31.0 (18.6–42.0) |
Arm fat (%) | 8.3 (4.0–19.7) | 8.2 (4.2–56.6) | 8.1 (4.6–11.3) | 8.1 (5.7–12.5) | 8.3 (4.6–12.4) | 8.1 (4.6–11.3) |
Leg fat (%) | 56.3 (3.3–77.0) | 57.5 (22.4–67.9) | 56.4 (5.6–69.5) | 57.8 (42.1–69.1) ‡ | 56.4 (42.0–72.0) | 54.8 (44.4–66.1) |
Model 1 * | Model 2 ** | |||
---|---|---|---|---|
Risk Factors | Odds Ratio (IC95%) | Value of p | Odds Ratio (IC95%) | Value of p |
TC | 1.01 (1.01–1.02) | 0.02 | 1.02 (1.01–1.04) | 0.01 |
DBP | 1.05 (1.02–1.07) | 0.001 | - | - |
SBP | - | - | 0.93 (0.91–0.94) | <0.001 |
TG | 1.01 (1.01–1.02) | <0.001 | 0.99 (0.98–0.99) | <0.001 |
LDL | - | - | 0.96 (0.94–0.98) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais, N.d.S.; Azevedo, F.M.; de Freitas Rocha, A.R.; Morais, D.d.C.; Ribeiro, S.A.V.; Gonçalves, V.S.S.; do Carmo Castro Franceschini, S.; Priore, S.E. Body Fat Is Superior to Body Mass Index in Predicting Cardiometabolic Risk Factors in Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 2074. https://doi.org/10.3390/ijerph20032074
de Morais NdS, Azevedo FM, de Freitas Rocha AR, Morais DdC, Ribeiro SAV, Gonçalves VSS, do Carmo Castro Franceschini S, Priore SE. Body Fat Is Superior to Body Mass Index in Predicting Cardiometabolic Risk Factors in Adolescents. International Journal of Environmental Research and Public Health. 2023; 20(3):2074. https://doi.org/10.3390/ijerph20032074
Chicago/Turabian Stylede Morais, Núbia de Souza, Francilene Maria Azevedo, Ariane Ribeiro de Freitas Rocha, Dayane de Castro Morais, Sarah Aparecida Vieira Ribeiro, Vivian Siqueira Santos Gonçalves, Sylvia do Carmo Castro Franceschini, and Silvia Eloiza Priore. 2023. "Body Fat Is Superior to Body Mass Index in Predicting Cardiometabolic Risk Factors in Adolescents" International Journal of Environmental Research and Public Health 20, no. 3: 2074. https://doi.org/10.3390/ijerph20032074
APA Stylede Morais, N. d. S., Azevedo, F. M., de Freitas Rocha, A. R., Morais, D. d. C., Ribeiro, S. A. V., Gonçalves, V. S. S., do Carmo Castro Franceschini, S., & Priore, S. E. (2023). Body Fat Is Superior to Body Mass Index in Predicting Cardiometabolic Risk Factors in Adolescents. International Journal of Environmental Research and Public Health, 20(3), 2074. https://doi.org/10.3390/ijerph20032074