Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment
Abstract
:1. Introduction
2. Prevention
2.1. Risk Factors
2.1.1. Helicobacter pylori
2.1.2. Tobacco
2.1.3. Alcohol
2.1.4. Meat
2.1.5. Obesity
2.2. Protective Factors
2.2.1. Citrus Fruits and Polyphenol
2.2.2. NSAIDs, aspirin, statin and metformin
3. Screening for Gastric Cancer
3.1. Precancerous Conditions and Lesions
3.1.1. Atrophic Gastritis
3.1.2. Intestinal Metaplasia
3.2. Screening Test to Detect Early Gastric Cancer
3.2.1. Serum Markers
3.2.2. Imaging
3.2.3. Endoscopic Screening
4. Treatment of Early Gastric Cancer
4.1. Endoscopy
4.1.1. Indications for Endoscopic Resection of Early Gastric Cancer
4.1.2. Endoscopic Preoperative Diagnosis
4.1.3. Endoscopic Mucosal Resection and Submucosal Dissection
4.2. Surgery
4.2.1. Minimally invasive Approaches
4.2.2. Function-preserving Gastrectomy
4.2.3. Sentinel Node navigation Surgery
4.3. Comparison between Endoscopic Resection and Surgery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC | gastric cancer |
WHO | World Health Organization |
GIST | gastrointestinal stromal tumor |
NET | neuroendocrine tumors |
Hp | Helicobacter pylori |
NSAIDs | nonsteroidal anti-inflammatory drugs |
NCGC | non-cardia gastric cancer |
MALT | mucosa-associated lymphoid tissue |
CI | confidence interval |
RR | relative risk |
CGC | cardia gastric cancer |
RCTs | randomized controlled trials |
GSTT1 | glutathione S-transferase theta 1 |
SULT1A1 | sulfotransferase family 1A member 1 |
CYP1a1 | cytochrome P450 family 1 subfamily A |
NAT2 | N-acetyltransferase 2 |
CDH1 | cadherin 1 |
OR | odds ratio |
DNA | deoxyribonucleic acid |
ALDH2 | aldehyde dehydrogenase-2 |
SToP | Stomach Cancer pooling |
PUFAs | polyunsaturated fatty acids |
IL-1 | interleukin-1 |
TNF | tumor necrosis factor |
COX-2 | cyclooxygenase-2 inhibitor |
IGL | insulin-like growth factor |
AG | atrophic gastritis |
IM | intestinal metaplasia |
OLGA | Operative Link on Gastritis Assessment |
OLGIM | Operative Link on Gastritis Assessment based on Intestinal Metaplasia |
CE | chromoendoscopy |
ECG | early gastric cancer |
sPG | serum pepsinogen |
PGI | pepsinogen I |
PGII | pepsinogen II |
sPGr | serum pepsinogen I/pepsinogen II ratio |
LncRNAs | long non-coding RNAs |
MiRNAs | micro-RNAs |
G-17 | gastrin-17 |
ER | endoscopic resection |
LNM | lymph node metastasis |
EMR | endoscopic mucosal resection |
ESD | endoscopic submucosal dissection |
SM | submucosal invasion |
MESDA | magnified endoscopy simple diagnostic algorithm |
MV | microvascular |
MS | microsurface |
CE | conventional endoscopy |
EUS | endosonography |
ESGE | European Society of Gastrointestinal Endoscopy |
QOL | quality of life |
LOHS | length of hospital stay |
AEs | adverse events |
OS | overall survival |
CSS | cancer-specific survival |
RD | risk difference |
LADG | laparoscopy distal gastrectomy |
ODG | open distal gastrectomy |
PG | proximal gastrectomy |
PPG | pylorus-preserving gastrectomy |
TG | total gastrectomy |
DG | distal gastrectomy |
SN | sentinel node |
HR | hazard ratio |
GCS | gastric cancer subscale |
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; the WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A.D.; Seely, K.D.; Hagenstein, L.D.; Florey, G.M.; Small, J.M. Bacterial Involvement in Progression and Metastasis of Adenocarcinoma of the Stomach. Cancers 2022, 14, 4886. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Yuan, Y.; Moayyedi, P. Helicobacter pylori eradication therapy to prevent gastric cancer: Systematic review and meta-analysis. Gut 2020, 69, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Mori, H. Different Pathophysiology of Gastritis between East and West? An Asian Perspective. Inflamm. Intest. Dis. 2016, 1, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-H.; Cheng, H.-C.; Chuang, S.-L.; Chen, Y.-R.; Hsu, Y.-H.; Hsu, T.-H.; Lin, L.-J.; Lin, Y.-W.; Chu, C.-H.; Wu, M.-S.; et al. Mass screening and eradication of Helicobacter pylori as the policy recommendations for gastric cancer prevention. J. Formos. Med. Assoc. 2022, 121, 2378–2392. [Google Scholar] [CrossRef]
- Tsuda, M.; Asaka, M.; Kato, M.; Matsushima, R.; Fujimori, K.; Akino, K.; Kikuchi, S.; Lin, Y.; Sakamoto, N. Effect on Helicobacter pylori eradication therapy against gastric cancer in Japan. Helicobacter 2017, 22, e12415. [Google Scholar] [CrossRef] [Green Version]
- Praud, D.; Rota, M.; Pelucchi, C.; Bertuccio, P.; Rosso, T.; Galeone, C.; Zhang, Z.-F.; Matsuo, K.; Ito, H.; Hu, J.; et al. Cigarette smoking and gastric cancer in the Stomach Cancer Pooling (StoP) Project. Eur. J. Cancer Prev. 2018, 27, 124–133. [Google Scholar] [CrossRef]
- Agudo, A.; Sala, N.; Pera, G.; Capellaá, G.; Berenguer, A.; Garciía, N.; Palli, D.; Boeing, H.; Del Giudice, G.; Saieva, C.; et al. Polymorphisms in Metabolic Genes Related to Tobacco Smoke and the Risk of Gastric Cancer in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2427–2434. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Jin, L.; Zhuo, H.; Vasiliou, V.; Zhang, Y. Alcohol consumption and risk of stomach cancer: A meta-analysis. Chem. Interactions 2021, 336, 109365. [Google Scholar] [CrossRef]
- Crabb, D.W.; Matsumoto, M.; Chang, D.; You, M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 2004, 63, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.R.; Kim, K.; Lee, S.-A.; Kwon, S.O.; Lee, J.-K.; Keum, N.; Park, S.M. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and Dose–Response Meta-Analysis. Nutrients 2019, 11, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, A.; Rosato, V.; Rota, M.; Costa, A.R.; Morais, S.; Pelucchi, C.; Johnson, K.C.; Hu, J.; Palli, D.; Ferraroni, M.; et al. Meat intake and risk of gastric cancer in the Stomach cancer Pooling (StoP) project. Int. J. Cancer 2019, 147, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Bergin, I.L.; Sheppard, B.J.; Fox, J.G. Helicobacter pylori Infection and High Dietary Salt Independently Induce Atrophic Gastritis and Intestinal Metaplasia in Commercially Available Outbred Mongolian Gerbils. Dig. Dis. Sci. 2003, 48, 475–485. [Google Scholar] [CrossRef]
- Lim, K.; Han, C.; Dai, Y.; Shen, M.; Wu, T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking β-catenin and cyclooxygenase-2. Mol. Cancer Ther. 2009, 8, 3046–3055. [Google Scholar] [CrossRef] [Green Version]
- Vucenik, I.; Stains, J.P. Obesity and cancer risk: Evidence, mechanisms, and recommendations. Ann. N. Y. Acad. Sci. 2012, 1271, 37–43. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, Y.; Chen, B.; Wan, H.-W.; Jia, G.-Q.; Bai, H.-L.; Wu, X.-T. Overweight, obesity and gastric cancer risk: Results from a meta-analysis of cohort studies. Eur. J. Cancer 2009, 45, 2867–2873. [Google Scholar] [CrossRef]
- Wu, A.H.; Tseng, C.-C.; Bernstein, L. Hiatal hernia, reflux symptoms, body size, and risk of esophageal and gastric adenocarcinoma. Cancer 2003, 98, 940–948. [Google Scholar] [CrossRef]
- Bianchini, F.; Kaaks, R.; Vainio, H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002, 3, 565–574. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kitayama, J.; Yamauchi, T.; Kadowaki, T.; Maki, T.; Miyato, H.; Yamashita, H.; Nagawa, H. Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci. 2007, 98, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Foschi, R.; Pelucchi, C.; Maso, L.D.; Rossi, M.; Levi, F.; Talamini, R.; Bosetti, C.; Negri, E.; Serraino, D.; Giacosa, A.; et al. Citrus fruit and cancer risk in a network of case–control studies. Cancer Causes Control 2009, 21, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Vingeliene, S.; Chan, D.S.M.; Aune, D.; Vieira, A.R.; Polemiti, E.; Stevens, C.; Abar, L.; Rosenblatt, D.N.; Greenwood, D.C.; Norat, T. An update of the WCRF/AICR systematic literature review on esophageal and gastric cancers and citrus fruits intake. Cancer Causes Control 2016, 27, 837–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasazuki, S.; Hayashi, T.; Nakachi, K.; Sasaki, S.; Tsubono, Y.; Okubo, S.; Tsugane, S. Protective Effect of Vitamin C on Oxidative Stress: A Randomized Controlled Trial. Int. J. Vitam. Nutr. Res. 2008, 78, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Bertuccio, P.; Alicandro, G.; Rota, M.; Pelucchi, C.; Bonzi, R.; Galeone, C.; Bravi, F.; Johnson, K.C.; Hu, J.; Palli, D.; et al. Citrus fruit intake and gastric cancer: The stomach cancer pooling (StoP) project consortium. Int. J. Cancer 2018, 144, 2936–2944. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Liu, F.; Guo, H.-B.; Li, Y.; Tan, B.-B.; Zhang, W.-X.; Peng, Y.-H. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumor Biol. 2016, 37, 11365–11374. [Google Scholar] [CrossRef] [PubMed]
- Baltas, N.; Karaoglu, S.A.; Tarakci, C.; Kolayli, S. Effect of propolis in gastric disorders: Inhibition studies on the growth of Helicobacter pylori and production of its urease. J. Enzym. Inhib. Med. Chem. 2016, 31, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-Z.; Chen, Y.; Wu, J.; Zhang, X.; Wu, C.-C.; Zhang, C.-Y.; Sun, S.-S.; Chen, W.-J. Aspirin and non-steroidal anti-inflammatory drugs use reduce gastric cancer risk: A dose-response meta-analysis. Oncotarget 2016, 8, 4781–4795. [Google Scholar] [CrossRef] [Green Version]
- Elwood, P.C.; Gallagher, A.M.; Duthie, G.G.; Mur, L.A.; Morgan, G. Aspirin, salicylates, and cancer. Lancet 2009, 373, 1301–1309. [Google Scholar] [CrossRef]
- Seo, S.I.; Park, C.H.; Kim, T.J.; Bang, C.S.; Kim, J.Y.; Lee, K.J.; Kim, J.; Kim, H.H.; You, S.C.; Shin, W.G. Aspirin, metformin, and statin use on the risk of gastric cancer: A nationwide population-based cohort study in Korea with systematic review and meta-analysis. Cancer Med. 2021, 11, 1217–1231. [Google Scholar] [CrossRef]
- Rugge, M.; Correa, P.; Dixon, M.F.; Fiocca, R.; Hattori, T.; Lechago, J.; Leandro, G.; Price, A.B.; Sipponen, P.; Solcia, E.; et al. Gastric mucosal atrophy: Interobserver consistency using new criteria for classification and grading. Aliment. Pharmacol. Ther. 2002, 16, 1249–1259. [Google Scholar] [CrossRef]
- Yue, H.; Shan, L.; Bin, L. The significance of OLGA and OLGIM staging systems in the risk assessment of gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2018, 21, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Pimentel-Nunes, P.; Libânio, D.; Marcos-Pinto, R.; Areia, M.; Leja, M.; Esposito, G.; Garrido, M.; Kikuste, I.; Megraud, F.; Matysiak-Budnik, T.; et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 2019, 51, 365–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamu, M.A.; Weck, M.N.; Gao, L.; Brenner, H. Incidence of chronic atrophic gastritis: Systematic review and meta-analysis of follow-up studies. Eur. J. Epidemiol. 2010, 25, 439–448. [Google Scholar] [CrossRef]
- Vannella, L.; Sbrozzi-Vanni, A.; Lahner, E.; Bordi, C.; Pilozzi, E.; Corleto, V.D.; Osborn, J.F.; Fave, G.D.; Annibale, B. Development of type I gastric carcinoid in patients with chronic atrophic gastritis. Aliment. Pharmacol. Ther. 2011, 33, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, V.; Sousa, J.D.F.; LaFleur, B.J.; Nam, K.T.; Weis, J.; Finke, P.E.; Ameen, N.A.; Fox, J.G.; Goldenring, J.R. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut 2012, 62, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.R.; Goldenring, J.R. Injury, repair, inflammation and metaplasia in the stomach. J. Physiol. 2018, 596, 3861–3867. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Li, P.; Ye, J.; Chen, J.; Han, Y.; Cai, J.; Lu, X. Risk of gastric cancer among patients with gastric intestinal metaplasia. Int. J. Cancer 2018, 143, 1671–1677. [Google Scholar] [CrossRef]
- Ibrahim, H.; El-Deen, A.S.; Kasemy, Z.; Saad, M.; Sakr, A. Role of endoscopy in suspicion of atrophic gastritis with and without intestinal metaplasia in comparison to histopathology. Acta Gastro Enterol. Belg. 2021, 84, 9–17. [Google Scholar] [CrossRef]
- Lomba-Viana, R.; Dinis-Ribeiro, M.; Fonseca, F.; Vieira, A.S.; Bento, M.J.; Lomba-Viana, H. Serum pepsinogen test for early detection of gastric cancer in a European Country. Eur. J. Gastroenterol. Hepatol. 2012, 24, 37–41. [Google Scholar] [CrossRef]
- Terasawa, T.; Nishida, H.; Kato, K.; Miyashiro, I.; Yoshikawa, T.; Takaku, R.; Hamashima, C. Prediction of Gastric Cancer Development by Serum Pepsinogen Test and Helicobacter pylori Seropositivity in Eastern Asians: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e109783. [Google Scholar] [CrossRef]
- Chapelle, N.; Petryszyn, P.; Blin, J.; Leroy, M.; Le Berre-Scoul, C.; Jirka, I.; Neunlist, M.; Moussata, D.; Lamarque, D.; Olivier, R.; et al. A panel of stomach-specific biomarkers (GastroPanel®) for the diagnosis of atrophic gastritis: A prospective, multicenter study in a low gastric cancer incidence area. Helicobacter 2020, 25, e12727. [Google Scholar] [CrossRef] [PubMed]
- Shigeyasu, K.; Toden, S.; Zumwalt, T.J.; Okugawa, Y.; Goel, A. Emerging role of miRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin. Cancer Res. 2017, 23, 2391–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattahi, S.; Kosari-Monfared, M.; Golpour, M.; Emami, Z.; Ghasemiyan, M.; Nouri, M.; Akhavan-Niaki, H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J. Cell. Physiol. 2019, 235, 3189–3206. [Google Scholar] [CrossRef]
- Shin, V.Y. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J. Gastroenterol. 2014, 20, 10432–10439. [Google Scholar] [CrossRef]
- Sousa, J.F.; Nam, K.T.; Petersen, C.P.; Lee, H.-J.; Yang, H.-K.; Kim, W.H.; Goldenring, J.R. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2015, 65, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishibeppu, K.; Komatsu, S.; Imamura, T.; Kiuchi, J.; Kishimoto, T.; Arita, T.; Kosuga, T.; Konishi, H.; Kubota, T.; Shiozaki, A.; et al. Plasma microRNA profiles: Identification of miR-1229-3p as a novel chemoresistant and prognostic biomarker in gastric cancer. Sci. Rep. 2020, 10, 3161. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Jun, J.K.; Park, E.-C.; Park, S.; Jung, K.W.; Han, M.A.; Choi, I.J.; Lee, H.-Y. Performance of Different Gastric Cancer Screening Methods in Korea: A Population-Based Study. PLoS ONE 2012, 7, e50041. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.E.; Choi, E.; Lee, K.; Jun, J.K.; Suh, M.; Jung, K.W.; Choi, K.S. Trends in the Performance of the Korean National Cancer Screening Program for Gastric Cancer from 2007 to 2016. Cancer Res. Treat. 2022, 54, 842–849. [Google Scholar] [CrossRef]
- Huang, H.-L.; Leung, C.Y.; Saito, E.; Katanoda, K.; Hur, C.; Kong, C.Y.; Nomura, S.; Shibuya, K. Effect and cost-effectiveness of national gastric cancer screening in Japan: A microsimulation modeling study. BMC Med. 2020, 18, 257. [Google Scholar] [CrossRef]
- Park, H.A.; Nam, S.Y.; Kil Lee, S.; Kim, S.G.; Shim, K.-N.; Park, S.M.; Lee, S.-Y.; Han, H.S.; Shin, Y.M.; Kim, K.-M.; et al. The Korean guideline for gastric cancer screening. J. Korean Med. Assoc. 2015, 58, 373–384. [Google Scholar] [CrossRef]
- Ezoe, Y.; Muto, M.; Uedo, N.; Doyama, H.; Yao, K.; Oda, I.; Kaneko, K.; Kawahara, Y.; Yokoi, C.; Sugiura, Y.; et al. Magnifying Narrowband Imaging Is More Accurate Than Conventional White-Light Imaging in Diagnosis of Gastric Mucosal Cancer. Gastroenterology 2011, 141, 2017–2025.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamashima, C.; Systematic Review Group and Guideline Development Group for Gastric Cancer Screening Guidelines. Update version of the Japanese Guidelines for Gastric Cancer Screening. Jpn. J. Clin. Oncol. 2018, 48, 673–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisschops, R.; Areia, M.; Coron, E.; Dobru, D.; Kaskas, B.; Kuvaev, R.; Pech, O.; Ragunath, K.; Weusten, B.; Familiari, P.; et al. Performance measures for upper gastrointestinal endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2016, 48, 843–864. [Google Scholar] [CrossRef] [Green Version]
- Ono, H.; Yao, K.; Fujishiro, M.; Oda, I.; Nimura, S.; Yahagi, N.; Iishi, H.; Oka, M.; Ajioka, Y.; Ichinose, M.; et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer. Dig. Endosc. 2015, 28, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel-Nunes, P.; Libânio, D.; Bastiaansen, B.A.J.; Bhandari, P.; Bisschops, R.; Bourke, M.J.; Esposito, G.; Lemmers, A.; Maselli, R.; Messmann, H.; et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2022. Endoscopy 2022, 54, 591–622. [Google Scholar] [CrossRef]
- Shiotsuki, K.; Takizawa, K.; Ono, H. Indications of Endoscopic Submucosal Dissection for Undifferentiated Early Gastric Cancer: Current Status and Future Perspectives for Further Expansion. Digestion 2021, 103, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Yoo, S.-Y.; Park, Y.S.; Choi, K.D.; Kim, B.S.; Yoo, M.-W.; Lee, I.S.; Yook, J.H.; Kim, G.H.; Na, H.K.; et al. Reevaluation of the expanded indications in undifferentiated early gastric cancer for endoscopic submucosal dissection. World J. Gastroenterol. 2022, 28, 1548–1562. [Google Scholar] [CrossRef]
- Ferreira, C.N.; Serrazina, J.; Marinho, R.T. Detection and Characterization of Early Gastric Cancer. Front. Oncol. 2022, 12. [Google Scholar] [CrossRef]
- Muto, M.; Yao, K.; Kaise, M.; Kato, M.; Uedo, N.; Yagi, K.; Tajiri, H. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G). Dig. Endosc. 2016, 28, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Waddingham, W.; Nieuwenburg, S.A.V.; Carlson, S.; Rodriguez-Justo, M.; Spaander, M.; Kuipers, E.J.; Jansen, M.; Graham, D.G.; Banks, M. Recent advances in the detection and management of early gastric cancer and its precursors. Front. Gastroenterol. 2020, 12, 322–331. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.G.; Im, J.P.; Kim, J.S.; Jung, H.C.; Song, I.S. Endoscopic prediction of tumor invasion depth in early gastric cancer. Gastrointest. Endosc. 2011, 73, 917–927. [Google Scholar] [CrossRef]
- Tsujii, Y.Y.; Hayashi, Y.; Ishihara, R.; Yamaguchi, S.; Yamamoto, M.; Inoue, T.; Nagai, K.; Ogiyama, H.; Yamada, T.; Nakahara, M. Diagnostic value of endoscopic ultrasonography for the depth of gastric cancer suspected of submucosal invasion: A multicenter prospective study. Surg. Endosc. 2022. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, X.; Hu, M.; Pan, J. Endoscopic submucosal dissection versus endoscopic mucosal resection for patients with early gastric cancer: A meta-analysis. BMJ Open 2019, 9, e025803. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, C. Long-Term Clinical Efficacy and Perioperative Safety of Endoscopic Submucosal Dissection versus Endoscopic Mucosal Resection for Early Gastric Cancer: An Updated Meta-Analysis. BioMed Res. Int. 2018, 2018, 3152346. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-M.; Cho, E.; Kang, H.-Y.; Kim, J.-M. The effectiveness and safety of endoscopic submucosal dissection compared with endoscopic mucosal resection for early gastric cancer: A systematic review and metaanalysis. Surg. Endosc. 2011, 25, 2666–2677. [Google Scholar] [CrossRef]
- Bestetti, A.M.; de Moura, D.T.H.; Proença, I.M.; Junior, E.S.D.M.; Ribeiro, I.B.; Sasso, J.G.R.J.; Kum, A.S.T.; Sánchez-Luna, S.A.; Bernardo, W.M.; de Moura, E.G.H. Endoscopic Resection Versus Surgery in the Treatment of Early Gastric Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 939244. [Google Scholar] [CrossRef]
- Lu, W.; Gao, J.; Yang, J.; Zhang, Y.; Lv, W.; Mu, J.; Dong, P.; Liu, Y. Long-term clinical outcomes of laparoscopy-assisted distal gastrectomy versus open distal gastrectomy for early gastric cancer: A comprehensive systematic review and meta-analysis of randomized control trials. Medicine 2016, 95, e3986. [Google Scholar] [CrossRef]
- Caruso, S.; Patriti, A.; Roviello, F.; De Franco, L.; Franceschini, F.; Coratti, A.; Ceccarelli, G. Laparoscopic and robot-assisted gastrectomy for gastric cancer: Current considerations. World J. Gastroenterol. 2016, 22, 5694–5717. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, Y.; Wang, Y.; Xi, C.; Ye, N.; Xu, X. Proximal versus total gastrectomy for proximal early gastric cancer: A systematic review and meta-analysis. Medicine 2019, 98, e15663. [Google Scholar] [CrossRef]
- Mao, X.; Xu, X.; Zhu, H.; Ji, C.; Lu, X.; Wang, B. A comparison between pylorus-preserving and distal gastrectomy in surgical safety and functional benefit with gastric cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2020, 18, 160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dong, Z.-Y.; Chen, J.-Q.; Liu, J.-L. Diagnostic Value of Sentinel Lymph Node Biopsy in Gastric Cancer: A Meta-Analysis. Ann. Surg. Oncol. 2011, 19, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Sheng, Y.; Wu, M.; Wang, S.; Zhang, K. Comparison between Endoscopic Submucosal Dissection and Surgery in Patients with Early Gastric Cancer. Cancers 2022, 14, 3603. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Gaowa, S.; Cheng, H.; Hou, M. Long-Term Outcomes Comparison of Endoscopic Resection With Gastrectomy for Treatment of Early Gastric Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2019, 9, 725. [Google Scholar] [CrossRef]
- Tae, C.H.; Shim, K.-N.; Kim, B.-W.; Kim, J.-H.; Hong, S.J.; Baik, G.H.; Song, H.J.; Kim, Y.S.; Jang, S.-H.; Jung, H.-K. Comparison of subjective quality of life after endoscopic submucosal resection or surgery for early gastric cancer. Sci. Rep. 2020, 10, 6680. [Google Scholar] [CrossRef] [Green Version]
Country | Screening Age | Beginning of Screening | Screening Interval | Strategy | Expected or Demonstrated Benefits |
---|---|---|---|---|---|
Japan | 20 years | 2013 | Once | Hp infection diagnosed at endoscopic screening | 6% reduction in GC mortality in 2016 [8]. |
Republic of Korea | 40–65 years | 2014 | Once | Urea breath test (UBT) screening | To reduce the incidence of GC through Hp eradication. |
China | 18 years | 2022 | Once | Through UBT screening for parents; reach children for Hp testing. | To prevent Hp spread among family members and thus reduce GC incidence and related costs. |
Taiwan | 30 years | 2004 | Every 2 years | UBT screening | 53% reduction in GC incidence and 25% reduction in GC mortality [7]. |
Key Performance Measures | Minor Performance Measures |
---|---|
Fasting instructions prior to endoscopy | Minimum 7-minute procedure time for first diagnostic endoscopy and follow-up of gastric intestinal metaplasia |
Documentation of procedure duration | Minimum 1-minute inspection time per cm circumferential Barrett’s epithelium |
Accurate photo-documentation of anatomical landmarks and abnormal findings | Use of Lugol chromoendoscopy in high-risk patients to exclude a second primary esophageal cancer |
Accurate application of standardized disease-related terminology | Application of validated biopsy protocol to detect gastric intestinal metaplasia (MAPS guidelines) |
Application of Seattle protocol in Barrett’s surveillance | Prospective registration of Barrett’s patients |
Accurate registration of complications after therapeutic endoscopy | |
MAPS (management of patients with precancerous conditions and lesions of the stomach) |
Depth of Invasion | Ulceration | Differentiated Type | Undifferentiated Type | ||
---|---|---|---|---|---|
cT1a(M) | UL0 | ≤20 mm absolute indications for EMR/ESD | >20 mm absolute indications for ESD | ≤20 mm absolute indications for ESD | >20 mm relative indications |
UL1 | ≤30 mm absolute indications for ESD | >30 mm relative indications | Relative indications | ||
cT1b(SM) | Relative indications | Relative indications |
Criteria | Absolute Indication | Expanded Indication | Relative Indication |
---|---|---|---|
Risk of lymph node metastasis | Less than 1% | Less than 1% | Other than absolute/ extended |
Long-term outcomes compared to surgical resection | Equal | Equal, poor evidence |
|
Criteria | |||
---|---|---|---|
Risk of ER | En Bloc Resection R0 | Lymphovascular Invasion | Pathology and Size |
Curative/very low (LNM risk < 0.5 %–1 %) | Yes | No |
|
Curative/low risk (LNM risk < 3 %) | Yes | No |
|
Local-risk resection (very low risk of LNM but increased risk of persistence/recurrence) |
| No |
|
Noncurative/high risk Any lesion with any of the criteria | Positive vertical margin | Yes |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, C.B.; Agnesi, S.; Scaravaglio, M.; Masseria, P.; Dinelli, M.E.; Oldani, M.; Uggeri, F. Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2149. https://doi.org/10.3390/ijerph20032149
Conti CB, Agnesi S, Scaravaglio M, Masseria P, Dinelli ME, Oldani M, Uggeri F. Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. International Journal of Environmental Research and Public Health. 2023; 20(3):2149. https://doi.org/10.3390/ijerph20032149
Chicago/Turabian StyleConti, Clara Benedetta, Stefano Agnesi, Miki Scaravaglio, Pietro Masseria, Marco Emilio Dinelli, Massimo Oldani, and Fabio Uggeri. 2023. "Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment" International Journal of Environmental Research and Public Health 20, no. 3: 2149. https://doi.org/10.3390/ijerph20032149
APA StyleConti, C. B., Agnesi, S., Scaravaglio, M., Masseria, P., Dinelli, M. E., Oldani, M., & Uggeri, F. (2023). Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. International Journal of Environmental Research and Public Health, 20(3), 2149. https://doi.org/10.3390/ijerph20032149