Prevalence and Associations of Type 2 Diabetes Risk and Sociodemographic Factors in Saudi Arabia: A Web-Based Cross-Sectional Survey Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Questionnaire
2.3. Objectives
2.4. Definitions
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas 10th edition 2021. Available online: https://diabetesatlas.org/ (accessed on 29 March 2022).
- Al Dawish, M.A.; Robert, A.A.; Braham, R.; Al Hayek, A.A.; Al Saeed, A.; Ahmed, R.A.; Al Sabaan, F.S. Diabetes Mellitus in Saudi Arabia: A Review of the Recent Literature. Curr. Diabetes Rev. 2016, 12, 359–368. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46 (Suppl. 1), S19–S40. [Google Scholar] [CrossRef]
- Saudi Diabetes Clinical Practice Guidelines (SDCPG): Saudi National Diabetes Center (SNDC)—2021. Available online: https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Saudi-Diabetes-Clinical-Practice-Guidelines.pdf (accessed on 15 January 2023).
- Alghadir, A.; Awad, H.; Al-Eisa, E.; Alghwiri, A. Diabetes Risk 10 Years Forecast in the Capital of Saudi Arabia: Canadian Diabetes Risk Assessment Questionnaire (CANRISK) Perspective. Biomed. Res. 2014, 25, 88–96. [Google Scholar]
- Alanazi, F.K.; Alotaibi, J.S.; Paliadelis, P.; Alqarawi, N.; Alsharari, A.; Albagawi, B. Knowledge and Awareness of Diabetes Mellitus and Its Risk Factors in Saudi Arabia. Saudi Med. J. 2018, 39, 981–989. [Google Scholar] [CrossRef]
- Lindström, J.; Tuomilehto, J. The Diabetes Risk Score: A Practical Tool to Predict Type 2 Diabetes Risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczorowski, J.; Robinson, C.; Nerenberg, K. Development of the CANRISK Questionnaire to Screen for Prediabetes and Undiagnosed Type 2 Diabetes. Can. J. Diabetes 2009, 33, 381–385. [Google Scholar] [CrossRef]
- Herman, W.H.; Smith, P.J.; Thompson, T.J.; Engelgau, M.M.; Aubert, R.E. A New and Simple Questionnaire to Identify People at Increased Risk for Undiagnosed Diabetes. Diabetes Care 1995, 18, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.J.; Little, P.S.; Hales, C.N.; Kinmonth, A.L.; Wareham, N.J. Diabetes Risk Score: Towards Earlier Detection or Type 2 Diabetes in General Practice. Diabetes. Metab. Res. Rev. 2000, 16, 164–171. [Google Scholar] [CrossRef]
- Alghwiri, A.; Alghadir, A.; Awad, H. The Arab Risk (ARABRISK): Translation and Validation. Biomed. Res. 2014, 25, 271–275. [Google Scholar]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of Diabetes and Diabetes-Related Complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.I.; Klein, R.; Welborn, T.A.; Knuiman, M.W. Onset of NIDDM Occurs at Least 4-7 Yr before Clinical Diagnosis. Diabetes Care 1992, 15, 815–819. [Google Scholar] [CrossRef]
- Pottie, K.; Jaramillo, A.; Lewin, G.; Dickinson, J.; Bell, N.; Brauer, P.; Dunfield, L.; Joffres, M.; Singh, H.; Tonelli, M. Recommendations on Screening for Type 2 Diabetes in Adults. Cmaj 2012, 184, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saudi Arabia’s National Unified Portal for Government Services. Reports and Statistics. Available online: https://www.my.gov.sa/wps/portal/snp/aboutksa/saudiReportsAndStatistics (accessed on 14 November 2020).
- The Comprehensive R Archive Network. Introduction to Rgeolocate. Available online: https://cran.r-project.org/web/packages/rgeolocate/vignettes/Introduction_to_rgeolocate.html (accessed on 25 December 2022).
- Kahle, D. GitHub—dkahle/ggmap: A Package for Plotting Maps in R with Ggplot2. Available online: https://github.com/dkahle/ggmap (accessed on 26 December 2022).
- Mohieldein, A.H.; Alzohairy, M.; Hasan, M. Risk Estimation of Type 2 Diabetes and Dietary Habits among Adult Saudi Non-Diabetics in Central Saudi Arabia. Glob. J. Health Sci. 2011, 3, 123–133. [Google Scholar] [CrossRef]
- Mirghani, H.O.; Saleh, A. Diabetes Risk among Medical Students in Tabuk City, Saudi Arabia. Dubai Diabetes Endocrinol. J. 2020, 26, 27–30. [Google Scholar] [CrossRef]
- D’Souza, M.S.; Amirtharaj, A.; Venkatesaperumal, R.; Isac, C.; Maroof, S. Risk-Assessment Score for Screening Diabetes Mellitus among Omani Adults. SAGE Open Med. 2013, 1, 205031211350839. [Google Scholar] [CrossRef]
- Tarekegne, F.E.; Padyab, M.; Schröders, J.; Williams, J.S. Sociodemographic and Behavioral Characteristics Associated with Selfreported Diagnosed Diabetes Mellitus in Adults Aged 50+ Years in Ghana and South Africa: Results from the WHOSAGE Wave 1. BMJ Open Diabetes Res. Care 2018, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.Y.; Huang, H.L.; Abe, S.K.; Saito, E.; Islam, M.R.; Rahman, M.S.; Ikeda, A.; Sawada, N.; Tamakoshi, A.; Gao, Y.T.; et al. Association of Marital Status with Total and Cause-Specific Mortality in Asia. JAMA Netw. Open 2022, 5, E2214181. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Newton, T.L. Marriage and Health: His and Hers. Psychol. Bull. 2001, 127, 472–503. [Google Scholar] [CrossRef]
- Escolar-Pujolar, A.; Córdoba Doña, J.A.; Goicolea Julían, I.; Rodríguez, G.J.; Santos Sánchez, V.; Mayoral Sánchez, E.; Aguilar Diosdado, M. The Effect of Marital Status on Social and Gender Inequalities in Diabetes Mortality in Andalusia. Endocrinol. Diabetes Y Nutr. 2018, 65, 21–29. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Azizi, F.; Hadaegh, F. Associations of Marital Status with Diabetes, Hypertension, Cardiovascular Disease and All-Cause Mortality: A Long Term Follow-up Study. PLoS ONE 2019, 14, e0215593. [Google Scholar] [CrossRef] [Green Version]
- Kyrou, I.; Tsigos, C.; Mavrogianni, C.; Cardon, G.; Van Stappen, V.; Latomme, J.; Kivelä, J.; Wikström, K.; Tsochev, K.; Nanasi, A.; et al. Sociodemographic and Lifestyle-Related Risk Factors for Identifying Vulnerable Groups for Type 2 Diabetes: A Narrative Review with Emphasis on Data from Europe. BMC Endocr. Disord. 2020, 20 (Suppl. 1), 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, V.; Unwin, N.; Sherriff, P.; Bilous, R.; Kelly, W. Diabetes Prevalence and Socioeconomic Status: A Population Based Study Showing Increased Prevalence of Type 2 Diabetes Mellitus in Deprived Areas. J. Epidemiol. Community Health 2000, 54, 173–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.; Shon, C. Relationship between Socioeconomic Status and Type 2 Diabetes: Results from Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2012. BMJ Open 2014, 4, e005710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saydah, S.H.; Imperatore, G.; Beckles, G.L. Socioeconomic Status and MortalityContribution of Health Care Access and Psychological Distress among U.S. Adults with Diagnosed Diabetes. Diabetes Care 2013, 36, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, S.; Walker, D.G. Comparison of Trust in Public vs Private Health Care Providers in Rural Cambodia. Health Policy Plan. 2011, 26 (Suppl. 1), i20–i29. [Google Scholar] [CrossRef]
- Srugo, S.A.; Morrison, H.I.; Villeneuve, P.J.; de Groh, M.; Jiang, Y. Assessing Dysglycemia Risk Among Younger Adults: A Validation of the Canadian Diabetes Risk Questionnaire. Can. J. Diabetes 2020, 44, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MaxMind. GeoIP2 City Accuracy. Available online: https://www.maxmind.com/en/geoip2-city-accuracy-comparison?country=SA&resolution=50&cellular=all (accessed on 25 December 2022).
- Passive and Active Measurement; Lecture Notes in Computer Science; Taft, N.; Ricciato, F. (Eds.) Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Volume 7192. [Google Scholar] [CrossRef]
- Curtis, A.B.; Kothari, C.; Paul, R.; Connors, E. Using GIS and Secondary Data to Target Diabetes-Related Public Health Efforts. Public Health Rep. 2013, 128, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Noble, D.; Smith, D.; Mathur, R.; Robson, J.; Greenhalgh, T. Feasibility Study of Geospatial Mapping of Chronic Disease Risk to Inform Public Health Commissioning. BMJ Open 2012, 2, e000711. [Google Scholar] [CrossRef] [Green Version]
Variable | Total (n = 4559) | Large City † (n = 2269) | Midsize City ‡ (n = 1052) | Small City § (n = 139) | Rural Area (n = 1099) | p Value |
---|---|---|---|---|---|---|
Age (years), n (%) | <0.001 | |||||
18 to 39 | 3653 (88.1) | 1680 (74.0) | 934 (88.8) | 119 (85.6) | 920 (83.7) | |
40 to 44 | 380 (8.3) | 219 (9.7) | 69 (6.6) | 8 (5.8) | 84 (7.6) | |
45 to 54 | 391 (8.6) | 263 (11.6) | 42 (4.0) | 9 (6.5) | 77 (7.0) | |
55 to 64 | 117 (2.6) | 94 (4.1) | 5 (0.5) | 3 (2.2) | 15 (1.4) | |
65 to 74 | 18 (0.4) | 13 (0.6) | 2 (0.2) | 0 (0.0) | 3 (0.3) | |
Female, n (%) | 3414 (74.9) | 1673 (73.7) | 833 (79.2) | 104 (74.8) | 804 (73.2) | 0.003 |
BMI (kg/m2), n (%) | <0.001 | |||||
<25 | 2219 (48.7) | 970 (42.8) | 562 (53.4) | 86 (61.9) | 601 (54.7) | |
25 to 29 | 1302 (28.6) | 702 (30.9) | 276 (26.2) | 33 (23.7) | 291 (26.5) | |
30 to 34 | 682 (15.0) | 392 (17.3) | 152 (14.4) | 12 (8.6) | 126 (11.5) | |
≥35 | 356 (7.8) | 205 (9.0) | 62 (5.9) | 8 (5.8) | 81 (7.4) | |
Waist circumference (cm), n (%) | <0.001 | |||||
If female | ||||||
<80 | 1824 (40.0) | 298 (13.1) | 108 (10.3) | 22 (15.8) | 184 (16.7) | |
80 to 88 | 1239 (27.2) | 237 (10.4) | 89 (8.5) | 12 (8.6) | 95 (8.6) | |
>88 | 351 (7.7) | 61 (2.7) | 22 (2.1) | 1 (0.7) | 16 (1.5) | |
If male | ||||||
<94 | 612 (13.4) | 800 (35.3) | 482 (45.8) | 60 (43.2) | 482 (43.9) | |
94 to 102 | 433 (9.5) | 661 (29.1) | 285 (27.1) | 36 (25.9) | 257 (23.4) | |
>102 | 100 (2.2) | 212 (9.3) | 66 (6.3) | 8 (5.8) | 65 (5.9) | |
Exercise activity, n (%) | 1918 (42.1) | 876 (38.6) | 478 (45.4) | 63 (45.3) | 501 (45.6) | <0.001 |
Daily fruits, n (%) | 1317 (28.9) | 1577 (69.5) | 743 (70.6) | 111 (79.9) | 811 (73.8) | 0.007 |
History of hypertension, n (%) | 528 (11.6) | 275 (12.1) | 119 (11.3) | 13 (9.4) | 121 (11.0) | 0.628 |
History of high blood glucose, n (%) | 328 (7.2) | 182 (8.0) | 70 (6.7) | 11 (7.9) | 65 (5.9) | 0.134 |
History of 4 kg baby delivery, n (%) | 201 (4.4) | 127 (5.6) | 30 (2.9) | 6 (4.3) | 38 (3.5) | <0.001 |
Positive family history of diabetes, n (%) | ||||||
Mother | 1235 (27.1) | 689 (30.4) | 242 (23.0) | 34 (24.5) | 270 (24.6) | <0.001 |
Father | 1664 (36.5) | 898 (39.6) | 318 (30.2) | 54 (38.8) | 394 (35.9) | <0.001 |
Siblings | 742 (16.3) | 422 (18.6) | 134 (12.7) | 23 (16.5) | 163 (14.8) | <0.001 |
Sons | 55 (1.2) | 31 (1.4) | 8 (0.8) | 1 (0.7) | 15 (1.4) | 0.432 |
Education, n (%) | <0.001 | |||||
Junior high school or less | 105 (2.3) | 63 (2.8) | 18 (1.7) | 4 (2.9) | 20 (1.8) | |
High school | 1389 (30.5) | 604 (26.6) | 368 (35.0) | 51 (36.7) | 366 (33.3) | |
College | 471 (10.3) | 224 (9.9) | 122 (11.6) | 10 (7.2) | 115 (10.5) | |
University | 2594 (56.9) | 1378 (60.7) | 544 (51.7) | 74 (53.2) | 598 (54.4) | |
Insurance *, n (%) | <0.001 | |||||
Private | 967 (21.2) | 626 (27.6) | 180 (17.1) | 20 (14.4) | 141 (12.8) | |
Government | 3592 (78.90) | 589 (72.4) | 872 (82.9) | 119 (85.6) | 859 (87.2) | |
Marital status *, n (%) | <0.001 | |||||
Single | 2626 (57.6) | 1114 (49.1) | 701 (66.6) | 100 (71.9) | 711 (64.7) | |
Married | 1781 (39.1) | 1063 (46.8) | 323 (30.7) | 34 (24.5) | 361 (32.8) | |
Divorced or widowed | 152 (3.3) | 92 (4.1) | 28 (2.7) | 5 (3.6) | 27 (2.5) | |
Employment *, n (%) | <0.001 | |||||
Employed/Self-employed | 1309 (28.7) | 770 (33.9) | 223 (21.2) | 28 (20.1) | 288 (26.2) | |
Unemployed | 3138 (68.8) | 1414 (62.3) | 820 (77.9) | 108 (77.7) | 796 (72.4) | |
Retired | 112 (2.5) | 85 (3.7) | 9 (0.9) | 3 (2.2) | 15 (1.4) | |
ARABRISK score category, n (%) | <0.001 | |||||
Low to moderate risk (<32 score) | 4218 (92.5) | 2051 (90.4) | 1005 (95.5) | 127 (91.4) | 1035 (94.2) | |
High risk (≥33) | 341 (7.5) | 218 (9.6) | 47 (4.5) | 12 (8.6) | 64 (5.6) | |
Calculated ARABRISK score, median (IQR) * | 16 (10 to 25) | 16 (10 to 25) | 13 (8 to 28) | 12 (8 to 22) | 13 (8 to 21) | <0.001 |
Model Type | Univariable Model Odds Ratio (95% Confidence Interval, p Value) | Multivariable Model Odds Ratio (95% Confidence Interval, p Value) |
---|---|---|
Variable | ||
City size | ||
Large city † | Reference | Reference |
Midsize city ‡ | 0.44 (0.32 to 0.61, p < 0.001) | 0.63 (0.45 to 0.88, p = 0.007) |
Small city § | 0.89 (0.48 to 1.63, p = 0.704) | 1.31 (0.69 to 2.51, p = 0.408) |
Rural area | 0.58 (0.44 to 0.78, p < 0.001) | 0.74 (0.55 to 1.00, p = 0.502) |
Type of insurance | ||
Government | Reference | Reference |
Private | 1.03 (0.79 to 1.35, p = 0.818) | 0.67 (0.50 to 0.88, p = 0.005) |
Marital status | ||
Single | Reference | Reference |
Married | 6.27 (4.75 to 8.26, p < 0.001) | 4.42 (3.24 to 6.03, p < 0.001) |
Divorced or widowed | 6.81 (4.11 to 11.29, p < 0.001) | 4.40 (2.57 to 7.54, p < 0.001) |
Employment status | ||
Employed | Reference | Reference |
Unemployed | 0.34 (0.27 to 0.44, p < 0.001) | 0.63 (0.48 to 0.82, p < 0.001) |
Retired | 6.32 (4.20 to 9.50, p < 0.001) | 4.63 (3.06 to 7.00, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamogaddam, R.F.; Mohzari, Y.; Aldosari, F.M.; Alrashed, A.A.; Almulhim, A.S.; Kurdi, S.; Alohaydib, M.H.; Alotaibi, O.M.; Alotaibi, A.Z.; Alamer, A. Prevalence and Associations of Type 2 Diabetes Risk and Sociodemographic Factors in Saudi Arabia: A Web-Based Cross-Sectional Survey Study. Int. J. Environ. Res. Public Health 2023, 20, 2269. https://doi.org/10.3390/ijerph20032269
Bamogaddam RF, Mohzari Y, Aldosari FM, Alrashed AA, Almulhim AS, Kurdi S, Alohaydib MH, Alotaibi OM, Alotaibi AZ, Alamer A. Prevalence and Associations of Type 2 Diabetes Risk and Sociodemographic Factors in Saudi Arabia: A Web-Based Cross-Sectional Survey Study. International Journal of Environmental Research and Public Health. 2023; 20(3):2269. https://doi.org/10.3390/ijerph20032269
Chicago/Turabian StyleBamogaddam, Reem F., Yahya Mohzari, Fahad M. Aldosari, Ahmed A. Alrashed, Abdulaziz S. Almulhim, Sawsan Kurdi, Munirah H. Alohaydib, Ohoud M. Alotaibi, Amani Z. Alotaibi, and Ahmad Alamer. 2023. "Prevalence and Associations of Type 2 Diabetes Risk and Sociodemographic Factors in Saudi Arabia: A Web-Based Cross-Sectional Survey Study" International Journal of Environmental Research and Public Health 20, no. 3: 2269. https://doi.org/10.3390/ijerph20032269
APA StyleBamogaddam, R. F., Mohzari, Y., Aldosari, F. M., Alrashed, A. A., Almulhim, A. S., Kurdi, S., Alohaydib, M. H., Alotaibi, O. M., Alotaibi, A. Z., & Alamer, A. (2023). Prevalence and Associations of Type 2 Diabetes Risk and Sociodemographic Factors in Saudi Arabia: A Web-Based Cross-Sectional Survey Study. International Journal of Environmental Research and Public Health, 20(3), 2269. https://doi.org/10.3390/ijerph20032269