Analysis of Cannabinoids in Biological Specimens: An Update
Abstract
:1. Introduction
2. Materials and Methods
3. Cannabinoid Determination in Conventional Biological Samples
3.1. Whole Blood, Plasma, and Serum
3.2. Urine
Amount (µL) | Analyte(s) | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (ng/mL) LOD and LOQ (ng/mL) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|
1000 | THC, Δ8-THC, THC-COOH, and Δ8-THC-COOH | SPE [hexane/ethyl acetate/glacial acetic acid (49:49:2, v/v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: THC and Δ8-THC: 1 to 50; THC-COOH and Δ8-THC-COOH: 5 to 250 LOD: THC and Δ8-THC: 1; THC-COOH and Δ8-THC-COOH: 5 LOQ: THC and Δ8-THC: 1; THC-COOH and Δ8-THC-COOH: 5 Injection volume: 10 | Reber et al., 2022 [41] |
250 | THC, THC-OH, THC-COOH, CBN, and CBD | SPE (acetonitrile) | MSTFA | GC-MS/MS (SRM-EI) | Linearity: THC: 0.3 to 20; THC-OH: 0.3 to 15; THC-COOH: 3 to 150; CBN: 0.2 to 12; CBD: 0.3 to 20 LOD: THC, THC-OH, and CBD: 0.15; THC-COOH: 1; CBN: 0.1 LOQ: THC, THC-OH, and CBD: 0.3; THC-COOH: 3; CBN: 0.2 Injection volume: 1 | Frei et al., 2022 [38] |
500 | THC and THC-COOH | QuEChERS [acetonitrile; H2O; anhydrous MgSO4/NaOAc (4:1); primary and secondary amine and MgSO4] | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: THC: 4 to 400; THC-COOH: 10 to 240 LOD: THC: 1; THC-COOH: 4 LOQ: THC: 4; THC-COOH: 10 Injection volume: 1 | Ferrari et al., 2022 [42] |
250 | THC, THC-OH, THC-COOH, CBN, and CBD | MEPS (C8 and SCX) [methanol and water, washing with 0.1% formic acid in water with 5% isopropanol; elution 0.1% ammonium hydroxide in methanol] | MSTFA with 5% TMCS | GC-MS (SIM-EI+) | Linearity: THC and CBD: 1 to 400; THC-OH and CBN: 5 to 400; THC-COOH: 10 to 400 LOD: THC, THC-OH, and CBD: 1; THC-COOH and CBN: 5 LOQ: THC and CBD: 1; THC-OH and CBN: 5 THC-COOH: 10 Injection volume: 3 | Rosendo et al., 2022 [58] |
250 | THC, THCV, THC-OH, THC-COOH, THC-COOH-gluc, CBN, and CBD | IT-SPME (acetonitrile) | N/A | LC-MS/MS (MRM-ESI+) | Linearity: THC, THCV, THC-OH, THC-COOH, CBN, and CBD: 10 to 160; THC-COOH-gluc: 25 to 1000 LOD: N/A LOQ: THC, THCV, THC-OH, THC-COOH, CBN, and CBD: 10; THC-COOH-gluc: 25 Injection volume: N/A | Morisue Sartore et al., 2022 [63] |
N/A | THC-COOH | DLLME [acetonitrile (disperser solvent) and chloroform] | BSTFA with 1%TMCS | GC-MS/MS (MRM-EI+) | Linearity: 5 to 500 LOD: 1 LOQ: 5 Injection volume: 2 | Rodrigues et al., 2022 [67] |
2000 | TCH-COOH and CBD | LLE (tert-butyl-methyl ether) | MSTFA/NH4I/ethanethiol (1000/ 2/3; v/w/v) | GC-MS/MS (SRM-EI) | Linearity: 5 to 50 LOD: THC-COOH: 3.7; CBD: 5.1 LOQ: N/A Injection volume: 2 | Danila et al., 2022 [68] |
10 | THC-COOH | Biofluid/methanol (70:30, v/v) | Fast Red RC derivatization reagent | PS-MS/MS (SRM-ESI+) | Linearity: 2 to 250 LOD: 1.3 LOQ: 10 Injection volume: N/A | Borden et al., 2022 [69] |
500 | THC-COOH | LLE [methanol/acetonitrile (80:20, v/v)] | N/A | UHPLC-MS/MS (SRM-ESI-) | Linearity: 10 to 250 LOD: 3 LOQ: 6 Injection volume: 4 | Gerace et al., 2021 [70] |
1000 | CBD | LLE [hexane/ethyl acetate (90:10, v/v)] | BSTFA + 1% TMCS | GC-MS/MS (MRM-EI) | Linearity: 0.01 to 100 LOD: 10 LOQ: N/A Injection volume: 1 | Ameline et al., 2020 [64] |
100 | THC, THC-gluc, THCA-A, THC-OH, THC-COOH, THC-COOH-gluc, CBD, and CBDA | LLE [acetone:acetonitrile (80:20, v/v)] | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: THC: 0.04; THC-gluc: 0.07; THCA-A and THC-OH: 0.06; THC-COOH: 0.08; THC-COOH-gluc: 0.09; CBD: 0.05; CBDA: 0.065 LOQ: THC: 0.09; THC-gluc: 0.14; THCA-A and THC-OH: 0.11; THC-COOH: 0.18; THC-COOH-gluc: 0.19; CBD: 0.1; CBDA: 0.12 Injection volume: 10 | Pichini et al., 2020 [47] |
15,000 | THC, THC-OH, and THC-COOH | Automated MEPS (90% acetonitrile) | N/A | LC-MS/MS (MRM-ESI+) | Linearity: THC and THC-OH: 25 to 250; THC-COOH: 5 to 170 LOD: THC and THC-OH: 5; THC-COOH: 1 LOQ: THC and THC-OH: 20; THC-COOH: 5 Injection volume: N/A | Sartore et al., 2020 [71] |
4. Cannabinoid Determination in Unconventional Biological Samples
4.1. Oral Fluid/Saliva
4.2. Hair
Sample | Amount (mg) | Analyte(s) | Washing | Digestion | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (ng/mL) LOD and LOQ (ng/mL) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|---|---|---|
Scalp hair | 20 | THC-OH and THC-COOH | Isohexane and acetone | 1 M NaOH, 80 °C, 1 h | LLE [isohexane/ethyl acetate mixture (90:10, v/v)] | THC-OH: Picolinic acid | LC-MS3 (MRM-ESI-) | Linearity: 0.1 to 15.0 LOD: THC-COOH: 0.08 LOQ: THC-COOH: 0.1 Injection volume: 20 | Hehet et al., 2022 [93] |
Scalp hair | 20 | THC, THC-OH, THC-COOH, CBD, 6-α-OH-CBD, 6-β-OH-CBD, 7-OH-CBD, and 7-COOH-CBD | Dichloromethane (thrice) | M3® reagent, 100 °C, 1 h | N/A | N/A | THC: UHPLC-MS/MS (MRM-ESI+) THC-OH, THC-COOH, CBD, 6-α-OH-CBD, 6-β-OH-CBD, 7-OH-CBD and 7-COOH-CBD: UHPLC-MS/MS (MRM-ESI-) | Linearity: THC, THC-OH, CBD, 7-OH-CBD, and 7-COOH-CBD: 50 to 5000; THC-COOH, 6-α-OH-CBD, and 6-β-OH-CBD: 0.2 to 1000 LOD: THC, THC-OH, CBD, 7-COOH-CBD, and 7-OH-CBD: 10; THC-COOH, 6-α-OH-CBD and 6-β-OH-CBD: 0.06 LOQ: THC, THC-OH, CBD, 7-COOH-CBD, and 7-OH-CBD: 50; THC-COOH, 6-α-OH-CBD, and 6-β-OH-CBD: 0.2 Injection volume: 1 | Lo Faro et al., 2022 [94] |
Scalp hair | 50 | THC, THC-COOH, and CBN | Deuterated water and dichloromethane | 1 M NaOH, 90 °C, 15 min | Polymeric strong anion mixed-mode SPE [cyclohexane/ethyl acetate/acetic acid (80:20:5, v/v/v)] | Methanolic HCl and FMP-TS | LC-MS/MS (MRM-ESI+) | Linearity: THC and CBN: 20 to 4000; THC-COOH: 0.2 to 12 LOD: THC and CBN: 2.0; THC-COOH: 0.1 LOQ: THC and CBN: 20.0; THC-COOH: 0.2 Injection volume: 30 | Al-Zahrani et al., 2021 [6] |
Scalp hair | 50 | THC, THC-OH, di-THC-OH, THC-COOH, CBN, and CBD | Dichloromethane (thrice) | 1 N NaOH, 95 °C, 15 min | SPE [MeOH:formic acid (98:2, v/v)] and SPE [isopropanol:dichloromethane (75:25, v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: 40 to 20000 LOD: THC, THC-OH, THC-COOH, CBN, and CBD: 40; di-THC-OH: 100 LOQ: THC and CBN: 40; THC-OH, di-THC-OH, THC-COOH, and CBD: 100 Injection volume: 20 | Cobo-Golpe et al., 2021 [95] |
Scalp and pubic hair | 50 | THC, THC-COOH, and CBD | Dichloromethane (twice) | 10 N NaOH, 75 °C, 1 h | LLE [hexane/ethyl acetate (90:10, v/v)] | N/A | THC and CBD: UHPLC-MS/MS (SRM-ESI+) THC-COOH: UHPLS/MS3 (SRM-ESI-) | Linearity: THC and CBD: 20 to 1000; THC-COOH: 0.2 to 10 LOD: THC: 5.3; THC-COOH: 0.07; CBD: 10 LOQ: THC: 10.6; THC-COOH: 0.14; CBD: 20 Injection volume: 5 | Gerace et al., 2021 [70] |
Scalp hair | 50 | THC, THC-COOH, CBN, and CBD | Purified water (once) and methanol (twice) | 1 M KOH, 70 °C, 1 h | SPE [n-hexane/ethyl acetate/acetic acid (80:18:2, v/v/v). | N/A | THC, CBN and CBD: LC-MS/MS (MRM-ESI+) THC-COOH: LC-MS/MS (MRM-ESI-) | Linearity: THC, CBN and CBD: 25 to 800; THC-COOH: 0.1 to 3.2 LOD: N/A LOQ: THC, CBN and CBD: 25; THC-COOH: 0.1 Injection volume: 10 | Schaefer et al., 2021 [96] |
Scalp hair | 50 | THC | Dichloromethane | Acetonitrile, 50 °C, overnight | LLE [(hexane/ethyl acetate (55:45, v/v)] and reversed phase SPE | N/A | N/A | Linearity: N/A LOD: 50 LOQ: 100 Injection volume: N/A | Concheiro et al., 2021 [97] |
Beard hair | 50 | CBD | N/A | 1 M NaOH, 95 °C, 10 min | LLE [hexane/ethyl acetate (90:10, v/v)] | BSTFA + 1% TMCS | GC-MS/MS (MRM-EI) | Linearity: 1 to 100 LOD: 1 LOQ: N/A Injection volume: 1 | Ameline et al., 2020 [64] |
Scalp hair | 25 | THC | Dichloromethane (twice) | M3® reagent, 100 °C, 1 h | N/A | N/A | UHPLC-MS/MS (MRM-ES+) | Linearity: 25 to 20000 LOD: 2 LOQ: 25 Injection volume: 1 | Mannocchi et al., 2020 [98] |
Scalp hair | 10 | THC, THC-COOH, THC-COOH-gluc, CBN, and CBD | Water and acetone (twice) | 0.5% formic acid in methanol, 50 ºC, 30 min | LLE (methanol with 0.5% formic acid) | N/A | LC-HRMS (PMR-ESI+) | Linearity: THC, CBN and CBD: 4 to 800; THC-COOH and THC-COOH-gluc: 0.1 to 20 LOD: THC: 1.2; THC-COOH: 0.03; THC-COOH-gluc: 0.02; CBN: 0.7; CBD: 0.8 LOQ: THC, CBN and CBD: 4; THC-COOH and THC-COOH-glu: 0.1 Injection volume: 10 | Shin et al., 2020 [99] |
4.3. Sweat and Exhaled Breath
Sample | Collection | Amount (µL) | Analyte(s) | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (units) LOD and LOQ (units) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|---|---|
Sweat | Collection device (PharmCheckTM) | N/A | CBD | LLE [hexane/ethyl acetate (90:10, v/v)] | BSTFA + 1% TMCS | GC-MS/MS (MRM-EI+) | Linearity: 10 to 1000 pg/patch LOD: 10 pg/patch LOQ: N/A Injection volume: 1 | Ameline et al., 2020 [64] |
Sweat | N/A | N/A | THC and CBD | Methanol elution | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: THC: 0.05 ng/mL; CBD: 0.06 ng/mL LOQ: THC: 0.1 ng/mL; CBD: 0.13 ng/mL Injection volume: 10 | Pichini et al., 2020 [47] |
Sweat of a fingerprint | Collection device (Drug Screening Cartridge) | N/A | THC | N/A | N/A | UPLC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: N/A LOQ: N/A Injection volume: N/A | Hudson et al., 2019 [100] |
Exhaled breath | Collection device (SensAbues AB) | N/A | THC, THCV, THCA, Δ8-THC, CBN, CBD, CBDA, CBC, CBG, and CBGA | Methanol elution | N/A | UHPLC-HRMS (HESI+) | Linearity: 2.5 to 100 ng/mL LOD: N/A LOQ: N/A Injection volume: 5 | Wurz et al., 2022 [101] |
Exhaled breath | Collection device (SensAbues®) | N/A | THC | Methanol elution | N/A | LC-MS/MS (MRM-ESI+) | Linearity: ULOQ: 500,000 pg/pad LOD: N/A LOQ: 80 pg/pad Injection volume: 10 | Hubbard et al., 2020 [44] |
Exhaled breath | Collection device (ExaBreath® DrugTrap) | N/A | CBD | LLE [hexane/ethyl acetate (90:10, v/v)] | BSTFA + 1% TMCS | GC-MS/MS (MRM-EI) | Linearity: 10 to 1000 pg/filter LOD: 10 pg/filter LOQ: N/A Injection volume: 1 | Ameline et al., 2020 [64] |
Exhaled breath | Collection device | N/A | THC, THC-OH, THC-COOH, CBN, and CBD | Derivatize and shoot | Diazonium solution | LC-MS/MS (MRM-ESI+) | Linearity: 0.1 to 1000 pg/mL LOD: N/A LOQ: THC and CBD: 0.5 pg/mL; THC-OH and THC-COOH: 1 pg/mL; CBN: 0.1 pg/mL Injection volume: 50 | Luo et al., 2019 [102] |
4.4. Other Unconventional Biological Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A. Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaou, A.G.; Christodoulou, M.C.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Analysis of Cannabinoids in Conventional and Alternative Biological Matrices by Liquid Chromatography: Applications and Challenges. J. Chromatogr. A 2021, 1651, 462277. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Cho, B.; Sim, J.; Baeck, S.K.; In, S.; Kim, E. Detection of 11-nor-9-Carboxy-Tetrahydrocannabinol in the Hair of Drug Abusers by LC–MS/MS Analysis. Forensic Sci. Int. 2019, 295, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.J.; Galettis, P.; Schneider, J. The Pharmacokinetics and the Pharmacodynamics of Cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [Green Version]
- Grotenhermen, F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef]
- Al-Zahrani, M.A.; Al-Asmari, A.I.; Al-Zahrani, F.F.; Torrance, H.J.; Watson, D.G. Quantification of Cannabinoids in Human Hair Using a Modified Derivatization Procedure and Liquid Chromatography–Tandem Mass Spectrometry. Drug Test. Anal. 2021, 13, 1095–1107. [Google Scholar] [CrossRef]
- Casati, S.; Angeli, I.; Ravelli, A.; Del Fabbro, M.; Minoli, M.; Orioli, M. 11-OH-THC in Hair as Marker of Active Cannabis Consumption: Estimating a Reliable Cut-off by Evaluation of 672 THC-Positive Hair Samples. Forensic Sci. Int. 2019, 304, 109951. [Google Scholar] [CrossRef]
- Chan-Hosokawa, A.; Nguyen, L.; Lattanzio, N.; Adams, W.R. Emergence of Delta-8 Tetrahydrocannabinol in DUID Investigation Casework: Method Development, Validation and Application. J. Anal. Toxicol. 2022, 46, 1–9. [Google Scholar] [CrossRef]
- Ashton, C.H. Adverse Effects of Cannabis and Cannabinoids. Br. J. Anaesth. 1999, 83, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Hall, W. The Health and Psychological Effects of Cannabis Use. Curr. Issues Crim. Justice 1994, 6, 208–220. [Google Scholar] [CrossRef]
- Desrosiers, N.A.; Huestis, M.A. Oral Fluid Drug Testing: Analytical Approaches, Issues and Interpretation of Results. J. Anal. Toxicol. 2019, 43, 415–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2022: Trends and Developments; European Monitoring Centre for Drugs and Drug Addiction: Luxembourg, 2022. [Google Scholar]
- Guo, T.-T.; Zhang, J.-C.; Zhang, H.; Liu, Q.-C.; Zhao, Y.; Hou, Y.-F.; Bai, L.; Zhang, L.; Liu, X.-Q.; Liu, X.-Y.; et al. Bioactive Spirans and Other Constituents from the Leaves of Cannabis Sativa f. Sativa. J. Asian Nat. Prod. Res. 2017, 19, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Huestis, M.A. Pharmacokinetics and Metabolism of the Plant Cannabinoids, ∆9-Tetrahydrocannibinol, Cannabidiol and Cannabinol. In Cannabinoids; Pertwee, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. ISBN 978-3-540-26573-3. [Google Scholar]
- United Nations. Single Convention on Narcotic Drugs, 1961—As Amended by the 1972 Protocol Amending the Single Convention on Narcotic Drugs, 1961; United Nations: New York, NY, USA, 1962. [Google Scholar]
- Kataoka, H.; Saito, K. Recent Advances in SPME Techniques in Biomedical Analysis. J. Pharm. Biomed. Anal. 2011, 54, 926–950. [Google Scholar] [CrossRef] [PubMed]
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the Compositions of Cannabinoid and Terpenoids in Cannabis Sativa Derived from Inflorescence Position along the Stem and Extraction Methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Richins, R.D.; Rodriguez-Uribe, L.; Lowe, K.; Ferral, R.; O’Connell, M.A. Accumulation of Bioactive Metabolites in Cultivated Medical Cannabis. PLoS ONE 2018, 13, e0201119. [Google Scholar] [CrossRef] [Green Version]
- Gul, W.; Gul, S.W.; Radwan, M.M.; Wanas, A.S.; Mehmedic, Z.; Khan, I.I.; Sharaf, M.H.M.; ElSohly, M.A. Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography. J. AOAC Int. 2015, 98, 1523–1528. [Google Scholar] [CrossRef]
- Spindle, T.R.; Cone, E.J.; Schlienz, N.J.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; Hayes, E.; Vandrey, R. Acute Pharmacokinetic Profile of Smoked and Vaporized Cannabis in Human Blood and Oral Fluid. J. Anal. Toxicol. 2019, 43, 233–258. [Google Scholar] [CrossRef]
- Sharma, P.; Murthy, P.; Bharath, M.M.S. Chemistry, Metabolism, and Toxicology of Cannabis: Clinical Implications. Iran. J. Psychiatry 2012, 7, 149–156. [Google Scholar]
- Mano-Sousa, B.J.; Maia, G.A.S.; Lima, P.L.; Campos, V.A.; Negri, G.; Chequer, F.M.D.; Duarte-Almeida, J.M. Color Determination Method and Evaluation of Methods for the Detection of Cannabinoids by Thin-Layer Chromatography (TLC). J. Forensic Sci. 2021, 66, 854–865. [Google Scholar] [CrossRef]
- Grijó, D.R.; Olivo, J.E.; da Motta Lima, O.C. Simple Chemical Tests to Identify Cannabis Derivatives: Redefinition of Parameters and Analysis of Concepts. J. Forensic Sci. 2021, 66, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Qiu, R.; Fang, Z.; Min, K.; Van Beek, T.A.; Ma, M.; Chen, B.; Zuilhof, H.; Salentijn, G.I.J. Semiquantitative Screening of THC Analogues by Silica Gel TLC with an Ag(I) Retention Zone and Chromogenic Smartphone Detection. Anal. Chem. 2022, 94, 13710–13718. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Avula, B.; Elsohly, M.A.; Radwan, M.M. Quantitative Determination of Δ9-THC, CBG, CBD, Their Acid Precursors and Five Other Neutral Cannabinoids by UHPLC-UV-MS. Planta Med. 2017, 84, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 4115–4124. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Gallina Toschi, T.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and Validation of a Fast Gas Chromatography/Mass Spectrometry Method for the Determination of Cannabinoids in Cannabis Sativa L. J. Food Drug Anal. 2018, 26, 1283–1292. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Protti, M.; Conti, M.; Serpelloni, G.; Raggi, M.A. Monitoring of Chronic Cannabis Abuse: An LC-MS/MS Method for Hair Analysis. J. Pharm. Biomed. Anal. 2013, 76, 119–125. [Google Scholar] [CrossRef]
- Cooper, G.A.A.; Kronstrand, R.; Kintz, P. Society of Hair Testing Guidelines for Drug Testing in Hair. Forensic Sci. Int. 2012, 218, 20–24. [Google Scholar] [CrossRef]
- Gorziza, R.P.; Duarte, J.A.; González, M.; Arroyo-Mora, L.E.; Limberger, R.P. A Systematic Review of Quantitative Analysis of Cannabinoids in Oral Fluid. J. Forensic Sci. 2021, 66, 2104–2112. [Google Scholar] [CrossRef] [PubMed]
- Ramzy, V.; Priefer, R. THC Detection in the Breath. Talanta 2021, 222, 121528. [Google Scholar] [CrossRef]
- Mirzaei, H.; O’Brien, A.; Tasnim, N.; Ravishankara, A.; Tahmooressi, H.; Hoorfar, M. Topical Review on Monitoring Tetrahydrocannabinol in Breath. J. Breath Res. 2020, 14, 034002. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Gonçalves, O.C.; Oliveira, M.N.; Neng, N.R.; Nogueira, J.M.F. Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context—a Review. Molecules 2021, 26, 2168. [Google Scholar] [CrossRef]
- De Giovanni, N.; Marchetti, D. A Systematic Review of Solid-Phase Microextraction Applications in the Forensic Context. J. Anal. Toxicol. 2020, 44, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Karschner, E.L.; Swortwood-Gates, M.J.; Huestis, M.A. Identifying and Quantifying Cannabinoids in Biological Matrices in the Medical and Legal Cannabis Era. Clin. Chem. 2020, 66, 888–914. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, E.; Queiroz, J.A. The Role of Alternative Specimens in Toxicological Analysis. Biomed. Chromatogr. 2008, 22, 795–821. [Google Scholar] [CrossRef] [PubMed]
- Puiu, M.; Bala, C. Affinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? Biosensors 2022, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- Frei, P.; Frauchiger, S.; Scheurer, E.; Mercer-Chalmers-Bender, K. Quantitative Determination of Five Cannabinoids in Blood and Urine by Gas Chromatography Tandem Mass Spectrometry Applying Automated On-Line Solid Phase Extraction. Drug Test. Anal. 2022, 14, 1223–1233. [Google Scholar] [CrossRef]
- da Silva, C.P.; Dalpiaz, L.P.P.; Gerbase, F.E.; Muller, V.V.; Cezimbra da Silva, A.; Lizot, L.F.; Hahn, R.Z.; da Costa, J.L.; Antunes, M.V.; Linden, R. Determination of Cannabinoids in Plasma Using Salting-out-Assisted Liquid–Liquid Extraction Followed by LC–MS/MS Analysis. Biomed. Chromatogr. 2020, 34, e4952. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Dybowski, M.P.; Rombel, M.; Typek, R. Oleamide as Analyte Protectant in GC Analysis of THC and Its Metabolites in Blood. J. Pharm. Biomed. Anal. 2022, 215, 114800. [Google Scholar] [CrossRef]
- Reber, J.D.; Karschner, E.L.; Seither, J.Z.; Knittel, J.L.; Dozier, K.V.; Walterscheid, J.P. An Enhanced LC-MS-MS Technique for Distinguishing Δ8- and Δ9-Tetrahydrocannabinol Isomers in Blood and Urine Specimens. J. Anal. Toxicol. 2022, 46, 343–349. [Google Scholar] [CrossRef]
- Ferrari Júnior, E.; Caldas, E.D. Determination of New Psychoactive Substances and Other Drugs in Postmortem Blood and Urine by UHPLC–MS/MS: Method Validation and Analysis of Forensic Samples. Forensic Toxicol. 2022, 40, 88–101. [Google Scholar] [CrossRef]
- Sempio, C.; Almaraz-Quinones, N.; Jackson, M.; Zhao, W.; Wang, G.S.; Liu, Y.; Leehey, M.; Knupp, K.; Klawitter, J.; Christians, U.; et al. Simultaneous Quantification of 17 Cannabinoids by LC-MS-MS in Human Plasma. J. Anal. Toxicol. 2022, 46, 383–392. [Google Scholar] [CrossRef]
- Hubbard, J.A.; Smith, B.E.; Sobolesky, P.M.; Kim, S.; Hoffman, M.A.; Stone, J.; Huestis, M.A.; Grelotti, D.J.; Grant, I.; Marcotte, T.D.; et al. Validation of a Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Method to Detect Cannabinoids in Whole Blood and Breath. Clin. Chem. Lab. Med. 2020, 58, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Pigliasco, F.; Barco, S.; Dubois, S.; Marchese, F.; Striano, P.; Lomonaco, T.; Mattioli, F.; Tripodi, G.; Cangemi, G. Cannabidiol Determination on Peripheral Capillary Blood Using a Microsampling Method and Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry with on-Line Sample Preparation. Molecules 2020, 25, 3608. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. A UHPLC-MS-MS Method for the Determination of 84 Drugs of Abuse and Pharmaceuticals in Blood. J. Anal. Toxicol. 2021, 45, 28–43. [Google Scholar] [CrossRef]
- Pichini, S.; Mannocchi, G.; Gottardi, M.; Pérez-Acevedo, A.P.; Poyatos, L.; Papaseit, E.; Pérez-Mañá, C.; Farré, M.; Pacifici, R.; Busardò, F.P. Fast and Sensitive UHPLC-MS/MS Analysis of Cannabinoids and Their Acid Precursors in Pharmaceutical Preparations of Medical Cannabis and Their Metabolites in Conventional and Non-Conventional Biological Matrices of Treated Individual. Talanta 2020, 209, 120537. [Google Scholar] [CrossRef]
- Joye, T.; Widmer, C.; Favrat, B.; Augsburger, M.; Thomas, A. Parallel Reaction Monitoring-Based Quantification of Cannabinoids in Whole Blood. J. Anal. Toxicol. 2021, 44, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Abd El-Aty, A.M.; Shim, J.H. Matrix Enhancement Effect: A Blessing or a Curse for Gas Chromatography?-A Review. Anal. Chim. Acta 2013, 801, 14–21. [Google Scholar] [CrossRef]
- Fujiyoshi, T.; Ikami, T.; Sato, T.; Kikukawa, K.; Kobayashi, M.; Ito, H.; Yamamoto, A. Evaluation of the Matrix Effect on Gas Chromatography - Mass Spectrometry with Carrier Gas Containing Ethylene Glycol as an Analyte Protectant. J. Chromatogr. A 2016, 1434, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Sugitate, K.; Anazawa, H.; Nakamura, S.; Orikata, N.; Mizukoshi, K.; Nakamura, M.; Toriba, A.; Hayakawa, K. Decrease in the Matrix Effect of GC/MS by a Gold-Plated Ion Source. J. Pestic. Sci. 2012, 37, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ramos, R.; Lehotay, S.J.; Michlig, N.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.Á. Critical Review and Re-Assessment of Analyte Protectants in Gas Chromatography. J. Chromatogr. A 2020, 1632. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Hasselstrøm, J.B. Sensitive Determination of Cannabinoids in Whole Blood by LC–MS-MS After Rapid Removal of Phospholipids by Filtration. J. Anal. Toxicol. 2017, 41, 382–391. [Google Scholar] [CrossRef]
- Hubbard, J.A.; Hoffman, M.A.; Ellis, S.E.; Sobolesky, P.M.; Smith, B.E.; Suhandynata, R.T.; Sones, E.G.; Sanford, S.K.; Umlauf, A.; Huestis, M.A.; et al. Biomarkers of Recent Cannabis Use in Blood, Oral Fluid and Breath. J. Anal. Toxicol. 2021, 45, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.I.; Koelzer, S.C.; Schubert-Zsilavecz, M.; Toennes, S.W. Analysis of Drugs of Abuse in Cerumen - Correlation of Postmortem Analysis Results with Those for Blood, Urine and Hair. Drug Test. Anal. 2017, 9, 1572–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, E.; Barroso, M.; Queiroz, J.A. LC-MS: A Powerful Tool in Workplace Drug Testing. Drug Test. Anal. 2009, 1, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Samyn, N.; Van Haeren, C. On-Site Testing of Saliva and Sweat with Drugwipe and Determination of Concentrations of Drugs of Abuse in Saliva, Plasma and Urine of Suspected Users. Int. J. Legal Med. 2000, 113, 150–154. [Google Scholar] [CrossRef]
- Rosendo, L.M.; Rosado, T.; Oliveira, P.; Simão, A.Y.; Margalho, C.; Costa, S.; Passarinha, L.A.; Barroso, M.; Gallardo, E. The Determination of Cannabinoids in Urine Samples Using Microextraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry. Molecules 2022, 27, 5503. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration; Department of Health and Human Services. Mandatory Guidelines for Federal Workplace Drug Testing Programs—Urine. Fed. Regist. Dly. J. United States Gov. 2022, 87, 20522–20557. [Google Scholar]
- Taskinen, S.; Beck, O.; Bosch, T.; Brcak, M.; Carmichael, D.; Fucci, N.; George, C.; Piper, M.; Salomone, A.; Schielen, W.; et al. European Guidelines for Workplace Drug Testing in Urine. Drug Test. Anal. 2017, 9, 853–865. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration; Department of Health and Human Services. Mandatory Guidelines for Federal Workplace Drug Testing Programs—Oral/Fluid. Fed. Regist. Dly. J. United States Gov. 2019, 84, 57554–57600. [Google Scholar]
- Brcak, M.; Beck, O.; Bosch, T.; Carmichael, D.; Fucci, N.; George, C.; Piper, M.; Salomone, A.; Schielen, W.; Steinmeyer, S.; et al. European Guidelines for Workplace Drug Testing in Oral Fluid. Drug Test. Anal. 2018, 10, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Morisue Sartore, D.; Costa, J.L.; Lanças, F.M.; Santos-Neto, Á.J. Packed In-Tube SPME–LC–MS/MS for Fast and Straightforward Analysis of Cannabinoids and Metabolites in Human Urine. Electrophoresis 2022, 43, 1555–1566. [Google Scholar] [CrossRef]
- Ameline, A.; Raul, J.S.; Kintz, P. Characterization of Cannabidiol in Alternative Biological Specimens and Urine, after Consumption of an Oral Capsule. J. Anal. Toxicol. 2020, 46, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.M.; Barnes, A.; Queiroz, R.H.C.; Hurd, Y.L.; Huestis, M.A. Impact of Enzymatic and Alkaline Hydrolysis on CBD Concentration in Urine. Anal. Bioanal. Chem. 2013, 405, 4679–4689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.; Broecker, S.; Madea, B.; Hess, C. Decarbonylation: A Metabolic Pathway of Cannabidiol in Humans. Drug Test. Anal. 2019, 11, 957–967. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Kahl, J.M.; de Chinaglia, K.O.; de Campos, E.G.; Costa, J.L. Dispersive Liquid–Liquid Microextraction of 11-nor-Δ9-Tetrahydrocannabinol-Carboxylic Acid Applied to Urine Testing. Bioanalysis 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Danila, G.M.; Puiu, M.; Zamfir, L.G.; Bala, C. Early Detection of Cannabinoids in Biological Samples Based on Their Affinity Interaction with the Growth Hormone Secretagogue Receptor. Talanta 2022, 237, 122905. [Google Scholar] [CrossRef]
- Borden, S.A.; Saatchi, A.; Palaty, J.; Gill, C.G. A Direct Mass Spectrometry Method for Cannabinoid Quantitation in Urine and Oral Fluid Utilizing Reactive Paper Spray Ionization. Analyst 2022, 147, 3109–3117. [Google Scholar] [CrossRef]
- Gerace, E.; Bakanova, S.P.; Di Corcia, D.; Salomone, A.; Vincenti, M. Determination of Cannabinoids in Urine, Oral Fluid and Hair Samples after Repeated Intake of CBD-Rich Cannabis by Smoking. Forensic Sci. Int. 2021, 318, 110561. [Google Scholar] [CrossRef]
- Sartore, D.M.; Vargas Medina, D.A.; Costa, J.L.; Lanças, F.M.; Santos-Neto, Á.J. Automated Microextraction by Packed Sorbent of Cannabinoids from Human Urine Using a Lab-Made Device Packed with Molecularly Imprinted Polymer. Talanta 2020, 219, 121185. [Google Scholar] [CrossRef]
- Samyn, N. Mentor Article: Nele Samyn: Oral Fluid Testing of Drugged Drivers: My 25-Year Experience with an Interesting but Challenging Alternative Matrix. TIAFT Bull. 2022, 52, 22–27. [Google Scholar]
- Drummer, O.H. Drug Testing in Oral Fluid Olaf. Clin. Biochem. Rev. 2006, 27, 147–159. [Google Scholar]
- Molnar, A.; Lewis, J.; Doble, P.; Hansen, G.; Prolov, T.; Fu, S. A Rapid and Sensitive Method for the Identification of Delta-9-Tetrahydrocannabinol in Oral Fluid by Liquid Chromatography-Tandem Mass Spectrometry. Forensic Sci. Int. 2012, 215, 92–96. [Google Scholar] [CrossRef]
- Ameline, A.; Gheddar, L.; Gaulier, J.-M.; Brunet, B.; Labat, L.; Eysseric, H.; Kintz, P. Oral Fluid Concentrations of Drugs of Abuse: Interpretation Guide Proposed by the French Society of Analytical Toxicology for Road Traffic Safety. TIAFT Bull. 2022, 52, 28–31. [Google Scholar]
- Hoffman, M.A.; Hubbard, J.A.; Sobolesky, P.M.; Smith, B.E.; Suhandynata, R.T.; Sanford, S.; Sones, E.G.; Ellis, S.; Umlauf, A.; Huestis, M.A.; et al. Blood and Oral Fluid Cannabinoid Profiles of Frequent and Occasional Cannabis Smokers. J. Anal. Toxicol. 2021, 45, 851–862. [Google Scholar] [CrossRef]
- Wille, S.M.R.; Di Fazio, V.; del Mar Ramírez-Fernandez, M.; Kummer, N.; Samyn, N. Driving Under the Influence of Cannabis: Pitfalls, Validation, and Quality Control of a UPLC-MS/MS Method for the Quantification of Tetrahydrocannabinol in Oral Fluid Collected With StatSure, Quantisal, or Certus Collector. Ther. Drug Monit. 2013, 35, 101–111. [Google Scholar] [CrossRef]
- Niedbala, S.; Kardos, K.; Salamone, S.; Fritch, D.; Bronsgeest, M.; Cone, E.J. Passive Cannabis Smoke Exposure and Oral Fluid Testing. J. Anal. Toxicol. 2004, 28, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Amaratunga, P.; Reed, J.; Huang, P.; Lemberg, B.L.; Lemberg, D. Quantitation of Δ8-THC, Δ9-THC, Cannabidiol and 10 Other Cannabinoids and Metabolites in Oral Fluid by HPLC-MS-MS. J. Anal. Toxicol. 2022, 46, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.; Paterson, S. Production of Identical Retention Times and Mass Spectra for Δ9-Tetrahydrocannabinol and Cannabidiol Following Derivatization with Trifluoracetic Anhydride with 1,1,1,3,3,3-Hexafluoroisopropanol. J. Anal. Toxicol. 2012, 36, 61–65. [Google Scholar] [CrossRef]
- Hart, D. Cannabinoid Metabolites Pose Analytical Challenges in Urine Drug Testing Laboratories. Available online: https://www.dropbox.com/s/sycrf6ovxrbzkfp/NLCP_DTM_CBDA_Delta8THCA_Challenges_Hart_22Nov2019.pdf?dl=0 (accessed on 15 December 2022).
- Golombek, P.; Müller, M.; Barthlott, I.; Sproll, C.; Lachenmeier, D.W. Conversion of Cannabidiol (CBD) into Psychotropic Cannabinoids Including Tetrahydrocannabinol (THC): A Controversy in the Scientific Literature. Toxics 2020, 8, 41. [Google Scholar] [CrossRef]
- Coulter, C.; Wagner, J.R. Cannabinoids in Oral Fluid: Limiting Potential Sources of Cannabidiol Conversion to Δ9- And Δ8-Tetrahydrocannabinol. J. Anal. Toxicol. 2021, 45, 807–812. [Google Scholar] [CrossRef]
- Gorziza, R.; Cox, J.; Limberger, R.P.; Arroyo-Mora, L.E. Study of Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) Extraction FROM Dried Oral Fluid Spots (DOFS) and LC–MS/MS Detection. J. Cannabis Res. 2021, 3. [Google Scholar] [CrossRef]
- Mercier, B.; Scala-Bertola, J.; Pape, E.; Kolodziej, A.; Gibaja, V.; Bisch, M.; Jouzeau, J.Y.; Gambier, N. Online SPE UPLC-MS/MS Method for the Simultaneous Determination of 33 Psychoactive Drugs from Swab-Collected Human Oral Fluid Samples. Anal. Bioanal. Chem. 2022, 414, 4203–4215. [Google Scholar] [CrossRef]
- Coulter, C.; Garnier, M.; Moore, C. Rapid Extraction and Qualitative Screening of 30 Drugs in Oral Fluid at Concentrations Recommended for the Investigation of DUID Cases. J. Anal. Toxicol. 2022, 46, 899–904. [Google Scholar] [CrossRef]
- da Cunha, K.F.; Oliveira, K.D.; Huestis, M.A.; Costa, J.L. Screening of 104 New Psychoactive Substances (NPS) and Other Drugs of Abuse in Oral Fluid by LC–MS-MS. J. Anal. Toxicol. 2020, 44, 697–707. [Google Scholar] [CrossRef]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; López-Rivadulla, M.; Queiroz, J.A. Hair: A Complementary Source of Bioanalytical Information in Forensic Toxicology. Bioanalysis 2011, 3, 67–79. [Google Scholar] [CrossRef]
- Dulaurent, S.; Gaulier, J.M.; Imbert, L.; Morla, A.; Lachâtre, G. Simultaneous Determination of Δ9-Tetrahydrocannabinol, Cannabidiol, Cannabinol and 11-nor-Δ9-Tetrahydrocannabinol-9-Carboxylic Acid in Hair Using Liquid Chromatography-Tandem Mass Spectrometry. Forensic Sci. Int. 2014, 236, 151–156. [Google Scholar] [CrossRef]
- Thieme, D.; Sachs, H.; Uhl, M. Proof of Cannabis Administration by Sensitive Detection of 11-nor-Delta(9)-Tetrahydrocannabinol-9-Carboxylic Acid in Hair Using Selective Methylation and Application of Liquid Chromatography- Tandem and Multistage Mass Spectrometry. Drug Test. Anal. 2014, 6, 112–118. [Google Scholar] [CrossRef]
- Kuwayama, K.; Miyaguchi, H.; Yamamuro, T.; Tsujikawa, K.; Kanamori, T.; Iwata, Y.T.; Inoue, H. Micro-Pulverized Extraction Pretreatment for Highly Sensitive Analysis of 11-nor-9-Carboxy-Δ9-Tetrahydrocannabinol in Hair by Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2158–2166. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.; Park, Y.; In, S.; Kim, E.; Park, Y. Quantitative Determination of 11-nor-9-Carboxy-Tetrahydrocannabinol in Hair by Column Switching LC-ESI-MS3. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 947–948, 179–185. [Google Scholar] [CrossRef]
- Hehet, P.; Franz, T.; Kunert, N.; Musshoff, F. Fast and Highly Sensitive Determination of Tetrahydrocannabinol (THC) Metabolites in Hair Using Liquid Chromatography-Multistage Mass Spectrometry (LC–MS3). Drug Test. Anal. 2022, 14, 1614–1622. [Google Scholar] [CrossRef]
- Lo Faro, A.F.; Venanzi, B.; Pilli, G.; Ripani, U.; Basile, G.; Pichini, S.; Busardò, F.P. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying THC, CBD and Their Metabolites in Hair. Application to Patients Treated with Medical Cannabis. J. Pharm. Biomed. Anal. 2022, 217. [Google Scholar] [CrossRef]
- Cobo-Golpe, M.; De-Castro-Ríos, A.; Cruz, A.; López-Rivadulla, M.; Lendoiro, E. Determination and Distribution of Cannabinoids in Nail and Hair Samples. J. Anal. Toxicol. 2021, 45, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, V.D.; Müller, V.V.; de Lima Feltraco Lizot, L.; Hahn, R.Z.; Schneider, A.; Antunes, M.V.; Linden, R. Sensitive Determination of 11-nor-9-Carboxy-Δ9-Tetrahydrocannabinol and Complementary Cannabinoids in Hair Using Alkaline Digestion and Mixed-Mode Solid Phase Extraction Followed by Liquid-Chromatography-Tandem Mass Spectrometry. Forensic Sci. Int. 2021, 328, 111047. [Google Scholar] [CrossRef]
- Concheiro, M.; Gutierrez, F.M.; Ocampo, A.; Lendoiro, E.; González-Colmenero, E.; Concheiro-Guisán, A.; Peñas-Silva, P.; Macías-Cortiña, M.; Cruz-Landeira, A.; López-Rivadulla, M.; et al. Assessment of Biological Matrices for the Detection of in Utero Cannabis Exposure. Drug Test. Anal. 2021, 13, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Mannocchi, G.; Di Trana, A.; Tini, A.; Zaami, S.; Gottardi, M.; Pichini, S.; Busardò, F.P. Development and Validation of Fast UHPLC-MS/MS Screening Method for 87 NPS and 32 Other Drugs of Abuse in Hair and Nails: Application to Real Cases. Anal. Bioanal. Chem. 2020, 412, 5125–5145. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, J.Y.; Cheong, J.C.; Kim, J.H.; Kim, J.H.; Lee, H.S. Liquid Chromatography-High Resolution Mass Spectrometry for the Determination of Three Cannabinoids, Two (−)-Trans-Δ9-Tetrahydrocannabinol Metabolites, and Six Amphetamine-Type Stimulants in Human Hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1149, 122157. [Google Scholar] [CrossRef]
- Hudson, M.; Stuchinskaya, T.; Ramma, S.; Patel, J.; Sievers, C.; Goetz, S.; Hines, S.; Menzies, E.; Russell, D.A. Drug Screening Using the Sweat of a Fingerprint: Lateral Flow Detection of ’ " 9 -Tetrahydrocannabinol, Cocaine, Opiates and Amphetamine. J. Anal. Toxicol. 2019, 43, 88–95. [Google Scholar] [CrossRef]
- Wurz, G.T.; Montoya, E.; DeGregorio, M.W. Examining Impairment and Kinetic Patterns Associated with Recent Use of Hemp-Derived Δ8-Tetrahydrocannabinol: Case Studies. J. Cannabis Res. 2022, 4. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.R.; Yun, C.; Lynch, K.L. Quantitation of Cannabinoids in Breath Samples Using a Novel Derivatization Lc-Ms/Ms Assay with Ultra-High Sensitivity. J. Anal. Toxicol. 2019, 43, 331–339. [Google Scholar] [CrossRef]
- Dutkiewicz, E.P.; Urban, P.L. Quantitative Mass Spectrometry of Unconventional Human Biological Matrices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374. [Google Scholar] [CrossRef] [Green Version]
- Al-Asmari, A.I. Method for Postmortem Quantification of Δ9-Tetrahydrocannabinol and Metabolites Using LC-MS-MS. J. Anal. Toxicol. 2019, 43, 703–719. [Google Scholar] [CrossRef]
- Fabritius, M.; Staub, C.; Mangin, P.; Giroud, C. Distribution of Free and Conjugated Cannabinoids in Human Bile Samples. Forensic Sci. Int. 2012, 223, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, S.; Øiestad, Å.M.L.; Rogde, S.; Brochmann, G.W.; Øiestad, E.L.; Vindenes, V. Distribution of Tetrahydrocannabinol and Cannabidiol in Several Different Postmortem Matrices. Forensic Sci. Int. 2021, 329, 111082. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, A.G.; Stavrou, I.J.; Louppis, A.P.; Constantinou, M.S.; Kapnissi-Christodoulou, C. Application of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometric Method for the Detection and Quantification of Cannabis in Cerumen Samples. J. Chromatogr. A 2021, 1642, 462035. [Google Scholar] [CrossRef]
- Chittamma, A.; Marin, S.J.; Williams, J.A.; Clark, C.; McMillin, G.A. Detection of in Utero Marijuana Exposure by GC–MS, Ultra-Sensitive ELISA and LC–TOF–MS Using Umbilical Cord Tissue. J. Anal. Toxicol. 2013, 37, 391–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concheiro, M.; Huestis, M.A. Drug Exposure during Pregnancy: Analytical Methods and Toxicological Findings. Bioanalysis 2018, 10, 587–606. [Google Scholar] [CrossRef]
- Lamy, S.; Hennart, B.; Houivet, E.; Dulaurent, S.; Delavenne, H.; Benichou, J.; Allorge, D.; Marret, S.; Thibaut, F. Assessment of Tobacco, Alcohol and Cannabinoid Metabolites in 645 Meconium Samples of Newborns Compared to Maternal Self-Reports. J. Psychiatr. Res. 2017, 90, 86–93. [Google Scholar] [CrossRef]
- Jensen, T.L.; Wu, F.; McMillin, G.A. Detection of in Utero Exposure to Cannabis in Paired Umbilical Cord Tissue and Meconium by Liquid Chromatography-Tandem Mass Spectrometry. Clin. Mass Spectrom. 2019, 14, 115–123. [Google Scholar] [CrossRef]
- Wu, F.; Jensen, T.L.; McMillin, G.A. Detection of In Utero Cannabis Exposure in Umbilical Cord Tissue by a Sensitive Liquid Chromatography-Tandem Mass Spectrometry Method. In LC-MS in Drug Analysis: Methods and Protocols; Humana Press: New York, NY, USA, 2019; Volume 1872, pp. 211–222. [Google Scholar]
- Sempio, C.; Wymore, E.; Palmer, C.; Bunik, M.; Henthorn, T.K.; Christians, U.; Klawitter, J. Detection of Cannabinoids by LC-MS-MS and ELISA in Breast Milk. J. Anal. Toxicol. 2021, 45, 686–692. [Google Scholar] [CrossRef]
- Ramnarine, R.S.; Poklis, J.L.; Wolf, C.E. Determination of Cannabinoids in Breast Milk Using QuEChERS and Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry. J. Anal. Toxicol. 2019, 43, 746–752. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.; Qiao, H.; Jiang, S.; Wang, Y.; Chen, J.; Su, M.; Di, B. Simultaneous Quantification of 106 Drugs or Their Metabolites in Nail Samples by UPLC-MS/MS with High-Throughput Sample Preparation: Application to 294 Real Cases. Anal. Chim. Acta 2022, 1226, 340170. [Google Scholar] [CrossRef]
- Busardò, F.P.; Gottardi, M.; Pacifici, R.; Varì, M.R.; Tini, A.; Volpe, A.R.; Giorgetti, R.; Pichini, S. Nails Analysis for Drugs Used in the Context of Chemsex: A Pilot Study. J. Anal. Toxicol. 2020, 44, 69. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Lacroze, V.; Doudka, N.; Becam, J.; Pourriere-Fabiani, C.; Lacarelle, B.; Solas, C.; Fabresse, N. Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry. Toxics 2022, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Mantovani, C.; e Silva, J.P.; Forster, G.; de Almeida, R.M.; de Albuquerque Diniz, E.M.; Yonamine, M. Simultaneous Accelerated Solvent Extraction and Hydrolysis of 11-nor-Δ9-Tetrahydrocannabinol-9-Carboxylic Acid Glucuronide in Meconium Samples for Gas Chromatography–Mass Spectrometry Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1074–1075, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Metz, T.D.; Silver, R.M.; McMillin, G.A.; Allshouse, A.A.; Jensen, T.L.; Mansfield, C.; Heard, K.; Kinney, G.L.; Wymore, E.; Binswanger, I.A. Prenatal Marijuana Use by Self-Report and Umbilical Cord Sampling in a State with Marijuana Legalization. Obstet. Gynecol. 2019, 133, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; de Castro, A.; Lendoiro, E.; Cruz-Landeira, A.; López-Rivadulla, M.; Concheiro, M. Detection of in Utero Cannabis Exposure by Umbilical Cord Analysis. Drug Test. Anal. 2018, 10, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Scroggin, T.L.; Metz, T.D.; McMillin, G.A. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Determination of Four Cannabinoids in Umbilical Cord Tissue. J. Anal. Toxicol. 2018, 42, 42–48. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Hanan, N.J.; Honerkamp-Smith, G.; Best, B.M.; Chambers, C.D. Marijuana Use by Breastfeeding Mothers and Cannabinoid Concentrations in Breast Milk. Pediatrics 2018, 142. [Google Scholar] [CrossRef]
Sample | Amount (µL) | Analyte(s) | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (ng/mL) LOD and LOQ (ng/mL) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|---|
Whole blood | 750 | THC, THC-OH, and THC-COOH | QuEChERS (MgSO; NaCl; acetonitrile; D-SPE with C18) | HMDS/TMCS/ acetonitrile (1:1:1, v/v/v) | GC-MS/MS (MRM-EI) | Linearity: N/A LOD: THC: 0.008; THC-OH: 0.015; THC-COOH: 0.009 LOQ: N/A Injection volume: 1 | Dawidowicz et al., 2022 [40] |
Whole blood | 250 | THC, Δ8-THC, THC-OH, and THC-COOH | LLE [hexane/ethyl acetate/methyl-tert-butyl-ether (80:10:10, v/v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: THC: 0.5 to 50; THC-OH: 1.0 to 100; THC-COOH: 5.0 to 500 LOD: THC: 0.13; Δ8-THC and THC-OH: 0.25; THC-COOH: 0.31 LOQ: THC and Δ8-THC: 0.5; THC-OH: 1; THC-COOH: 5 Injection volume: 10 | Chan-Hosokawa et al., 2022 [8] |
Whole blood | 1000 | THC, Δ8-THC, THC-COOH, and Δ8-THC-COOH | SPE [hexane/ethyl acetate/glacial acetic acid (49:49:2, v/v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: THC and Δ8-THC: 1 to 50; THC-COOH and Δ8-THC-COOH: 5 to 250 LOD: THC and Δ8-THC: 1; THC-COOH and Δ8-THC-COOH: 5 LOQ: THC and Δ8-THC: 1; THC-COOH and Δ8-THC-COOH: 5.0 Injection volume: 10 | Reber et al., 2022 [41] |
Whole blood | 250 | THC, THC-OH, THC-COOH, CBN, and CBD | Automated SPE (acetonitrile) | MSTFA | GC-MS/MS (SRM-EI) | Linearity: THC: 0.3 to 20; THC-OH: 0.3 to 15; THC-COOH: 3 to 150; CBN: 0.2 to 12; CBD: 0.3 to 20 LOD: THC, THC-OH, and CBD: 0.15; THC-COOH: 1; CBN: 0.1 LOQ: THC, THC-OH, and CBD: 0.3; THC-COOH: 3; CBN: 0.2 Injection volume: 1 | Frei et al., 2022 [38] |
Whole blood | 500 | THC and THC-COOH | QuEChERS [H2O; acetonitrile; MgSO4/NaOAc (4:1); primary and secondary amine; MgSO4] | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: THC: 4 to 400; THC-COOH: 10 to 240 LOD: THC: 1; THC-COOH: 4 LOQ: THC: 4; THC-COOH: 10 Injection volume: 1 | Ferrari et al., 2022 [42] |
Plasma | 200 | THC, THC-gluc, THCV, THC-OH, THC-COOH, THC-COOH-gluc, THCV-COOH, CBN, CBD, CBD-gluc, 6-α-OH-CBD, 6-β-OH-CBD, 7-OH-CBD, 7-CBD-COOH, CBDV, CBC, and CBG | One-step protein precipitation [water with 0.2 M ZnSO4/methanol (30:70, v/v)] | N/A | HPLC-MS/MS (MRM-APCI+) | Linearity: THC, THCV, THC-COOH, THCV-COOH, CBN, CBD, CBD-gluc, 7-CBD-COOH, CBDV, and CBG: 0.78 to 400; THC-OH, CBC, 6-α-OH-CBD, and 6-β-OH-CBD: 1.56 to 400; 7-OH-CBD: 3.13 to 400; THC-gluc: 0.78 to 200; THC-COOH-gluc: 7.8 to 2000 LOD: N/A LOQ: THC, THC-gluc, THCV, THC-COOH, THCV-COOH, CBN, CBD, CBD-gluc, 7-CBD-COOH, CBDV, and CBG: 0.78; THC-OH, CBC, 6-α-OH-CBD, and 6-β-OH-CBD: 1.56; 7-OH-CBD: 3.13; THC-COOH-gluc: 7.8 Injection volume: 250 | Sempio et al., 2021 [43] |
Whole blood | 200 | THC, THCV, THC-OH, THC-COOH, THC-COOH-gluc, CBN, CBD, and CBG | SPE [acetonitrile/isopropanol (90:10, v/v) and acetonitrile/methanol (50:50, v/v) with 2% formic acid] | N/A | THC, THCV, THC-OH, THC-COOH, CBN, CBD and CBG: LC-MS/MS (MRM-ESI+) THC-COOH-gluc: LC-MS/MS (MRM-ESI-) | Linearity: THC, THC-COOH, THC-COOH-gluc, and CBN (ULOQ): 1000; THCV, THC-OH, CBD, and CBG (ULOQ): 100 LOD: N/A LOQ: THC, THCV, CBN, and CBD: 0.5; THC-OH, THC-COOH, and CBG: 1; THC-COOH-gluc: 2 Injection volume: 10 | Hubbard et al., 2020 [44] |
Whole blood | 30 | THC and CBD | Online SPE | N/A | UHPLC-MS/MS (SRM-APCI+) | Linearity: 1 to 800 LOD: N/A LOQ: 1 Injection volume: 50 | Pigliasco et al., 2020 [45] |
Whole blood | 200 | THC and THC-COOH | Mini-QuEChERS (MgSO4; K2CO3; NaCl; acetonitrile; primary and secondary amine; MgSO4) | N/A | UHPLC-MS/MS (MRM-ESI-positive and negative modes by polarity switching) | Linearity: 5 to 6000 LOD: THC: 6.18; THC-COOH: 3.31 LOQ: THC: 18.54; THC-COOH: 3.31 Injection volume: 5 | Orfanidis et al., 2020 [46] |
Plasma | 100 | THC, THC-OH, THC-COOH, CBN, and CBD | SALLE [MgSO4/NaCl/sodium citrate dihydrate (40:10:10, w/w/w)] | N/A | LC-MS/MS (MRM-ESI) | Linearity: THC, THC-OH, CBN, and CBD: 0.5 to 50; THC-COOH: 1 to 100 LOD: N/A LOQ: THC, THC-OH, CBN, and CBD: 0.5; THC-COOH: 1 Injection volume: 3 | da Silva et al., 2020 [39] |
Serum | 100 | THC, THC-gluc, THCA-A, THC-OH, THC-COOH, THC-COOH-gluc, CBD, and CBDA | LLE [acetone:acetonitrile (80:20, v/v)] | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: THC: 0.06; THC-gluc and THC-COOH: 0.09; THCA-A, and CBDA: 0.075; THC-OH: 0.07; THC-COOH-gluc: 0.85; CBD: 0.05 LOQ: THC and THC-OH: 0.12; THC-gluc and THC-COOH: 0.19; THCA-A and CBDA: 0.14; THC-COOH-gluc: 0.17; CBD: 0.13 Injection volume: 10 | Pichini et al., 2020 [47] |
Whole blood | 1000 | THC, THC-OH, THC-COOH, and CBD | LLE [hexane/ethyl acetate (90:10, v/v)] | N/A | THC and CBD: LC-HRMS (PRM-ESI+) THC-OH and THC-COOH: LC-HRMS (PRM-ESI-) | Linearity: THC, THC-OH, and CBD: 0.4 to 2; THC-COOH: 2 to 100 LOD: N/A LOQ: THC, THC-OH, and CBD: 0.4; THC-COOH: 2.5 Injection volume: 10 | Joye et al., 2020 [48] |
Sample | THC (Screening) | THC (Confirmation) | THC-OH | THC-COOH (Screening) | THC-COOH (Confirmation) |
---|---|---|---|---|---|
Urine | N/A | N/A | N/A | 50 ng/mL [59] | 15 ng/mL [59,60] |
Oral fluid | 4 ng/mL [61] 10 ng/mL [62] | 2 ng/mL [61,62] | N/A | N/A | N/A |
Hair | 100 pg/mg [29] | 50 pg/mg [29] | 0.5 pg/mg [7] | N/A | 0.2 pg/mg [29] |
Collection | Amount (µL) | Analyte(s) | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (ng/mL) LOD and LOQ (ng/mL) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|---|
Collection device (FLOQSwabTM) | 500 | THC | Online SPE | N/A | UHPLC-MS/MS (MRM-EI+) | Linearity: 1 to 100 LOD: 1 LOQ: 1 Injection volume: 50 | Mercier et al., 2022 [85] |
Collection device (QuantisalTM) | 250 | THC | LLE [isopropanol/ hexane/ethyl acetate; (50:350, v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: 4 LOQ: N/A Injection volume: N/A | Coulter et al., 2022 [86] |
N/A | 10 | THC | Biofluid/methanol (70:30, v/v) | Fast Red RC derivatization reagent | PS-MS/MS (SRM-ESI+) | Linearity: 2 to 250 LOD: 0.78 LOQ: 10 Injection volume: N/A | Borden et al., 2022 [69] |
Collection device (QuantisalTM) | 400 | THC, ∆8-THC, THCV, THCA-A, THC-OH, THC-COOH, CBN, CBD, CBD-C1, CBDA, CBDV, CB,C and CBG | SPE [acetonitrile/methanol (90:10, v/v)] | N/A | HPLC-MS/MS (MRM-ESI+) | Linearity: THC, ∆8-THC, THCV and CBD: 0.10 to 800; THC-OH and THC-COOH: 0.25 to 800; CBN, CBD-C1, CBDV, and CBG: 0.10 to 100; CBDA and CBC: 0.50 to 500; THCA-A: 2.0 to 500 LOD: N/A LOQ: THC, ∆8-THC, THCV, CBN, CBD, CBD-C1, CBDV, and CBG: 0.10; THC-OH and THC-COOH: 0.25; CBDA and CBC: 0.50; THCA-A: 2.00 Injection volume: 6 | Lin et al., 2021 [79] |
Collection device (QuantisalTM) | 1000 | THC, ∆8-THC, CBN and CBD | SPE [ethyl acetate and hexane/ethyl acetate/acetic acid (88:10:2, v/v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: 1 to 100 LOD: THC: 0.13; ∆8-THC: 0.68; CBN: 1.09; CBD: 0.47 LOQ: N/A Injection volume: 20 | Coulter et al., 2021 [83] |
Passive drool | 250 | THC and CBD | LLE [methanol/ acetonitrile (80:20, v/v)] | N/A | UHPLC-MS/MS (SMR-ESI+) | Linearity: 1 to 15 LOD: 0.5 LOQ: 1 Injection volume: 2 | Gerace et al., 2021 [70] |
DOFS | 50 | THC and CBD | Methanol/acetonitrile (50:50, v/v) | N/A | LC-MS/MS (dMRM-ESI+) | Linearity: N/A LOD: THC: 2; CBD: 4 LOQ: N/A Injection volume: 1 | Gorziza et al., 2021 [84] |
Collection device (NeoSalTM) | 1000 | CBD | LLE [hexane/ethyl acetate (90:10, v/v)] | BSTFA + 1% TMCS | GC-MS/MS (MRM-EI) | Linearity: 0.01 to 100 LOD: 0.01 LOQ: N/A Injection volume: 1 | Ameline et al., 2020 [64] |
Collection device (QuantisalTM) | 500 | THC | LLE (saturated Na2B4O7 aqueous solution and MTBE) | N/A | LC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: 1 LOQ: N/A Injection volume: 2 | da Cunha et al., 2020 [87] |
N/A | 100 | THC, THC-gluc, THCA-A, THC-OH, THC-COOH, THC-COOH-gluc, CBD, and CBDA | LLE [acetone:acetonitrile (80:20, v/v)] | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: N/A LOD: THC: 0.05; THC-gluc and THC-COOH-gluc: 0.075; THCA-A and CBDA: 0.07; THC-OH: 0.065; THC-COOH: 0.08; CBD: 0.04 LOQ: THC and CBD: 0.12; THC-gluc: 0.15; THCA-A and THC-OH: 0.13; THC-COOH: 0.19; THC-COOH-gluc: 0.16; CBDA: 0.14 Injection volume: 10 | Pichini et al., 2020 [47] |
Sample | Amount (Units) | Analyte(s) | Washing | Digestion | Extraction (Extraction Solvent) | Derivatization | Detection Technique (Acquisition Mode) | Linearity (Units) LOD and LOQ (Units) Injection Volume (μL) | Reference |
---|---|---|---|---|---|---|---|---|---|
Nails | 50 mg | THC | Water and acetone (twice) | N/A | Acetonitrile: mobile phase A (1:1, v/v) | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: 5 to 2000 pg/mg LOD: 0.9946 pg/mg LOQ: 25 pg/mg Injection volume: 1 | Liu et al., 2022 [115] |
Nails | 30 mg | THC, THC-OH, di-THC-OH, THC-COOH, CBN and CBD | Dichloromethane (five washes) | 1 N NaOH, 95 °C, 15 min | SPE [MeOH:formic acid (98:2, v/v)] | N/A | LC-MS/MS (MRM-ESI+) | Linearity: 10 to 20,000 pg/mg LOD: THC: 10 pg/mg; THC-OH, di-THC-OH, and CBD: 100 pg/mg; THC-COOH: 50 pg/mg; CBN: 20 pg/mg LOQ: THC and CBD: 20 pg/mg; THC-OH, di-THC-OH, THC-COOH and CBN: 100 pg/mg Injection volume: 20 | Cobo-Golpe et al., 2021 [95] |
Nails | 25 mg | THC | Dichloromethane (twice) | M3® reagent, 100 °C, 1 h | N/A | N/A | UHPLC-MS/MS (MRM-ES+) | Linearity: 20 to 1000 pg/mg LOD: 2 pg/mg LOQ: 20 pg/mg Injection volume: 1 | Mannocchi et al., 2020 [98] |
Nails | 25 mg | THC | Dichloromethane | VMA-TM3 reagent, 100 °C, 1 h | SPE (multimatrix eluent) | N/A | UHPLC-MS/MS (MRM-ESI-) | Linearity: 100 to 50,000 pg/mg LOD: 30 pg/mg LOQ: 100 pg/mg Injection volume: 1 | Busardò et al., 2020 [116] |
Bile | 1 mL | THC, THC-OH, and THC-COOH | N/A | N/A | SPE [n-hexane/ethyl acetate (50:50, v/v)] | N/A | LC-MS/MS (MRM) | Linearity: 0.5 to 1000 ng/mL LOD: THC and THC-OH: 1.2 ng/mL; THC-COOH: 1.1 ng/mL LOQ: 2 ng/mL Injection volume: 1 | Al-Asmari et al., 2019 [104] |
Pericardial fluid | N/A | THC and CBD | N/A | N/A | LLE (hexane) | BSTFA in acetonitrile (1:2) | GC-MS (SIM, EI) | Linearity: N/A LOD: 0.02 ng/mL LOQ: N/A Injection volume: 2 | Pettersen et al., 2021 [106] |
Vitreous humor | 0.5 mL | THC and CBD | N/A | N/A | LLE (hexane) | BSTFA in acetonitrile (1:2) | GC-MS (SIM, EI) | Linearity: N/A LOD: 0.02 ng/mL LOQ: N/A Injection volume: 2 | Pettersen et al., 2021 [106] |
Vitreous humor | 1 mL | THC, THC-OH, and THC-COOH | N/A | N/A | SPE [n-hexane/ethyl acetate (50:50, v/v)] | N/A | LC-MS/MS (MRM) | Linearity: 0.5 to 1000 ng/mL LOD: THC: 0.7 ng/mL; THC-OH: 0.6 ng/mL; THC-COOH: 0.8 ng/mL LOQ: 1 ng/mL Injection volume: 1 | Al-Asmari et al., 2019 [104] |
Cerumen | N/A | THC, THC-OH, THC-COOH, CBN, and CBD | N/A | N/A | Acetonitrile with 1% acetic acid | N/A | UHPLC-MS/MS (MRM-ESI+) | Linearity: 100 to 15,000 pg/mg LOD: THC: 0.038 pg/mg; THC-OH: 0.075 pg/mg; THC-COOH: 0.057 pg/mg; CBN: 0.046 pg/mg; CBD: 0.013 pg/mg LOQ: THC: 0.113 pg/mg; THC-OH: 0.225 pg/mg; THC-COOH: 0.170 pg/mg; CBN: 0.139 pg/mg; CBD: 0.040 pg/mg Injection volume: 10 | Nicolaou et al., 2021 [107] |
Meconium | 300 mg | THC, THC-OH, and THC-COOH | N/A | N/A | SPE [acetonitrile/methanol (90/10, v/v).] | N/A | LC-HRMS (MRM-HESI+) | Linearity: 5 to 100 pg/mg LOD: 5 pg/mg LOQ: N/A Injection volume: 5 | Hernandez et al., 2022 [117] |
Meconium | 250 mg | THC, THC-gluc, THC-OH, di-THC-OH, THC-COOH, THC-COOH-gluc, CBN, and CBD | N/A | N/A | Mixed mode cation-exchange SPE | N/A | N/A | Linearity: N/A LOD: 1 to 2 ng/g LOQ: THC, THC-OH, di-THC-OH, THC-COOH, THC-COOH-gluc, CBN, and CBD: 4 ng/g; THC-gluc: 10 ng/g Injection volume: N/A | Concheiro et al., 2021 [97] |
Meconium | 250 mg | THC, THCA, THC-OH, CBN and CBD | N/A | N/A | SPE [hexane/ethyl acetate (90:10, v/v) with 2% acetic acid] | N/A | LC-MS/MS (MRM-ESI-) | Linearity: 5 to 1000 ng/g LOD: N/A LOQ: 5 ng/g Injection volume: 5 | Jensen et al., 2019 [111] |
Meconium | 500 mg | THC-COOH | N/A | N/A | ASE (0.4 mol/L sodium hydroxide) and SPE [hexane/ethyl acetate/acetone/glacial acetic acid (54:18:27:1, v/v/v/v)] | MTBSTFA | GC-MS (SIM-EI) | Linearity: 10 to 500 ng/g LOD: 5 ng/g LOQ: 10 ng/g Injection volume: 2 | Mantovani et al., 2018 [118] |
Umbilical cord | 1 g | THC, THCA, THC-OH, and CBN | N/A | N(A | SPE | N/A | LC-MS/MS (MRM-ESI-) | Linearity: 0.2 to 10.0 ng/g LOD: N/A LOQ: 0.2 Injection volume: 5 | Jensen et al., 2019 [111] |
Umbilical cord | 1 g | THC, THC-OH, THC-COOH, and CBN | N/A | N/A | SPE (2% acetic acid SPE elution buffer) | N/A | LC-MS/MS (MRM-ESI-) | Linearity: 0.2 to 5 ng/g LOD: N/A LOQ: N/A Injection volume: 40 | Wu et al., 2019 [112] |
Umbilical cord | N/A | THC-COOH | N/A | N/A | SPE | N/A | LC-MS/MS | Linearity: N/A LOD: 0.10 ng/g LOQ: N/A Injection volume: N/A | Metz et al., 2021 [119] |
Umbilical cord | 0.5 g | THC, THC-gluc, THC-OH, di-THC-OH, THC-COOH, THC-COOH-gluc, and CBD | N/A | N/A | SPE [dichloromethane/isopropanol (30:70, v/v)] | N/A | LC-MS/MS (MRM) | Linearity: THC, THC-COOH, and CBD: 7 to 200 ng/g; THC-OH and di-THC-OH: 10 to 200 ng/g; THC-gluc: 1 to 20 ng/g; THC-COOH-gluc: 1 to 200 ng/g LOD: THC, THC-COOH, and CBD: 7 ng/g; THC-OH and di-THC-OH: 10 ng/g; THC-gluc and THC-COOH-gluc: 1 ng/g LOQ: THC, THC-COOH, and CBD: 7 ng/g; THC-OH and di-THC-OH: 10 ng/g; THC-gluc and THC-COOH-gluc: 1 ng/g Injection volume: N/A | Kim et al., 2018 [120] |
Umbilical cord | 1 g | THC, THC-OH, THC-COOH, and CBN | N/A | N/A | SPE (2% acetic acid in methanol) | N/A | LC-MS/MS (MRM-ESI-) | Linearity: 0.2 to 30 ng/g LOD: 0.1 ng/g LOQ: 0.2 ng/g Injection volume: 50 | Wu et al., 2018 [121] |
Umbilical cord | 0.5 g | THC, THC-gluc, THC-OH, di-THC-OH, THC-COOH, THC-COOH-gluc, and CBD | N/A | N/A | Mixed mode cation-exchange SPE | N/A | N/A | Linearity: N/A LOD: THC, THC-COOH, and CBD: 7 ng/g; THC-gluc and THC-COOH-gluc: 1 ng/g; THC-OH and di-THC-OH: 10 ng/g LOQ: THC, THC-COOH, and CBD: 7 ng/g; THC-gluc and THC-COOH-gluc: 1 ng/g; THC-OH and di-THC-OH: 10 ng/g Injection volume: N/A | Concheiro et al., 2021 [97] |
Breast milk | 200 µL | THC, THC-gluc, THCV, THC-OH, THC-COOH, THC-COOH-gluc, THCV-COOH, CBN, CBD, CBDV, CBC, and CBG | N/A | N/A | One-step protein precipitation [water with 0.2 M ZnSO4/methanol (30:70, v/v)] | N/A | HPLC-MS/MS (MRM+) | Linearity: THC, THCV, THC-OH, THC-COOH, THCV-COOH, CBN, CBD, CBDV, CBC, and CBG: 0.39 to 400 ng/mL; THC-gluc: 0.04 to 40 ng/mL; THC-COOH-gluc: 1.95 to 2000 ng/mL LOD: N/A LOQ: THC, THCV, CBD, CBDV and CBG: 0.78 ng/mL; THC-gluc: 1.25 ng/mL; THC-OH and THCV-COOH: 1.56 ng/mL; THC-COOH: 0.39 ng/mL; THC-COOH-gluc: 7.8 ng/mL; CBN and CBC: 3.13 ng/mL Injection volume: 50 | Sempio et al., 2021 [113] |
Breast milk | 750 µL | THC, CBN, and CBD | N/A | N/A | QuEChERS (1 N hydrochloric acid; roQTM extraction salt; acetonitrile; D-SPE) | N/A | UPLC-MS/MS (MRM-ESI+) | Linearity: 1 to 100 ng/mL LOD: N/A LOQ: 0.9 ng/mL Injection volume: 5 | Ramnarine et al., 2019 [114] |
Breast milk | N/A | THC, THC-OH, CBN, and CBD | N/A | N/A | N/A | N/A | THC, THC-OH and and CBD: LC-MS (ESI+) CBN: LC-MS (ESI-) | Linearity: N/A LOD: N/A LOQ: N/A Injection volume: N/A | Bertrand et al., 2018 [122] |
Placenta | 0.5 g | THC, THC-gluc, THC-OH, di-THC-OH, THC-COOH, THC-COOH-gluc, CBN, and CBD | N/A | N/A | Mixed mode cation-exchange SPE [(dichloromethane/isopropanol (50:50 v/v)] | N/A | N/A | Linearity: THC, THC-COOH, CBN and CBD: 5 to 100 ng/g; THC-gluc: 0.5 to 20 ng/g; THC-OH and di-THC-OH: 20 to 100 ng/g; THC-COOH-gluc: 0.5 to 100 ng/g LOD: THC, THC-COOH, CBN, and CBD: 5 ng/g; THC-gluc and THC-COOH-gluc: 0.5 ng/g; THC-OH and di-THC-OH: 20 ng/g LOQ: THC, THC-COOH, CBN, and CBD: 5 ng/g; THC-gluc and THC-COOH-gluc: 0.5 ng/g; THC-OH and di-THC-OH: 20 ng/g Injection volume: N/A | Concheiro et al., 2021 [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.; Barroso, M.; Gallardo, E. Analysis of Cannabinoids in Biological Specimens: An Update. Int. J. Environ. Res. Public Health 2023, 20, 2312. https://doi.org/10.3390/ijerph20032312
Antunes M, Barroso M, Gallardo E. Analysis of Cannabinoids in Biological Specimens: An Update. International Journal of Environmental Research and Public Health. 2023; 20(3):2312. https://doi.org/10.3390/ijerph20032312
Chicago/Turabian StyleAntunes, Mónica, Mário Barroso, and Eugenia Gallardo. 2023. "Analysis of Cannabinoids in Biological Specimens: An Update" International Journal of Environmental Research and Public Health 20, no. 3: 2312. https://doi.org/10.3390/ijerph20032312
APA StyleAntunes, M., Barroso, M., & Gallardo, E. (2023). Analysis of Cannabinoids in Biological Specimens: An Update. International Journal of Environmental Research and Public Health, 20(3), 2312. https://doi.org/10.3390/ijerph20032312