Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Participant Recruitment
2.3. Element Mixture Exposure: Sampling and Element Measurement
2.4. Assessment of Kidney Function
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Individual Element Exposure and Association with eGFR
3.3. Association of Element Mixtures with eGFR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Kidney Foundation. KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. 2002. Available online: https://kidneyfoundation.cachefly.net/professionals/KDOQI/guidelines_ckd/p4_class_g1.htm (accessed on 4 November 2022).
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, S.E.; Bridges, C.C. Chronic kidney disease and exposure to nephrotoxic metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, B.A. Metal ions affecting the kidney. In Metal Ions in Toxicology: Effects, Interactions, Interdependencies; Royal Society of Chemistry: London, UK, 2011; pp. 133–141. [Google Scholar]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Health-Part A Curr. Issues 2017, 80, 137–144. [Google Scholar] [CrossRef]
- Zwolak, I. The Role of Selenium in Arsenic and Cadmium Toxicity: An Updated Review of Scientific Literature. Biol. Trace Elem. Res. 2020, 193, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front. Physiol. 2020, 11, 755. [Google Scholar] [CrossRef]
- Fishbein, L. Sources, transport and alterations of metal compounds: An overview. I. Arsenic, beryllium, cadmium, chromium, and nickel. Environ. Health Perspect. 1981, 40, 43–64. [Google Scholar] [CrossRef]
- Lee, R.E.; Duffield, F.V. Sources of environmentally important metals in the atmosphere. Adv. Chem. Ser. 1977, 172, 146–171. [Google Scholar]
- Yáñez, L.; Ortiz, D.; Calderón, J.; Batres, L.; Carrizales, L.; Mejía, J.; Martínez, L.; García-Nieto, E.; Díaz-Barriga, F. Overview of human health and chemical mixtures: Problems facing developing countries. Environ. Health Perspect. 2002, 110 (Suppl. 6), 901–909. [Google Scholar] [CrossRef] [Green Version]
- Telmer, K.; Veiga, M. World emissions of mercury from artisanal and small scale goldmining. In Mercury Fate and Transport in the Global Atmosphere; Manson, R., Pirrone, N., Eds.; Springer International Publishing: New York, NY, USA, 2009; pp. 131–172. [Google Scholar]
- Gunson, A.; Thompson, M.; Baker, R. Removal of Barriers to the Introduction of Cleaner Artisanal Gold Mining and Extraction Technologies; Viena, Austria. 2006. Available online: https://iwlearn.net/resolveuid/ada9e2a657c72ad45bdf1d692991bc53 (accessed on 1 November 2022).
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef]
- Buchet, J.P.; Roels, H.; Bernard, A.; Lauwerys, R. Assessment of renal function of workers exposed to inorganic lead, calcium or mercury vapor. J. Occup. Med. Off. Publ. Ind. Med. Assoc. 1980, 22, 741–750. [Google Scholar]
- Ellingsen, D.G.; Efskind, J.; Berg, K.J.; Gaarder, P.I.; Thomassen, Y. Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand. J. Work Environ. Health 2000, 26, 427–435. [Google Scholar] [CrossRef]
- Jarosińska, D.; Horvat, M.; Sällsten, G.; Mazzolai, B.; Dabkowska, B.; Prokopowicz, A.; Biesiada, M.; Barregård, L. Urinary mercury and biomarkers of early renal dysfunction in environmentally and occupationally exposed adults: A three-country study. Environ. Res. 2008, 108, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, B.; Yang, L.; Li, H. Blood mercury concentration among residents of a historic mercury mine and possible effects on renal function: A cross-sectional study in southwestern China. Environ. Monit. Assess. 2013, 185, 3049–3055. [Google Scholar] [CrossRef]
- Unidad de Planeación Minero Energética (UPME) Producción más limpia en la minería del oroen Colombia: Mercurio, cianuro y otras sustancias; Unidad de Planeación Minero Energética: Bogotá, Colombia. 2007. Available online: https://bdigital.upme.gov.co/handle/001/921 (accessed on 1 November 2022).
- Rodríguez, L.H.S.; Rodríguez-Villamizar, L.A.; Flórez-Vargas, O.; Fiallo, Y.V.; Ordoñez, Á.; Gutiérrez, M.D.C. No effect of mercury exposure on kidney function during ongoing artisanal gold mining activities in Colombia. Toxicol. Ind. Health 2017, 33, 67–78. [Google Scholar] [CrossRef]
- Sánchez Rodríguez, L.H.; Medina Pérez, O.M.; Rondón González, F.; Rincón Cruz, G.; Rocha Muñoz, L.; Flórez-Vargas, O. Genetic Polymorphisms in Multispecific Transporters Mitigate Mercury Nephrotoxicity in an Artisanal and Small-Scale Gold Mining Community in Colombia. Toxicol. Sci. 2020, 178, 338–346. [Google Scholar] [CrossRef]
- Medina Pérez, O.M.; Flórez-Vargas, O.; Rincón Cruz, G.; Rondón González, F.; Rocha Muñoz, L.; Sánchez Rodríguez, L.H. Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population. Sci. Rep. 2021, 11, 8716. [Google Scholar] [CrossRef]
- Departamento Nacional de Estadística (DANE). Proyecciones de Población [Internet]. 2020. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion (accessed on 26 June 2022).
- Gómez, J.; Montes, N. Mapa Geológico de Colombia; Servicio Geológico Colombiano: Bogotá, Colombia, 2020. [Google Scholar]
- Mendoza, H.; Jaramillo, L. Geologia y Geoquimica del Area de California, Santander. Boletín Geológico 1975, 22, 3–52. [Google Scholar] [CrossRef]
- García Ramirez, C.; Uribe Portilla, E. Los Delirios: Un Yacimiento Hidrotermal De Oro Y Plata En La Región De Vetas, Santander (Colombia). Boletín Geol. 2003, 25, 91–103. [Google Scholar]
- Carranza-Lopez, L.; Caballero-Gallardo, K.; Cervantes-Ceballos, L.; Turizo-Tapia, A.; Olivero-Verbel, J. Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Arch. Environ. Contam. Toxicol. 2019, 76, 640–649. [Google Scholar] [CrossRef]
- Molina-Villalba, I.; Lacasaña, M.; Rodríguez-Barranco, M.; Hernández, A.F.; Gonzalez-Alzaga, B.; Aguilar-Garduño, C.; Gil, F. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere 2015, 124, 83–91. [Google Scholar] [CrossRef]
- Mehra, R.; Thakur, A.S. Assessment of metal hazard taking hair as an indicator of trace element exposure to workers in occupational environment. J. Elem. 2010, 15, 671–678. [Google Scholar] [CrossRef]
- Eneanya, N.D.; Yang, W.; Reese, P.P. Reconsidering the Consequences of Using Race to Estimate Kidney Function. JAMA 2019, 322, 113–114. [Google Scholar] [CrossRef]
- Levey, A.S.; Titan, S.M.; Powe, N.R.; Coresh, J.; Inker, L.A. Kidney Disease, Race, and GFR Estimation. Clin. J. Am. Soc. Nephrol. 2020, 15, 1203–1212. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Gennings, C.; Svensson, K.; Wolk, A.; Lindh, C.; Kiviranta, H.; Bornehag, C.-G. Using Metrics of a Mixture Effect and Nutrition from an Observational Study for Consideration towards Causal Inference. Int. J. Environ. Res. Public Health 2022, 19, 2273. [Google Scholar] [CrossRef] [PubMed]
- Tanner, E.M.; Bornehag, C.G.; Gennings, C. Repeated holdout validation for weighted quantile sum regression. MethodsX 2019, 6, 2855–2860. [Google Scholar] [CrossRef]
- Nunez, Y.; Gibson, E.A.; Tanner, E.M.; Gennings, C.; Coull, B.A.; Goldsmith, J.; Kioumourtzoglou, M.A. Reflection on modern methods: Good practices for applied statistical learning in epidemiology. Int. J. Epidemiol. 2021, 50, 685–693. [Google Scholar] [CrossRef]
- Renzetti, S.; Curtin, P.; Just, A.; Bello, G.; Gennings, C. Generalized Weighted Quantile Sum Regression; R package, Version 3.0.4 2021; CRAN R-project; 2021. Available online: https://cran.r-project.org/web/packages/gWQS/gWQS.pdf (accessed on 7 September 2022).
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Khan, K.M.; Chakraborty, R.; Bundschuh, J.; Bhattacharya, P.; Parvez, F. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Sci. Total Environ. 2020, 710, 136071. [Google Scholar] [CrossRef]
- Pollack, A.Z.; Mumford, S.L.; Mendola, P.; Perkins, N.J.; Rotman, Y.; Wactawski-Wende, J.; Schisterman, E.F. Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: A prospective cohort study. J. Toxicol. Environ. Health. A 2015, 78, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borné, Y.; Engström, G.; et al. Blood Lead Levels and Decreased Kidney Function in a Population-Based Cohort. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2018, 72, 381–389. [Google Scholar] [CrossRef]
- Cárdenas-González, M.; Osorio-Yáñez, C.; Gaspar-Ramírez, O.; Pavković, M.; Ochoa-Martínez, A.; López-Ventura, D.; Medeiros, M.; Barbier, O.C.; Pérez-Maldonado, I.N.; Sabbisetti, V.S.; et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 2016, 150, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Rossman, M.D. Chronic beryllium disease: Diagnosis and management. Environ. Health Perspect. 1996, 104 (Suppl. 5), 945–947. [Google Scholar] [PubMed] [Green Version]
- Newman, L.S.; Lloyd, J.; Daniloff, E. The natural history of beryllium sensitization and chronic beryllium disease. Environ. Health Perspect. 1996, 104 (Suppl. 5), 937–943. [Google Scholar] [PubMed] [Green Version]
- National Research Council (US); Committee on Beryllium Alloy Exposures; National Research Council (US) Committee on Toxicology. Managing Health Effects of Beryllium Exposure [Internet]. 2008. Available online: https://nap.nationalacademies.org/catalog/12464/managing-health-effects-of-beryllium-exposure (accessed on 7 September 2022).
- Ward, E.; Okun, A.; Ruder, A.; Fingerhut, M.; Steenland, K. A mortality study of workers at seven beryllium processing plants. Am. J. Ind. Med. 1992, 22, 885–904. [Google Scholar] [CrossRef]
- Toxicological profile for beryllium [Draft for Public Comment]. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp4.pdf (accessed on 7 September 2022).
- Schepers, G. Biological action of Beryllium reaction of the monkey to inhaled aerosols. Ind. Med. Surg. 1964, 33, 1–16. [Google Scholar]
- Wang, T.; Lv, Z.; Fu, X.; Zheng, S.; Yang, Z.; Zou, X.; Liu, Y.; Zhang, Y.; Wen, Y.; Lu, Q.; et al. Associations between plasma metal levels and mild renal impairment in the general population of Southern China. Ecotoxicol. Environ. Saf. 2022, 247, 114209. [Google Scholar] [CrossRef]
- Zhou, T.T.; Hu, B.; Meng, X.L.; Sun, L.; Li, H.B.; Xu, P.R.; Cheng, B.J.; Sheng, J.; Tao, F.B.; Yang, L.S.; et al. The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. Ecotoxicol. Environ. Saf. 2021, 226, 112829. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hendryx, M. Metal mixtures and kidney function: An application of machine learning to NHANES data. Environ. Res. 2020, 191, 110126. [Google Scholar] [CrossRef]
- Sanders, A.P.; Mazzella, M.J.; Malin, A.J.; Hair, G.; Busgang, S.A.; Saland, J.M.; Curtin, P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019, 131, 104993. [Google Scholar] [CrossRef]
- Levin-Schwartz, Y.; Politis, M.D.; Gennings, C.; Tamayo-Ortiz, M.; Flores, D.; Amarasiriwardena, C.; Pantic, I.; Tolentino, M.C.; Estrada-Gutierrez, G.; Lamadrid-Figueroa, H.; et al. Nephrotoxic Metal Mixtures and Preadolescent Kidney Function. Children 2021, 8, 673. [Google Scholar] [CrossRef]
- Sanders, A.P.; Gennings, C.; Tamayo-Ortiz, M.; Mistry, S.; Pantic, I.; Martinez, M.; Estrada-Gutierrez, G.; Espejel-Nuñez, A.; Olascoaga, L.T.; Wright, R.O.; et al. Prenatal and early childhood critical windows for the association of nephrotoxic metal and metalloid mixtures with kidney function. Environ. Int. 2022, 166, 107361. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy metal mixture exposure and effects in developing nations: An update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Babich, R.; Ulrich, J.C.; Ekanayake, E.M.D.V.; Massarsky, A.; De Silva, P.M.C.S.; Manage, P.M.; Jackson, B.P.; Ferguson, P.L.; Di Giulio, R.T.; Drummond, I.A.; et al. Kidney developmental effects of metal-herbicide mixtures: Implications for chronic kidney disease of unknown etiology. Environ. Int. 2020, 144, 106019. [Google Scholar] [CrossRef]
- Díaz de León-Martínez, L.; Ortega-Romero, M.; Gavilán-García, A.; Barbier, O.C.; Carrizalez-Yáñez, L.; Van-Brusel, E.; Díaz-Barriga, F.; Flores-Ramírez, R. Correction to: Assessment of biomarkers of early kidney damage and exposure to pollutants in artisanal mercury mining workers from Mexico (Environmental Science and Pollution Research, (2022), 29, 9, (13333-13343), 10.1007/s11356-021-16628-x). Environ. Sci. Pollut. Res. 2022, 29, 13344. [Google Scholar] [CrossRef]
- Domingo-Relloso, A.; Grau-Perez, M.; Galan-Chilet, I.; Garrido-Martinez, M.J.; Tormos, C.; Navas-Acien, A.; Gomez-Ariza, J.L.; Monzo-Beltran, L.; Saez-Tormo, G.; Garcia-Barrera, T.; et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study. Environ. Int. 2019, 123, 171–180. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Li, Z.; Hua, Q.; Wang, L.; Song, X.; Zou, B.; Ding, M.; Zhao, J.; Tang, C. Joint toxicity of a multi-heavy metal mixture and chemoprevention in sprague dawley rats. Int. J. Environ. Res. Public Health 2020, 17, 1451. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.J.; Allen, D.C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef]
- Dashner-Titus, E.J.; Hoover, J.; Li, L.; Lee, J.H.; Du, R.; Liu, K.J.; Traber, M.G.; Ho, E.; Lewis, J.; Hudson, L.G. Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radic. Biol. Med. 2018, 124, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Górecka, H.; Chojnacki, A.; Górecki, H. Inter-element interactions in human hair. Environ. Toxicol. Pharmacol. 2005, 20, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Jamali, M.K.; Kazi, G.H.; Arain, M.B.; Jalbani, N.; Shar, G.Q.; Sarfaraz, R.A. Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol. Ind. Health 2006, 22, 381–393. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Batista, B.L.; Nunes, J.A.; Passos, C.J.S.; Barbosa, F.J. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci. Total Environ. 2008, 405, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Wang, W.; Li, H.; Lv, J.; Zou, X. Trace element concentrations in hair of healthy Chinese centenarians. Sci. Total Environ. 2011, 409, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Skalnaya, M.G.; Tinkov, A.A.; Demidov, V.A.; Serebryansky, E.P.; Nikonorov, A.A.; Skalny, A. V Hair toxic element content in adult men and women in relation to body mass index. Biol. Trace Elem. Res. 2014, 161, 13–19. [Google Scholar] [CrossRef]
- Drolet-Vives, K.; Zayed, J.; Sauvé, S. Assessment of hair and bone accumulation of beryllium by mice exposed to contaminated dusts. J. Appl. Toxicol. 2009, 29, 638–642. [Google Scholar] [CrossRef]
- Joubert, B.R.; Kioumourtzoglou, M.-A.; Chamberlain, T.; Chen, H.Y.; Gennings, C.; Turyk, M.E.; Miranda, M.L.; Webster, T.F.; Ensor, K.B.; Dunson, D.B.; et al. Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods. Int. J. Environ. Res. Public Health 2022, 19, 1378. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, W.; Wang, X.; Ye, Z.; Tan, Q.; Qiu, W.; Nie, X.; Li, M.; Wang, B.; Chen, W. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environ. Pollut. 2022, 306, 119356. [Google Scholar] [CrossRef] [PubMed]
Variable | All Participants n = 199 | Non-Mining Municipality n = 87 | Mining Municipalities n = 112 | p Value |
---|---|---|---|---|
Male sex (n-%) | 119 (59.80) | 29 (33.33) | 90 (80.36) | <0.0001 |
Age in years (mean-SD) | 42.54 (12.04) | 44.18 (11.66) | 41.27 (12.22) | 0.0901 |
Mining activities (n-%) | 89 (44.95) | 0 (0.00) | 89 (79.46) | <0.0001 |
Years in current occupation (mean-SD) | 12.92 (12.73) | 14.87 (11.85) | 11.40 (13.22) | 0.0577 |
Current smoker (n-%) | 16 (8.04) | 4 (4.60) | 12 (10.71) | 0.115 |
BMI 1 (mean-SD) | 26.98 (3.86) | 27.52 (4.21) | 26.56 (3.53) | 0.0848 |
eGFR 1 mL/min/1.73 m2 (mean-SD) | 88.68 (13.56) | 85.62 (12.82) | 90.86 (13.77) | 0.0069 |
Element (ppb) | % Detection * | Median | Mean | SD | 20th Percentile | 80th Percentile |
---|---|---|---|---|---|---|
Elements verified with CRM | ||||||
Ag | 96.98 | 0.15 | 1.46 | 5.16 | 0.03 | 0.9 |
As | 91.96 | 0.11 | 0.97 | 1.86 | 0.02 | 1.58 |
B | 90.96 | 1.19 | 2.79 | 4.29 | 0.25 | 4.58 |
Ba | 100 | 0.85 | 1.32 | 1.57 | 0.043 | 1.92 |
Be | 66.33 | 0.005 | 0.014 | 0.03 | <LOQ | 0.02 |
Bi | 7.04 | <LOQ | 0.005 | 0.03 | <LOQ | <LOQ |
Ca | 96.48 | 779.19 | 1018.31 | 1031.4 | 423.36 | 1331.69 |
Cd | 63.32 | 0.008 | 0.087 | 0.33 | <LOQ | 0.076 |
Co | 6.03 | <LOQ | 0.049 | 0.29 | <LOQ | 0.007 |
Cr | 83.42 | 0.12 | 0.27 | 0.58 | 0.02 | 0.38 |
Cu | 98.49 | 14.2 | 17.44 | 13.86 | 10.49 | 21.95 |
Fe | 98.99 | 11.01 | 30.36 | 49.75 | 5.12 | 37.64 |
Hg | 100 | 0.33 | 0.8 | 1.98 | 0.13 | 0.83 |
Mg | 98.49 | 33.01 | 63.04 | 88.54 | 16.39 | 89.08 |
Mn | 85.43 | 0.84 | 4.59 | 10.23 | 0.079 | 4.76 |
Na | 98.99 | 127.54 | 209.25 | 232.22 | 69.92 | 299.32 |
Pb | 98.99 | 1.48 | 7.82 | 35.46 | 0.53 | 6.26 |
Sb | 55.28 | 0.0009 | 0.03 | 0.14 | <LOQ | 0.16 |
Se | 84.92 | 0.58 | 0.6 | 0.59 | 0.14 | 0.93 |
Tl | 94.47 | 0.003 | 0.029 | 0.072 | <LOQ | 0.031 |
V | 75.88 | 0.053 | 0.075 | 0.081 | <LOQ | 0.13 |
Zn | 99.5 | 214.81 | 252.55 | 178.18 | 161.56 | 300.45 |
Elements without verified CRM | ||||||
Al | 92.96 | 11.22 | 20.72 | 25.18 | 3.6 | 36.44 |
Au | 56.28 | 0.0009 | 0.04 | 0.33 | ND | 0.012 |
Ce | 23.62 | ND | 0.001 | 0.002 | ND | ND |
Ga | 89.95 | 0.005 | 0.008 | 0.014 | 0.002 | 0.009 |
K | 97.99 | 66.6 | 101.04 | 119.73 | 28.54 | 145.22 |
Li | 81.41 | 0.007 | 0.012 | 0.022 | ND | 0.018 |
Mo | 6.03 | ND | 0.01 | 0.07 | ND | 0.015 |
Ni | 76.38 | 0.1 | 0.41 | 2.62 | ND | 0.33 |
Rb | 46.23 | ND | 0.047 | 0.091 | ND | 0.08 |
Re | 54.27 | ND | 0.0004 | 0.0021 | ND | ND |
Sn | 79.9 | 0.022 | 0.061 | 0.18 | ND | 0.08 |
Sr | 97.49 | 0.1 | 2.35 | 3.74 | 0.41 | 3.95 |
Ti | 51.26 | 0.028 | 0.058 | 0.078 | ND | 0.1 |
W | 41.71 | ND | 0.014 | 0.045 | ND | 0.01 |
Variable | Mixture of 22 Elements with CRM 1 | Mixture of All 36 Elements 1 | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 (n = 199) | Model 2 (n = 133) | Model 3 (n = 199) | Model 4 (n = 133) | |||||
Coefficient | 95% CI | Coefficient | 95% CI | Coefficient | 95% CI | Coefficient | 95% CI | |
WQS index | −2.13 | −3.8 to −0.45 | −2.42 | −4.69 to −0.16 | −1.85 | −3.92 to 0.214 | −2.11 | −5.04 to 0.81 |
Male sex | 4.35 | 0.71 to 7.99 | 4.69 | 1.02 to 8.35 | 3.58 | −0.09 to 7.25 | 4.6 | 0.933 to 8.26 |
Age | −0.69 | −0.81 to −0.58 | −0.8 | −0.97 to −0.63 | −0.7 | −0.82 to −0.58 | −0.79 | −0.97 to −0.62 |
Mining activity | 2.8 | −0.83 to 6.42 | 1.35 | −2.56 to 5.26 | 3.05 | −0.65 to 6.75 | 1.01 | −2.97 to 5.00 |
Diabetes | NA | 3.18 | −2.17 to 8.53 | NA | 3.34 | −1.99 to 8.67 | ||
Hypertension | NA | 4.23 | −0.46 to 8.91 | NA | 4.23 | −0.43 to 8.90 | ||
Current smoking status | NA | −4.86 | −11.60 to 1.82 | NA | −5.01 | −11.8 to 1.80 | ||
Body mass index | NA | −0.26 | −0.69 to 0.18 | NA | −0.27 | −0.70 to 0.17 | ||
Main elements in mixture 2 | Be, Cd, V, Tl, Ag, As, Pb, Co, Bi | Be, Cd, Pb, As, Mn | Be, V, Cd, Au, Tl, As, Ag, Pb, Re, W, Co, Mo | Be, Re, Au, Cd, Ga, Tl, As, Pb, Mn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Villamizar, L.A.; Medina, O.M.; Flórez-Vargas, O.; Vilanova, E.; Idrovo, A.J.; Araque-Rodriguez, S.A.; Henao, J.A.; Sánchez-Rodríguez, L.H. Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. Int. J. Environ. Res. Public Health 2023, 20, 2321. https://doi.org/10.3390/ijerph20032321
Rodriguez-Villamizar LA, Medina OM, Flórez-Vargas O, Vilanova E, Idrovo AJ, Araque-Rodriguez SA, Henao JA, Sánchez-Rodríguez LH. Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. International Journal of Environmental Research and Public Health. 2023; 20(3):2321. https://doi.org/10.3390/ijerph20032321
Chicago/Turabian StyleRodriguez-Villamizar, Laura A., Olga M. Medina, Oscar Flórez-Vargas, Eugenio Vilanova, Alvaro J. Idrovo, Santiago A. Araque-Rodriguez, José A. Henao, and Luz H. Sánchez-Rodríguez. 2023. "Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia" International Journal of Environmental Research and Public Health 20, no. 3: 2321. https://doi.org/10.3390/ijerph20032321
APA StyleRodriguez-Villamizar, L. A., Medina, O. M., Flórez-Vargas, O., Vilanova, E., Idrovo, A. J., Araque-Rodriguez, S. A., Henao, J. A., & Sánchez-Rodríguez, L. H. (2023). Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. International Journal of Environmental Research and Public Health, 20(3), 2321. https://doi.org/10.3390/ijerph20032321