Detecting Medication Risks among People in Need of Care: Performance of Six Instruments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source and Study Population
2.3. Definition of PIMs and PPOs
2.4. Measurement of PIMs and PPOs
2.5. Data Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Application of PIM and PPO Instruments to Available Data
3.2.1. Prevalence of PIMs and PPOs
3.2.2. Sensitivity of PIM and PPO Instruments
3.2.3. Overlaps between PIMs and PPO Instruments
3.2.4. Cumulative Sensitivity of Combining PIM Instruments
4. Discussion
4.1. Summary of Findings
4.2. Comparison to Literature
4.3. Strengths and Limitations
4.4. Implications for Clinical Practice and Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Endres, H.G.; Kaufmann-Kolle, P.; Steeb, V.; Bauer, E.; Böttner, C.; Thürmann, P. Association between Potentially Inappropriate Medication (PIM) Use and Risk of Hospitalization in Older Adults: An Observational Study Based on Routine Data Comparing PIM Use with Use of PIM Alternatives. PLoS ONE 2016, 11, e0146811. [Google Scholar] [CrossRef] [PubMed]
- Mair, A.; Wilson, M.; Dreischulte, T. Addressing the Challenge of Polypharmacy. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Taché, S.V.; Sönnichsen, A.; Ashcroft, D.M. Prevalence of Adverse Drug Events in Ambulatory Care: A Systematic Review. Ann. Pharmacother. 2011, 45, 977–989. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.B.; Etherton-Beer, C.; Hosking, S.M.; Pasco, J.A.; Page, A.T. The patterns and implications of potentially suboptimal medicine regimens among older adults: A narrative review. Ther. Adv. Drug Saf. 2022, 13, 20420986221100117. [Google Scholar] [CrossRef]
- Kaufmann, C.P.; Tremp, R.; Hersberger, K.E.; Lampert, M.L. Inappropriate prescribing: A systematic overview of published assessment tools. Eur. J. Clin. Pharmacol. 2014, 70, 1–11. [Google Scholar] [CrossRef]
- Tommelein, E.; Mehuys, E.; Petrovic, M.; Somers, A.; Colin, P.; Boussery, K. Potentially inappropriate prescribing in community-dwelling older people across Europe: A systematic literature review. Eur. J. Clin. Pharmacol. 2015, 71, 1415–1427. [Google Scholar] [CrossRef]
- O’Mahony, D.; O’Sullivan, D.; Byrne, S.; O’Connor, M.N.; Ryan, C.; Gallagher, P. STOPP/START criteria for potentially inappropriate prescribing in older people: Version 2. Age Ageing 2014, 44, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renom-Guiteras, A.; Meyer, G.; Thürmann, P.A. The EU(7)-PIM list: A list of potentially inappropriate medications for older people consented by experts from seven European countries. Eur. J. Clin. Pharmacol. 2015, 71, 861–875. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Schmiedl, S.; Thürmann, P.A. Potentially inappropriate medications in the elderly: The PRISCUS list. Dtsch. Arztebl. Int. 2010, 107, 543–551. [Google Scholar] [PubMed]
- Pazan, F.; Weiss, C.; Wehling, M.; Bauer, J.M.; Berthold, H.K.; Denkinger, M. The FORTA (Fit fOR The Aged) List 2021: Fourth Version of a Validated Clinical Aid for Improved Pharmacotherapy in Older Adults. Drugs Aging 2022, 39, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Seppala, L.J.; Petrovic, M.; Ryg, J.; Bahat, G.; Topinkova, E.; Szczerbińska, K.; van der Cammen, T.J.M.; Hartikainen, S.; Ilhan, B.; Landi, F.; et al. STOPPFall (Screening Tool of Older Persons Prescriptions in older adults with high fall risk): A Delphi study by the EuGMS Task and Finish Group on Fall-Risk-Increasing Drugs. Age Ageing 2020, 50, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, E.K.; Hopf, Y.M.; Drey, M. An anticholinergic burden score for German prescribers: Score development. BMC Geriatr. 2018, 18, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gensichen, J.; Zöllinger, I.; Gagyor, I.; Hausen, A.; Hoelscher, M.; Janke, C.; Kühlein, T.; Nassehi, A.; Teupser, D.; Arend, F.M.; et al. Impact of the COVID-19 pandemic on frail elderly: Protocol for a SARS-CoV-2 registry. BMJ Open 2022. under review. [Google Scholar]
- Blümel, M.; Spranger, A.; Achstetter, K.; Maresso, A.; Busse, R. Germany: Health System Review. Heal. Syst. Transit. 2020, 22, 1–272. [Google Scholar]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Wittich, W.; Phillips, N.; Nasreddine, Z.S.; Chertkow, H. Sensitivity and specificity of the Montreal Cognitive Assessment modified for individuals who are visually impaired. J. Vis. Impair. Blind. 2010, 104, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Callahan, C.M.; Unverzagt, F.W.; Hui, S.L.; Perkins, A.J.; Hendrie, H.C. Six-Item Screener to Identify Cognitive Impairment Among Potential Subjects for Clinical Research. Med. Care 2002, 40, 771–781. [Google Scholar] [CrossRef] [Green Version]
- WHO Collaborating Centre for Drug Statistics Methodology. Anatomical and Therapeutical Chemical Classification (ATC). Available online: https://www.whocc.no/atc_ddd_methodology/purpose_of_the_atc_ddd_system/ (accessed on 7 January 2023).
- World Health Organization. International Classification of Diseases (ICD) 10th Revision. Available online: https://icd.who.int/browse10/2019/en#/ (accessed on 7 January 2023).
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and Validating the Charlson Comorbidity Index and Score for Risk Adjustment in Hospital Discharge Abstracts Using Data From 6 Countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, D.; Ishida, C.; Haseer Koya, H. Polypharmacy. StatPearls. In Treasure Island (FL): StatPearls Publishing.Copyright © 2022; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Huibers, C.J.A.; Sallevelt, B.T.G.M.; de Groot, D.A.; Boer, M.J.; van Campen, J.P.C.M.; Davids, C.J.; Hugtenburg, J.G.; Tweel, A.M.V.W.-V.D.; van Hout, H.P.; van Marum, R.J.; et al. Conversion of STOPP/START version 2 into coded algorithms for software implementation: A multidisciplinary consensus procedure. Int. J. Med. Informatics 2019, 125, 110–117. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisibach, A.; Benelli, V.; Ceppi, M.G.; Waldner-Knogler, K.; Csajka, C.; Lutters, M. Quality of anticholinergic burden scales and their impact on clinical outcomes: A systematic review. Eur. J. Clin. Pharmacol. 2021, 77, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.L.; Boustani, M.A.; Lane, K.A.; Gao, S.; Hendrie, H.; Khan, B.A.; Murrell, J.; Unverzagt, F.; Hake, A.; Smith-Gamble, V.; et al. Use of anticholinergics and the risk of cognitive impairment in an African American population. Neurology 2010, 75, 152–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damoiseaux-Volman, B.A.; Raven, K.; Sent, D.; Medlock, S.; Romijn, J.A.; Abu-Hanna, A.; van der Velde, N. Potentially inappropriate medications and their effect on falls during hospital admission. Age Ageing 2022, 51. [Google Scholar] [CrossRef]
- Johansen, J.S.; Halvorsen, K.H.; Svendsen, K.; Havnes, K.; Garcia1, B.H. The impact of hospitalisation to geriatric wards on the use of medications and potentially inappropriate medications-a health register study. BMC Geriatr. 2020, 20, 190. [Google Scholar] [CrossRef]
- Awad, A.; Hanna, O. Potentially inappropriate medication use among geriatric patients in primary care setting: A cross-sectional study using the Beers, STOPP, FORTA and MAI criteria. PLoS ONE 2019, 14, e0218174. [Google Scholar] [CrossRef]
- Krüger, C.; Schäfer, I.; van den Bussche, H.; Bickel, H.; Dreischulte, T.; Fuchs, A.; König, H.-H.; Maier, W.; Mergenthal, K.; Riedel-Heller, S.G.; et al. Comparison of FORTA, PRISCUS and EU(7)-PIM lists on identifying potentially inappropriate medication and its impact on cognitive function in multimorbid elderly German people in primary care: A multicentre observational study. BMJ Open 2021, 11, e050344. [Google Scholar] [CrossRef]
Instruments | Last Update | Geographical Origin | Description of Structure | Development Methods | No. of Items | Data Types |
---|---|---|---|---|---|---|
PIM tools | ||||||
Patient-in-focus listing approach (PILA) | ||||||
FORTA | 2021 | Germany | List of the most frequently used pharmaceuticals in Germany, presented in respect to indication groups. Classification in four classes (A-D), where C—questionable and D—avoid contain potentially inadequate medication. | DELPHI | 299 substances used in 30 indication groups | diagnosis, medication |
STOPP | 2014 | UK/ Ireland | Screening tool by organ and functional system to identify potentially inadequate medication. | DELPHI | 80 criteria | diagnosis, vital signs, lab data, patient history, medication |
STOPPFall | 2020 | EU/ Finland | After 14 medication classes were defined as case-risk-increasing-drug (FRID), condition-based criteria for PIM classification were created in a deprescribing tool. | DELPHI | 14 medication classes with 56 criteria in total | diagnosis, medication |
Drug-oriented list approach (DOLA) | ||||||
PRISCUS | 2011 | Germany | Negative list, which includes PIM as well as recommendation for substitution of these. | DELPHI | 83 substances | medication |
EU(7)-PIM | 2015 | Europe | Developed by a Commission including experts from seven European countries; includes the PRISCUS list in its entirety. | DELPHI | 282 substances | medication |
German-ACB | 2018 | Germany | Substances classified as anticholinergic active are scored into three activity levels (1–3). The anticholinergic burden of each patient is defined as the sum of their individual anticholinergic activity levels. | systematic literature research | 507 substances, thereof 151 with anticholinergic activity | medication |
PPO tools | ||||||
FORTA | 2021 | Germany | Classification in four classes (A-D), where A—indispensable and B—beneficial contain potentially necessary medication. | DELPHI | 299 substances used in 30 indication groups | diagnosis, medication |
START | 2014 | UK/ Ireland | Screening tool by organ and functional system to identify potentially necessary medication. | DELPHI | 34 criteria | diagnosis, vital signs, lab data |
Characteristics | n (%) [95%-CI] |
---|---|
Age (Years) | |
median (Q1–Q3) | 84 (80–89) |
65–79 | 53 (23.5) [18.0–92.6] |
80–89 | 122 (54.0) [47.2–60.6] |
≥90 | 51 (22.6) [17.3–28.6] |
Sex | |
Female | 161 (71.2) [64.9–77.0] |
Male | 65 (28.8) [23.0–35.1] |
nursing situation (n = 213) | |
long-term care facility (LTCF) | 159 (74.6) [68.3–80.3} |
outpatient care | 35 (16.4) [11.7–22.1] |
number of medications (n = 226) | |
median (Q1–Q3) | 9.00 (7.0–12.0) |
≥5 (polypharmacy) | 209 (92.5) [88.2–95.6] |
≥10 (excessive polypharmacy) | 103 (45.6) [39.0–52.3] |
Charlson Comorbidity Index (CCI) (n = 226) | |
median (Q1–Q3) | 3 (1.0–5.0) |
moderate comorbidity (3–4 pts.) | 54 (23.9) [18.5–30.0] |
severe comorbidity (≥5 pts.) | 59 (26.1) [20.5–32.0] |
Six-Item-Screener (n = 201) | |
median number of errors (Q1–Q3) | 1 (0–2) |
cognitive impaired (≥3 errors) | 49 (24.3) [18.6–30.9] |
MoCA—BLIND 1 (n = 169) | |
median (Q1–Q3) | 17.0 (14.0–20.0) |
mild cognitive impairment (≤17) | 79 (53.3) [45.4–61.0] |
7-Point Clinical Frailty-Scale (n = 108) | |
median (Q1–Q3) | 6.0 (5.0–7.0) |
mild to moderately frail (5–6 pts.) | 49 (45.4) [35.8–55.2] |
severely to very severely frail (7–8 pts.) | 41 (38.0) [28.8–47.8] |
distribution of chronic diseases (n = 226) | |
hypertension (n) | 170 (75.2) [69.1–80.7] |
dyslipidemia (n) | 63 (27.9) [22.1–34.2] |
diabetes (n) | 61 (27.0) [21.3–33.3] |
heart failure (n) | 53 (23.5) [18.1–29.5] |
hypothyroidism (n) | 44 (19.5) [14.5–25.2] |
depression (n) | 48 (21.2) [16.1–27.2] |
atrial fibrillation (n) | 72 (31.9) [25.8–38.4] |
chronic obstructive pulmonary disease (COPD) (n) | 39 (17.3) [12.6–22.8] |
Parkinson’s disease (n) | 17 (7.5) [4.4–11.8] |
coronary heart disease | 39 (17.3) [12.6–22.8] |
stroke | 16 (7.1) [4.1–11.2] |
renal failure | 45 (19.9) [14.9–25.7] |
No. of Detected PIMs per Patient | Tools Applied | ||||||
---|---|---|---|---|---|---|---|
All | FORTA-C/D | STOPP | EU(7)-PIM | PRISCUS | STOPPFall | German-ACB | |
PIM Count (%) [95%-CI] | |||||||
≥1 | 207 (91.6) | 173 (76.5) | 149 (65.9%) | 140 (61.9%) | 29 (12.8%) | 82 (36.3%) | 15 (6.6%) |
[87.2–94.9] | [70.5–81.9] | [59.4–72.1] | [55.3–68.3] | [8.8–17.9] | [30.0–42.9] | [3.8–10.7] | |
1 | 27 (11.9) | 70 (31.0%) | 73 (32.3%) | 83 (36.7%) | 22 (9.7%) | 50 (22.1%) | 14 (6.2%) |
[8.0–16.9] | [25.0–37.4] | [26.3–38.9] | [30.4–43.4] | [6.2–14.4] | [16.9–28.1] | [3.4–10.2] | |
2 | 27 (11.9) | 47 (20.8%) | 44 (19.5%) | 34 (15.0%) | 7 (3.1%) | 24 (10.6%) | 1 (0.4%) |
[8.0–16.9] | [15.7–26.7] | [14.5–25.2] | [10.6–20.4] | [1.3–6.3] | [6.9–15.4] | [0.0–2.4] | |
3 | 24 (10.6) | 37 (16.4%) | 19 (8.4%) | 17 (7.5%) | 0 (0.0) | 6 (2.7%) | 0 (0.0) |
[6.9–15.4] | [11.8–21.9] | [5.1–12.8] | [4.4–11.8] | [0.0–1.6] | [1.0–5.7] | [0.0–1.6] | |
≥4 | 129 (57.1) | 19 (8.4%) | 13 (5.8%) | 6 (2.7%) | 0 (0.0) | 2 (0.9%) | 0 (0.0) |
[50.3–63.6] | [5.1–12.8] | [3.1–9.6] | [1.0–5.7] | [0.0–1.6] | [0.1–3.2] | [0.0–1.6] |
No. of Detected PPOs per Patient | Tools Applied | ||
---|---|---|---|
All | FORTA-A | START | |
PPO Count (%) [95%-CI] | |||
≥1 | 187 (82.7) | 142 (62.8) | 144 (63.7) |
[77.2–87.4] | [56.2–69.1] | [57.1–69.9] | |
1 | 74 (32.7) | 94 (41.6) | 79 (35.0) |
[26.7–39.3] | [35.1–48.3] | [28.8–41.6] | |
2 | 56 (24.8) | 33 (14.6) | 32 (14.2) |
[19.3–30.9] | [10.3–19.9] | [9.9–19.4] | |
3 | 34 (15.0) | 13 (5.8) | 22 (9.7) |
[10.6–20.4] | [3.1–9.6] | [6.2–14.4] | |
≥4 | 23 (10.2) | 2 (0.1) | 11 (4.9) |
[6.6–14.9] | [0.1–3.2] | [2.5–8.5] |
Medication | Tools Applied | ||||||
---|---|---|---|---|---|---|---|
All | FORTA-C/D | STOPP | EU(7)-PIM | PRISCUS | STOPPFall | German-ACB | |
PIM Count (% of All PIMs) [95%-CI] | |||||||
all | 648 (100.0) | 357 (55.1) | 275 (42.4) | 226 (34.9) | 36 (5.6) | 124 (19.1) | 16 (2.5) |
[100.0–100.0] | [51.2–59.0] | [38.6–46.3] | [27.3–34.0] | [3.9–7.6] | [16.2–22.4] | [1.4–4.0] | |
acetylsalicylic acid | 15 (2.3) | 3 (20) | 13 (86.7) | 1 (6.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
[1.3–3.8] | [4.3–48.1] | [59.5–98.3] | [0.2–32.0] | [0.0–21.8] | [0.0–21.8] | [0.0–21.8] | |
direct oral anticoagulants | 52 (8.0) | 0 (0.0) | 11 (21.2) | 51 (98.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
[6.1–10.4] | [0.0–6.8] | [11.1–34.7] | [89.7–99.9] | [0.0–6.8] | [0.0–6.8] | [0.0–6.8] | |
beta blocker | 47 (7.3) | 35 (74.5) | 17 (36.2) | 3 (6.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
[5.4–9.5] | [59.7–86.1] | [22.7–51.5] | [1.3–17.5] | [0.0–7.5] | [0.0–7.5] | [0.0–7.5] | |
benzodiazepines | 14 (2.2) | 14 (100.0%) | 14 (100.0%) | 5 (35.7%) | 3 (21.4%) | 2 (14.3%) | 0 (0.0%) |
[1.2–3.6] | [76.8–100.0] | [76.8–100.0] | [12.8–64.9] | [4.7–50.8] | [1.8–42.8] | [0.0–2.3] | |
other psycholeptics | 82 (12.7) | 66 (80.5) | 80 (97.6) | 21 (25.6) | 6 (7.3) | 32 (39.0) | 1 (1.2) |
[10.2–15.5] | [70.3–88.4] | [91.5–99.7] | [15.6–35.1] | [2.7–15.2] | [28.4–50.4] | [0.0–6.6] | |
psychoanaleptics | 85 (13.1) | 82 (96.5) | 4 (4.7) | 24 (28.2) | 8 (9.4) | 15 (17.7) | 7 (8.2) |
[10.6–16.0] | [90.0–99.3] | [1.3–11.6] | [19.0–39.0] | [4.2–17.8] | [10.2–27.4] | [3.4–16.2] | |
opioids | 44 (6.8) | 12 (27.3) | 31 (70.5) | 4 (9.1) | 0 (0.0) | 26 (59.1) | 0 (0.0) |
[5.0–9.0] | [15.0–42.8] | [54.8–0.83] | [2.5–21.7] | [0.0–8.0] | [43.2–73.7] | [0.0–8.0] | |
non-opiod analgetics | 25 (3.9) | 2 (8.0) | 24 (96.0) | 9 (36.0) | 3 (12.0) | 0 (0.0) | 0 (0.0) |
[2.5–5.6] | [1.0–26.0] | [79.6–99.9] | [18.0–57.5] | [2.5–31.2] | [0.0–13.7] | [0.0–13.7] | |
loop diuretics | 49 (7.6) | 0 (0.0) | 34 (69.4) | 0 (0.0) | 0 (0.0) | 19 (38.8) | 0 (0.0) |
[5.6–9.9] | [0.0–7.3] | [54.6–81.7] | [0.0–6.5] | [0.0–7.3] | [25.2–53.8] | [0.0–7.3] | |
spironolactone | 25 (3.9) | 25 (100.0) | 0 (0.0) | 6 (24.0) | 6 (24) | 4 (16.0) | 0 (0.0) |
[2.5–5.6] | [86.3–100.0] | [0.0–13.7] | [9.4–45.1] | [9.4–45.1] | [4.5–36.1] | [0.0–13.7] |
Indications | Tools Applied | ||
---|---|---|---|
All | FORTA-A | START | |
PPO Count (% of All PIMs) [95%-CI] | |||
all | 399 (100.0) | 207 (51.9) | 243 (60.9) |
[100.0–100.0] | [46.9–56.9] | [55.9–65.7] | |
Hypertension | 41 (10.3) | 41 (100.0) | 0 (0.0) |
[7.5–13.7] | [91.4–100.0] | [0.00–8.6] | |
Diabetes | 51 (12.8) | 51 (100.0) | 2 (3.9) |
[9.7–16.5] | [93.0–100.0] | [0.5–13.5] | |
Dyslipidemia | 2 (0.5) | 0 (0.0) | 2 (100.0) |
[0.1–1.8] | [0.0–84.2] | [15.8–100.0] | |
Heart failure | 15 (3.8) | 8 (53.3) | 15 (100.0) |
[2.1–6.1] | [26.6–78.7] | [78.2–100.0] | |
Hypothyroidism | 1 (0.3) | 1 (100.0) | 0 (0.0) |
[0.0–1.4] | [2.5–100.0] | [0.0–97.5] | |
Depression | 21 (5.3) | 0 (0.0) | 21 (100.0) |
[3.3–7.9] | [0.0–16.1] | [83.9–100.0] | |
Atrial fibrillation | 30 (7.5) | 10 (30.3) | 24 (80.0) |
[5.1–10.6] | [17.3–52.8] | [61.4–92.3] | |
Chronic obstructive pulmonary disease | 35 (8.8) | 26 (74.3) | 26 (74.3) |
[6.2–12.0] | [56.7–87.5] | [56.7–87.5] | |
Parkinson’s disease | 3 (0.8) | 3 (100.0) | 3 (100.0) |
[0.2–2.2] | [29.2–100.0] | [29.2–100.0] |
FORTA | STOPP | EU(7)-PIM | PRISCUS | STOPPFall | |
---|---|---|---|---|---|
FORTA | - | - | - | - | - |
STOPP | 0.27 (0.22–0.33) | - | - | - | - |
EU(7)-PIM | 0.25 (0.19–0.30) | 0.17 (0.12–0.23) | - | - | - |
PRISCUS | 0.08 (0.04–0.12) | 0.10 (0.06–0.15) | 0.25 (0.19–0.32) | - | - |
STOPPFall | 0.20 (0.15–0.25) | 0.21 (0.16–0.27) | 0.00 (−0.04–0.03) | −0.03 (−0.03–0.02) | - |
German-ACB | 0.04 (0.01–0.07) | 0.02 (−0.01–0.04) | 0.11 (0.06–0.16) | 0.42 (0.23–0.59) | 0.00 (−0.03–0.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreischulte, T.; Sanftenberg, L.; Hennigs, P.; Zöllinger, I.; Schwaiger, R.; Floto, C.; Sebastiao, M.; Kühlein, T.; Hindenburg, D.; Gagyor, I.; et al. Detecting Medication Risks among People in Need of Care: Performance of Six Instruments. Int. J. Environ. Res. Public Health 2023, 20, 2327. https://doi.org/10.3390/ijerph20032327
Dreischulte T, Sanftenberg L, Hennigs P, Zöllinger I, Schwaiger R, Floto C, Sebastiao M, Kühlein T, Hindenburg D, Gagyor I, et al. Detecting Medication Risks among People in Need of Care: Performance of Six Instruments. International Journal of Environmental Research and Public Health. 2023; 20(3):2327. https://doi.org/10.3390/ijerph20032327
Chicago/Turabian StyleDreischulte, Tobias, Linda Sanftenberg, Philipp Hennigs, Isabel Zöllinger, Rita Schwaiger, Caroline Floto, Maria Sebastiao, Thomas Kühlein, Dagmar Hindenburg, Ildikó Gagyor, and et al. 2023. "Detecting Medication Risks among People in Need of Care: Performance of Six Instruments" International Journal of Environmental Research and Public Health 20, no. 3: 2327. https://doi.org/10.3390/ijerph20032327
APA StyleDreischulte, T., Sanftenberg, L., Hennigs, P., Zöllinger, I., Schwaiger, R., Floto, C., Sebastiao, M., Kühlein, T., Hindenburg, D., Gagyor, I., Wildgruber, D., Hausen, A., Janke, C., Hölscher, M., Teupser, D., Gensichen, J., & on behalf of the BACOM Study Group. (2023). Detecting Medication Risks among People in Need of Care: Performance of Six Instruments. International Journal of Environmental Research and Public Health, 20(3), 2327. https://doi.org/10.3390/ijerph20032327