A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils
Abstract
:1. Introduction
- –
- Sequential fractionation of nitrogen compounds can be useful to assess the degree of organic matter transformation in drained organic (peat) soils.
- –
- The share of labile fractions of nitrogen in relation to the stable fractions of this element can be the basis for determining chemical indices assessing the degree of secondary transformations of organic matter after drainage of the peatlands.
2. Materials and Methods
2.1. Study Area and Material
- –
- Hemi-murshic soils (five profiles; 52°06′38.2″ N, 22°37′05.5″ E; 52°06′57.7″ N, 22°36′39.6″ E; 52°08′35.6″ N, 22°34′06.0″ E; 52°08′47.6″ N, 22°33′54.8″ E; 52°03′30.6″ N, 22°19′32.0″ E), formed from reed and sedge peats (moderately decomposed, H3–H6 on the von Post scale) [61];
- –
- Sapri-murshic soils (three profiles; 52°10′42.1″ N, 22°28′57.8″ E; 52°10′46.5″ N 22°29′18.3″ E, 52°03′32.5″ N, 22°19′49.8″ E), formed from alder peats (heavily decomposed, H7–H8 on the von Post scale).
- –
- Sixteen layers with a clearly developed grainy structure meeting the criteria of the murshic layer, typical for the upper parts of drained organic soils. The thickness of these layers ranged from 28 to 35 cm.
- –
- Fifteen layers meeting the criteria of the histic layer occurring under the murshic layers (9—rush and sedge peats and 6—alder peats). The samples were taken below the muck layers to a depth of 80 cm.
2.2. Laboratory Analyses
2.2.1. Soil Properties
- –
- pH in 1M KCl, soil/solution = 1/5 (v/v);
- –
- Ash content, after combustion at 550 °C, for 6 h;
- –
- Total carbon (TC) content and total nitrogen (TN) content, determined by an elemental analyzer Series II 2400, produced by Perkin Elmer (Waltham, MA, USA);
- –
- Humic substances separated by extraction with 1 M NaOH (m/v = 1/50, extraction time 24 h). Carbon and nitrogen contents were determined in the extract (after centrifugation, 4000 rpm). The carbon and nitrogen of humic substances were obtained (C-HS and N-HS ).
2.2.2. Sequential Nitrogen Fractionation
- –
- 0.5 M K2SO4 to extract nitrogen in mineral compounds and readily soluble organic compounds. The extraction was conducted at room temperature for 24 h;
- –
- 0.25 M H2SO4 to extract organic compounds which are operationally called “readily hydrolyzable compounds”. Hydrolysis was carried out for 4 h at the boiling temperature of the mixture, under a water reflux condenser;
- –
- 3.0 M H2SO4 to extract organic compounds which are operationally called “non-readily hydrolyzable compounds” (see above).
2.2.3. Determination of Carbon and Nitrogen in Solutions
2.3. Statistical Calculations
3. Results and Discussion
3.1. Soil Properties
3.2. Correlation of Soil Properties
3.3. Nitrogen Fractions after Extraction with a Neutral Reagent and Acid Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heller, C.; Zeitz, J. Stability of soil organic matter in two northeastern German fen soils: The influence of site and soil development. J. Soils Sediments 2012, 12, 1231–1240. [Google Scholar] [CrossRef]
- Griffiths, N.A.; Hanson, P.J.; Ricciuto, D.M.; Iversen, C.M.; Jensen, A.M.; Malhotra, A.; Weston, D.J. Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-scale warming experiment. Soil Sci. Soc. Am. J. 2017, 81, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Glina, B.; Gajewski, P.; Mendyk, Ł.; Zawiej, A.B.; Kaczmarek, Z. Recent changes in soil properties and carbon stock in fen peatlands adjacent to open-pit lignite mines. Land Degrad. Dev. 2019, 30, 2371–2380. [Google Scholar] [CrossRef] [Green Version]
- Joosten, H.; Tanneberger, F.; Moen, A. Mires and Peatlands of Europe Status, Distribution and Conservation; Schweizerbart Science Publishers: Stuttgart, Germany, 2017. [Google Scholar]
- Europe Is Getting Warmer, and It’s Not Looking Like It’s Going to Cool Down Anytime Soon. Available online: https://www.europeandatajournalism.eu/News/Data-news/Europe-is-getting-warmer-and-it-s-not-looking-like-it-s-going-to-cool-down-anytime-soon. (accessed on 21 December 2022).
- Orth, R.; Zscheischler, J.; Seneviratne, S.I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 2016, 6, 28334. [Google Scholar] [CrossRef]
- Song, L.; Guanter, L.; Guan, K.; You, L.; Huete, A.; Ju, W.Y. Satellite suninduced chlorophyll fluorescence detects early response of winter wheat to heat Zhang stress in the Indian Indo-Gangetic Plains. Glob. Chang. Biol. 2018, 24, 4023–4037. [Google Scholar] [CrossRef] [Green Version]
- Buras, A.R.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Dembek, W.; Piorkowski, H.; Rycharski, M. Wetlands against the Background of Physico-Geograpfical Regionalization of Poland; The Institute for Land Reclamation and Grassland Farming: Falenty, Poland, 2000. [Google Scholar]
- Łachacz, A. Peatlands in Poland—Specificity, Resources, Conservation. In Polish National Committee of International Peatland Society—History, Activity, Achievements; Łachacz, A., Kalisz, B., Eds.; UWM Press: Olsztyn, Poland, 2016; pp. 11–22. [Google Scholar]
- Whitfield, P.H.; St-Hilaire, A.; van der Kamp, G. Improving Hydrological Predictions in Peatlands Can. Water Resour. J. 2009, 34, 467–478. [Google Scholar]
- Drewnik, M.; Rajwaj-Kuligiewicz, A.; Stolarczyk, M.; Kucharczyk, S.; Żelazny, M. Intra-annual groundwater levels and water temperature patterns in raised bogs affected by human impact in mountain areas in Poland. Sci. Total Environ. 2018, 642, 991–1003. [Google Scholar] [CrossRef]
- Clarkson, B.R.; Cave, V.M.; Watts, C.H.; Thornburrow, D.; Fitzgerald, N.B. Effects of lowered water table and agricultural practices on a remnant restiad bog over four decades. Mires Peat 2020, 26, 13. [Google Scholar] [CrossRef]
- Glina, B.; Gajewski, P.; Kaczmarek, Z.; Owczarzak, W.; Rybczyński, P. Current state of peatland soils as an effect of long-term drainage—Preliminary results of peat-land ecosytems investigations in the Grójecka Valley (central Poland). Soil Sci. Ann. 2016, 67, 3–9. [Google Scholar] [CrossRef]
- Okruszko, H. Transformation of fen-peat soils under the impact of draining. Adv. Agric. Sci. Probl. 1993, 406, 3–73. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th Edition—Principles, Classification Scheme and Correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- Terry, R.E. Nitrogen transformations in Histosols. In The Role of Organic Matter in Modern Agriculture. Developments in Plant and Soil Sciences; Chen, Y., Avnimelech, Y., Eds.; Springer: Dordrecht, The Netherlands, 1986; Volume 25, pp. 55–70. [Google Scholar]
- Nieder, R.; Benbi, D.K. Carbon and Nitrogen in the Terrestrial Environment; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Leifeld, J.; Klein, K.; Wüst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 2020, 10, 7634. [Google Scholar] [CrossRef]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry; Academic Press: London, UK, 1996. [Google Scholar]
- Shulten, H.R.; Shnitzer, M. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils 1998, 26, 1–15. [Google Scholar] [CrossRef]
- Kalembasa, S.; Kalembasa, D. Conversions and pathways of organic carbon and organic nitrogen in soils. In Bioactive Compounds in Agricultural Soils; Szajdak, L.W., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 53–90. [Google Scholar]
- Maciak, F. Diagnosis of the transformation of drained peat soils as related to nitrogen mineralization. Adv. Agric. Sci. Probl. 1993, 406, 75–82. [Google Scholar]
- Ilnicki, P. Peatlands and Peat; Agricultural Academy: Poznań, Poland, 2002. [Google Scholar]
- Kalbitz, K.; Geyer, S. Different effects of peat degradation on dissolved organic carbon and nitrogen. Org. Geochem. 2002, 33, 319–326. [Google Scholar] [CrossRef]
- Glatzel, S.; Kalbitz, K.; Dalva, M.; Moore, T. Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 2003, 113, 397–411. [Google Scholar] [CrossRef]
- Berglund, O.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Vassiljev, A.; Blinova, I. The influence of drained peat soils on diffuse nitrogen pollution of surface water. Hydrol. Res. 2012, 43, 352–358. [Google Scholar] [CrossRef]
- Tuukkanen, T.; Marttila, H.; Klove, B. Effect of soil properties on peat erosion and suspended sediment delivery in drained peatlands. J. Soils Sediments 2014, 50, 3523–3535. [Google Scholar] [CrossRef]
- Dinsmore, K.J.; Billett, M.F.; Skiba, U.M.; Rees, R.M.; Drewer, J.; Helfter, C. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob. Chang. Biol. 2010, 16, 2750–2762. [Google Scholar] [CrossRef]
- Müller, D.; Warnek, E.T.; Rixen, T.; Müller, M.; Mujahids, A.; Banges, H.W. Fate of peat-derived carbon and associated CO2 and CO emissions from two Southeast Asian estuaries. Biogeosciences Discuss. 2015, 12, 8299–8340. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Hudson, J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Ilnicki, P.; Szajdak, L.W. Peatland and Peat; The Poznan Society of Friends of Sciences: Poznan, Poland, 2016. [Google Scholar]
- Evans, C.; Renou-Wilson, F.; Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquat. Sci. 2016, 78, 573–590. [Google Scholar] [CrossRef] [Green Version]
- Kalisz, B.; Łachacz, A.; Glazewski, R. Transformation of some organic matter components in organic soils exposed to drainage. Turk. J. Agric. For. 2010, 34, 245–256. [Google Scholar] [CrossRef]
- Szajdak, L.W.; Jezierski, A.; Wegner, K.; Meysner, T.; Szczepański, M. Influence of Drainage on Peat Organic Matter: Implications for Development, Stability, and Transformation. Molecules 2020, 25, 2587. [Google Scholar] [CrossRef] [PubMed]
- Becher, M.; Tołoczko, W.; Godlewska, A.; Pakuła, K.; Żukowski, E. Fractional Composition of Organic Matter and Properties of Humic Acids in the Soils of Drained Bogs of the Siedlce Heights in Eastern Poland. J. Ecol. Eng. 2022, 23, 208–222. [Google Scholar] [CrossRef]
- Becher, M.; Kalembasa, D.; Pakula, K.; Malinowska, E. Carbon and nitrogen fractions in drained organic soils. Environ. Prot. Nat. Resour. 2013, 4, 1–5. [Google Scholar] [CrossRef]
- Becher, M. Organic Matter Transformation Degree in the Soils of the Upper Liwiec River. Dissertation 125. Ph.D. Thesis, University of Natural Science and Humanities in Siedlce, Siedlce, Poland, 2013. [Google Scholar]
- Stevenson, F.J. Geochemistry of Soil Humic Substances. In Humic Substances in Soil, Sediment and Water; John Wiley and Sons: New York, NY, USA, 1985; pp. 13–53. [Google Scholar]
- Weber, J.; Chen, Y.; Jamroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.M.; Cheng, H.H.; Koskinen, W.C.; Molina, J.A.E. Characterization of potentially bioreactive soil organic carbon and nitrogen by acid hydrolysis. Nutr. Cycl. Agroecosystems 1997, 49, 267–271. [Google Scholar] [CrossRef]
- Paul, E.A.; Morris, S.J.; Conant, R.T.; Plante, A.F. Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools? Soil Sci. Soc. Am. J. 2006, 70, 1023–1035. [Google Scholar] [CrossRef] [Green Version]
- Silveira, L.; Comerford, N.B.; Reddy, K.R.; Cooper, W.T.; El-Rifai, H. Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 2008, 144, 405–414. [Google Scholar] [CrossRef]
- Belay-Tedla, A.; Zhou, X.; Su, B.; Wan, S.; Luo, Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem. 2009, 41, 110–116. [Google Scholar] [CrossRef]
- Strosser, E. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 2010, 27, 49–60. [Google Scholar] [CrossRef]
- Knox, N.M.; Grunwald, S.; McDowell, M.L.; Bruland, G.L.; Myers, D.B.; Harris, W.G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma 2015, 239, 229–239. [Google Scholar] [CrossRef]
- Ramnarine, R.; Voroney, R.P.; Dunfield, K.E.; Wagner-Riddle, C. Characterization of the heavy, hydrolysable and non-hydrolysable fractions of soil organic carbon in conventional and no-tillage soils. Soil Tillage Res. 2018, 181, 144–157. [Google Scholar] [CrossRef]
- Rodriguez, A.F.; Gerber, S.; Inglett, P.W.; Tran, N.T.; Long, J.R.; Daroub, S.H. Soil carbon characterization in a subtropical drained peatland. Geoderma 2021, 382, 114758. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis. Part 3, Chemical Method; SSSA: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar] [CrossRef]
- Schnitzer, M.; Hindle, D.A. Effects of different methods of acid hydrolysis on the nitrogen distribution in two soils. Plant Soil 1981, 60, 237–243. [Google Scholar] [CrossRef]
- Greenfield, L.G. The origin and nature of organic nitrogen in soil as assessed by acidic and alkaline hydrolysis. Eur. J. Soil Sci. 2001, 52, 575–583. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile and Recalcitrant Pools of Carbon and Nitrogen in Organic Matter Decomposing at Different Depths in Soil: An Acid Hydrolysis Approach. Geoderma 2002, 107, 109–141. [Google Scholar] [CrossRef]
- Shirato, Y.; Yokozawa, M. Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biol. Biochem. 2006, 38, 812–816. [Google Scholar] [CrossRef]
- Liu, X.; Huang, X.; Qin, W.; Li, X.; Ma, Z.; Shi, H.; Li, L.; Li, C. Effects of establishing cultivated grassland on soil organic carbon fractions in a degraded alpine meadow on the Tibetan Plateau. PeerJ 2022, 10, e14012. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun. Soil Sci. Plant Anal. 2000, 31, 81–100. [Google Scholar] [CrossRef]
- Becher, M.; Żukowski, E. Nitrogen Fractions in Dehydrated Peat Soils. World Sci. News 2019, 130, 149–162. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Świtoniak, M.; Kabała, C.; Charzyński, P. Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Sci. Ann. 2016, 67, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Von Post, L. Sveriges Geologiska Undersokings torvinventering och nagra av dess hittilis vunna resultata. Svensca Mosskulturforen. Tidskr. 1922, 1, 1–27. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. [Google Scholar]
- Chambers, F.M.; Beilman, D.W.; Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 2011, 7, 1–10. [Google Scholar]
- Kalembasa, S. Quick method of determination of organic carbon in soil. Pol. J. Soil Sci. 1991, 24, 17–22. [Google Scholar]
- Kalembasa, S. Use of 15N and 13N Isotopes in Soil Science and Agricultural Chemistry; WNT Press: Warsaw, Poland, 1995. [Google Scholar]
- Glina, B.; Piernik, A.; Mocek-Płóciniak, A.; Maier, A.; Glatzel, S. Drivers controlling spatial and temporal variation of microbial properties and dissolved organic forms (DOC and DON) in fen soils with persistently low water tables. Glob. Ecol. Conserv. 2021, 27, e01605. [Google Scholar] [CrossRef]
- Lucas, R.E. Organic soils (Histosols). Formation, distribution, physical and chemical properties and management for crop production. Farm Sci. 1982, 435, 3–77. [Google Scholar]
- Straková, P.; Penttilä, T.; Laine, J.; Laiho, R. Disentangling direct and indirect effects of water level drawdown on above- and belowground plant litter decomposition: Consequences for accumulation of organic matter in boreal peatlands. Glob. Chang. Biol. 2012, 18, 322–335. [Google Scholar] [CrossRef]
- Tahvanainen, T. Abrupt ombrotrophication of a boreal aapa mire triggered by hydrological disturbance in the catchment. J. Ecol. 2011, 99, 404–415. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Syed, K.H. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob. Chang. Biol. 2011, 17, 2271–2287. [Google Scholar] [CrossRef]
- Chimner, R.A.; Pypker, T.G.; Hribljan, J.A.; Moore, P.A.; Waddington, J.M. Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling. Ecosystems 2016, 20, 1042–1057. [Google Scholar] [CrossRef]
- Glina, B.; Bogacz, A.; Mendyk, Ł.; Boiko, O.; Nowak, M. Effect of restoration of a degraded shallow mountain fen after five years. Mires Peat 2018, 21, 1–15. [Google Scholar]
- Becher, M.; Pakuła, K.; Jaremko, D. Phosphorus Accumulation in the Dehydrated Peat Soils of the Liwiec River Valley. J. Ecol. Eng. 2020, 21, 213–220. [Google Scholar] [CrossRef]
- Yin, T.; Feng, M.; Qiu, C.; Peng, S. Biological Nitrogen Fixation and Nitrogen Accumulation in Peatlands. Front. Earth Sci. 2022, 10, 670867. [Google Scholar] [CrossRef]
- Glina, B.; Bogacz, A.; Wozniczka, P. Nitrogen mineralization in forestry-drained peatland soils in the Stolowe Mountains National Park (Central Sudetes Mts). Soil Sci. Ann. 2016, 67, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Sokołowska, Z.; Szajdak, L.; Matyka-Sarzynska, D. Impact of the degree of secondary transformation on acid-base properties of organic compounds in mucks. Geoderma 2005, 127, 80–90. [Google Scholar] [CrossRef]
- Paul, J.P.; Williams, B.L. Contribution of α-amino N to extractable organic nitrogen (DON) in three soil types from the Scottish uplands. Soil Biol. Biochem. 2005, 37, 801–803. [Google Scholar] [CrossRef]
- Jones, D.L.; Willett, V.B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 2006, 38, 991–999. [Google Scholar] [CrossRef]
- Sowden, F.J.; Morita, H.; Levesque, M. Organic nitrogen distribution in selected peats and peat fractions. Can. J. Soil Sci. 1978, 58, 237–249. [Google Scholar] [CrossRef]
- Plante, A.F.; Conant, R.T.; Paul, E.A.; Paustian, K.; Six, J. Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. Eur. J. Soil Sci. 2006, 57, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Zang, X.; van Heemst, J.D.H.; Dria, K.J.; Hatcher, P.G. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org. Geochem. 2000, 31, 679–695. [Google Scholar] [CrossRef]
(Operational) Nitrogen Form | Determination Method |
---|---|
N-NH4—ammonium nitrogen | Distillation from 0.5M K2SO4 extract, after MgO alkalinizationn |
N-NOx—nitrate nitrogen (III and V) | Distillation from 0.5 M K2SO4 extract after N-NH4 distillation and reduction with a Devard mixture |
Nmin—nitrogen in mineral compounds | Nmin = N-NH4 + N-NOx |
Norg—nitrogen in organic compounds | Norg = TN − Nmin |
N-K2SO4 | Determined in 0.5 M K2SO4 extract, after solution mineralization |
N-DON—dissolved organic nitrogen | N-DON = N-K2SO4 – Nmin |
N-RH—readily hydrolyzable organic nitrogen | Determined in 0.25 M H2SO4 hydrolysate, after solution mineralization |
N-NRH—non-readily hydrolyzable organic nitrogen | Determined in 3 M H2SO4 hydrolysate, after solution mineralization (in H2SO4) |
N-H—hydrolyzable organic nitrogen | N-H = N-RH + N-NRH |
N-NH—non-hydrolyzable organic nitrogen | Nitrogen determined after mineralization of post-extraction remains in concentrated sulphuric acid (VI) |
Parameter | Value |
---|---|
Expected value (%) | 10.36 |
Obtained value, n = 6 (%) Mean (range) SD | 10.32 (10.28–10.40) 0.05 |
Parameter | Value |
---|---|
Recovered (%) = N-K2SO4 + N-RH + N-NRH + N-NH)/TN × 100 Mean (range) SD | 98.01 (95.5–99.7) 1.25 |
Parameters | Ash Content (%) | Bulk Density (g cm−3) | Total Porosity (m3 m−3) | pHKCl |
---|---|---|---|---|
Mean | 22.51 | 0.273 | 0.840 | - |
SD | 8.80 | 0.082 | 0.043 | - |
CV (%) | 39.13 | 30.19 | 5.17 | - |
Murshic layers (n = 16) | ||||
Mean | 28.52 (a) | 0.341 (a) | 0.807 (a) | - |
Min | 18.40 | 0.261 | 0.734 | 5.22 |
Max | 43.50 | 0.418 | 0.849 | 6.36 |
Histic layers (n = 15) | ||||
Mean | 16.09 (b) | 0.20 (b) | 0.88 (b) | - |
Min | 10.20 | 0.16 | 0.82 | - |
Max | 24.00 | 0.27 | 0.90 | - |
Histic layers of Hemi-murshic soils (n = 9) | ||||
Mean | 14.04 | 0.19 | 0.88 | - |
Min | 10.20 | 0.16 | 0.85 | 5.51 |
Max | 24.00 | 0.24 | 0.90 | 6.03 |
Histic layers of Sapri-murshic soils (n = 6) | ||||
Mean | 20.20 | 0.23 | 0.86 | - |
Min | 17.10 | 0.20 | 0.82 | 5.62 |
Max | 23.90 | 0.27 | 0.88 | 6.08 |
Parameters | TC (g kg−1) | TN (g kg−1) | TC/TN | C-HS (% TC) | N-HS (% Norg) |
---|---|---|---|---|---|
Mean | 429.49 | 30.89 | 13.98 | 35.33 | 38.40 |
SD | 65.82 | 3.65 | 2.08 | 10.95 | 11.98 |
CV (%) | 15.32 | 11.81 | 14.89 | 31.00 | 31.21 |
Murshic layers (n = 16) | |||||
Mean | 379.5 (a) | 30.9 (a) | 12.4 (a) | 43.7 (a) | 46.3 (a) |
Min | 291.5 | 22.3 | 10.7 | 36.3 | 29.1 |
Max | 460.3 | 35.6 | 15.8 | 50.2 | 58.2 |
Histic layers (n = 16) | |||||
Mean | 482.9 (b) | 30.8 (a) | 15.7 (b) | 26.4 (b) | 30.0 (b) |
Min | 419.0 | 24.5 | 14.0 | 14.7 | 17.0 |
Max | 532.0 | 37.7 | 18.4 | 38.8 | 44.8 |
Histic layers of Hemi-murshic soils (n = 9) | |||||
Mean | 503.00 | 32.75 | 15.40 | 21.44 | 26.60 |
Min | 466.32 | 30.85 | 13.99 | 14.70 | 17.00 |
Max | 531.65 | 37.71 | 16.53 | 27.60 | 44.80 |
Histic layers of Sapri-murshic soils (n = 6) | |||||
Mean | 442.60 | 27.18 | 16.40 | 36.36 | 36.84 |
Min | 419.09 | 24.48 | 14.23 | 32.30 | 32.50 |
Max | 462.30 | 29.55 | 18.35 | 38.80 | 43.20 |
Parameter | Ash Content | Bulk Density | Total Porosity | pHKCl | TC | TN | TC/TN | C-HS | N-HS |
---|---|---|---|---|---|---|---|---|---|
Ash content | - | ||||||||
Bulk density | 0.79 | - | |||||||
Total porosity | −0.66 | −0.96 | - | ||||||
pHKCl | 0.31 | 0.03 | 0.14 | - | |||||
TC | −0.96 | −0.87 | 0.77 | −0.24 | - | ||||
TN | −0.47 | −0,23 | 0,14 | −0.37 | 0.44 | - | |||
TC/TN | −0.63 | −0.71 | 0.67 | 0.02 | 0.69 | −0.34 | - | ||
C-HS | 0.77 | 0.88 | −0.86 | 0.02 | −0.86 | −0.29 | −0.63 | - | |
N-HS | 0.57 | 0.71 | −0.70 | −0.06 | −0.67 | −0.08 | −0.60 | 0.76 | - |
Parameters | Nmin (%TN) | Norg (g kg−1) | N-DON | Hydrolyzable N | Non-Hydrolyzable N N-NH | N-RH/N-NRH | ||
---|---|---|---|---|---|---|---|---|
N-H | N-RH | N-NRH | ||||||
(% Norg) | ||||||||
Mean | 1.14 | 36.0 | 2.25 | 60.20 | 27.31 | 32.89 | 37.56 | 0.85 |
SD | 0.62 | 21.5 | 0.97 | 7.63 | 7.61 | 3.70 | 8.29 | 0.28 |
CV (%) | 54.55 | 59.79 | 43.13 | 12.67 | 27.87 | 11.24 | 22.06 | 32.60 |
Murshic layers (n = 16) | ||||||||
Mean | 1.25 (a) | 39.7 (a) | 2.97 (a) | 66.27 (a) | 33.50 (a) | 32.77 (a) | 30.76 (a) | 1.04 (a) |
Min | 0.64 | 14.4 | 1.91 | 60.00 | 23.00 | 26.20 | 22.70 | 0.62 |
Max | 3.09 | 101.0 | 3.80 | 73.80 | 39.80 | 40.80 | 36.30 | 1.32 |
Histic layers (n = 15) | ||||||||
Mean | 1.02 (a) | 30.7 (a) | 1.47 (b) | 53.73 (b) | 20.71 (b) | 33.01 (a) | 44.81 (b) | 0.64 (b) |
Min | 0.41 | 24.4 | 0.89 | 45.80 | 15.40 | 24.10 | 33.30 | 0.46 |
Max | 2.14 | 37.5 | 2.81 | 65.20 | 28.30 | 39.00 | 53.30 | 0.90 |
Histic layers of Hemi-murshic soils (n = 9) | ||||||||
Mean | 1.13 | 37.0 | 1.32 | 52.31 | 19.71 | 32.60 | 46.40 | 0.62 |
Min | 0.41 | 13.6 | 0.89 | 45.80 | 15.40 | 24.10 | 40.70 | 0.46 |
Max | 2.14 | 69.7 | 1.89 | 57.40 | 25.40 | 39.00 | 53.30 | 0.90 |
Histic layers of Sapri-murshic soils (n = 6) | ||||||||
Mean | 0.81 | 22.2 | 1.80 | 56.56 | 22.72 | 33.84 | 41.64 | 0.67 |
Min | 0.68 | 17.0 | 1.48 | 50.60 | 19.40 | 30.90 | 33.30 | 0.57 |
Max | 0.89 | 25.8 | 2.81 | 65.20 | 28.30 | 36.90 | 47.90 | 0.77 |
Parameters | Nmin | N-DON | N-H | N-RH | N-NRH | N-NH | N-RH/N-NRH |
---|---|---|---|---|---|---|---|
Ash content | 0.07 | 0.70 | 0.62 | 0.65 | −0.05 | −0.66 | 0.56 |
Bulk density | 0.06 | 0.66 | 0.85 | 0.83 | 0.04 | −0.86 | 0.69 |
Total porosity | 0.01 | −0.56 | −0.84 | −0.84 | 0.00 | 0.84 | −0.71 |
pHKCl | 0.46 | 0.34 | 0.09 | 0.03 | 0.12 | −0.12 | 0.00 |
TC | −0.01 | −0.76 | −0.75 | −0.76 | 0.02 | 0.78 | −0.65 |
TN | 0.28 | −0.39 | −0.16 | 0.03 | −0.39 | 0.20 | 0.17 |
TC/TN | −0.23 | −0.48 | −0.62 | −0.79 | 0.33 | 0.63 | −0.79 |
C-HS | 0.03 | 0.69 | 0.79 | 0.80 | −0.03 | −0.81 | 0.68 |
N-HS | −0.01 | 0.53 | 0.67 | 0.65 | 0.06 | −0.68 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becher, M.; Kalembasa, D.; Kalembasa, S.; Symanowicz, B.; Jaremko, D.; Matyszczak, A. A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils. Int. J. Environ. Res. Public Health 2023, 20, 2367. https://doi.org/10.3390/ijerph20032367
Becher M, Kalembasa D, Kalembasa S, Symanowicz B, Jaremko D, Matyszczak A. A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils. International Journal of Environmental Research and Public Health. 2023; 20(3):2367. https://doi.org/10.3390/ijerph20032367
Chicago/Turabian StyleBecher, Marcin, Dorota Kalembasa, Stanisław Kalembasa, Barbara Symanowicz, Dawid Jaremko, and Adam Matyszczak. 2023. "A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils" International Journal of Environmental Research and Public Health 20, no. 3: 2367. https://doi.org/10.3390/ijerph20032367
APA StyleBecher, M., Kalembasa, D., Kalembasa, S., Symanowicz, B., Jaremko, D., & Matyszczak, A. (2023). A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils. International Journal of Environmental Research and Public Health, 20(3), 2367. https://doi.org/10.3390/ijerph20032367