Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area Overview
2.2. Data Sources
2.3. LUCC Analysis Methods
2.4. Driving Factors Analysis Methods
3. Results Analysis
3.1. Spatial Distribution
3.2. Analysis of Land Dynamic Change
3.3. Source and Destination
3.4. Climate Change and Socio-Economic Development
3.5. Analysis of Driving Factors
4. Discussion
4.1. LUCC and Its Influencing Factors
4.2. Uncertainty in Data and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Ecol. Sinica 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.-J. Implementation of the Future Earth programme in China: Chinese scientists at the forefront. Adv. Clim. Chang. Res. 2015, 6, 81–83. [Google Scholar] [CrossRef]
- Wilson, M.F.; Henderson-Sellers, A. A global archive of land cover and soils data for use in general circulation climate models. J. Climatol. 1985, 5, 119–143. [Google Scholar] [CrossRef]
- Loveland, T.; Brown, J.; Ohlen, D.; Reed, B.; Zhu, Z.; Yang, L.; Howard, S.; Hall, F.; Collatz, G.; Meeson, B. ISLSCP II IGBP DISCover and SiB Land Cover, 1992–1993; ORNL DAAC: Oak Ridge, TN, USA, 2009. [Google Scholar]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote. Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Cacetta, P.; De Wit, A.; Di Bella, C.; Gérard, B.; Giri, C.; Gond, V. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience; International Center for Remote Sensing of Environment (ICRSE): Tucson, AZ, USA, 2009. [Google Scholar]
- Defourny, P.; Vancutsem, C.; Bicheron, P.; Brockmann, C.; Nino, F.; Schouten, L.; Leroy, M. Globcover: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of the ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006. [Google Scholar]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote. Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S. ESA WorldCover 10 m 2020 v100; The European Space Agency (ESA): Paris, France, 2021. [Google Scholar]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (2021), Brussels, Belgium, 12–16 July 2021; pp. 4704–4707. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2017. [Google Scholar]
- Liu, J.; Zhang, Z.; Zhuang, D.; Wang, Y.; Zhou, W.; Zhang, S.; Li, R.; Jiang, N.; Wu, S. A study on spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar]
- Moisa, M.B.; Dejene, I.N.; Roba, Z.R.; Gemeda, D.O. Impact of urban land use and land cover change on urban heat island and urban thermal comfort level: A case study of Addis Ababa City, Ethiopia. Environ. Monit. Assess. 2022, 194, 123456789. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Su, F.; Wang, W.; Feng, X. The Characteristics of Land Use Change during the Different Periods in Halong City. J. Geo-Inf. Sci. 2017, 19, 570–579. [Google Scholar]
- Hossein, T.K.; Raoof, M.; Ali, A.M.; Khamsa, A.N.S. Temporal land use change and its economic values under competing driving forces in a diverse land use configuration. Arab. J. Geosci. 2022, 15, 20. [Google Scholar]
- Qinghe, Z.; Shiliang, L.; Li, D.; Shikui, D.; Zhifeng, Y.; Qi, L. Determining the influencing distance of dam construction and reservoir impoundment on land use: A case study of Manwan Dam, Lancang River. Ecol. Eng. 2013, 53, 235–242. [Google Scholar]
- Yuanyuan, X.; Yongdong, W.; Yuan, Y.; Qin, S.; Loje, H.M.; Bora, J.Z.; Huka, J.G. Dynamic Changes of the Bush Encroachment in Low Altitude Area of Ethiopia. J. Resour. Ecol. 2018, 9, 281–289. [Google Scholar]
- Xiaohui, J.; Haoqi, G.; Yuxin, L. Changes and driving factors of land use types in Kuye Basin in recent 40 years. South North Water Transf. Water Sci. Technol. 2020, 18, 17–38. [Google Scholar]
- Weilin, L.; Hao, H.; Shengnan, Z.; Xiang, L.; Bin, W.; Jingrong, Z.; Qing, Y.; Lina, L. Spatial and Temporal Variability Characteristics and Driving Mechanisms of Land Use in Jiangxi Province from 1980 to 2015. Res. Soil Water Conserv. 2023, 30, 1–8. [Google Scholar]
- UNDP. Human Development Report 2021–22; UNDP (United Nations Development Programme): New York, NY, USA, 2022. [Google Scholar]
- McGinn, A.J.; Wagner, P.D.; Htike, H.; Kyu, K.K.; Fohrer, N. Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. Sci. Total Environ. 2021, 798, 148766. [Google Scholar] [CrossRef]
- Zaehringer, J.G.; Lundsgaard, H.L.; Thein, T.T.; Llopis, J.C.; Tun, N.N.; Myint, W.; Schneider, F. The cash crop boom in southern Myanmar: Tracing land use regime shifts through participatory mapping. Ecosyst. People 2020, 16, 36–49. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, X.; Wang, Z.; Fu, D.; Li, H.; Meng, D.; Zeng, X.; Zhang, J. A Field-Data-Aided Comparison of Three 10 m Land Cover Products in Southeast Asia. Remote. Sens. 2022, 14, 5053. [Google Scholar] [CrossRef]
- Helen Pawel, J.M.; Alexandros, G. Land use change, carbon stocks and tree species diversity in green spaces of a secondary city in Myanmar, Pyin Oo Lwin. PLoS ONE 2019, 14, e0225331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodell, M.; Kato, H.; Zaitchik, B. Ongoing Development of NASA’s Global Land Data Assimilation System; American Geophysical Union: Washington, DC, USA, 2008. [Google Scholar]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, D.L.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, X.; Xiang, A.; Wang, X.; Wang, B.; Xiao, S. Spatial heterogeneity and driving factors of land use change in the middle and upper reaches of Ganjiang River, southern China. Chin. J. Appl. Ecol. 2021, 32, 2545–2554. [Google Scholar]
- Li, L.; Yang, J.; Jiang, D.; Li, J.; Hou, X. GIS based study on spatial temporal changes of land use in Wuding River Basin in the 1990s. Geogr. Res. 2005, 24, 527–534+656. [Google Scholar]
- Cui, X.; Guo, Y. Analysis on the spatio-temporal dynamic evolution of land use structure of western urban agglomerations in the past 40 years. J. Arid. Land Resour. Environ. 2022, 36, 16–24. [Google Scholar]
- Wu, L.; Yang, S.; Liu, X.; Luo, Y.; Zhou, X.; Zhao, H. Response analysis of land use change to the degree of human activities in Beiluo River basin since 1976. Acta Geogr. Sin. 2014, 69, 54–63. [Google Scholar]
- Zhang, P. A Comprehensive Evaluation Study Based on Principal Component Analysis; Nanjing University of Science & Technology: Nanjing, China, 2004. [Google Scholar]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z. Correctly Using SPSS Software for Principal Components Analysis. Stat. Res. 2010, 27, 105–108. [Google Scholar]
- He, X. Research on Multivariate Linear Model and Ridge Regression; Huazhong University of Science & Technology: Wuhan, China, 2005. [Google Scholar]
- You, S.; Yan, Y. Stepwise Regression Analysis and Its Application. Stat. Decis. 2017, 14, 31–35. [Google Scholar]
- Wang, Y.-C.; Hu, B.K.H.; Myint, S.W.; Feng, C.-C.; Chow, W.T.L.; Passy, P.F. Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci. Total Environ. 2018, 643, 738–750. [Google Scholar] [CrossRef]
- Karki, S.; Thandar, A.M.; Uddin, K.; Tun, S.; Aye, W.M.; Aryal, K.; Kandel, P.; Chettri, N. Impact of land use land cover change on ecosystem services: A comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res. 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Niu, X.; Hu, Y.; Yan, H.; Zhen, L. Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Land Cover Change in Laos from 2000 to 2020. Land 2022, 11, 1188. [Google Scholar] [CrossRef]
- Niu, X.; Hu, Y.; Lei, Z.; Wang, H.; Zhang, Y.; Yan, H. Spatial and Temporal Evolution Characteristics of Land Use/Cover and Its Driving Factor in Cambodia during 2000–2020. Land 2022, 11, 1556. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Hu, Y.; Lei, Z.; Yan, H.; Ye, J.; Wang, H. Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020. Land 2022, 11, 920. [Google Scholar] [CrossRef]
- He, Z. The Change of Landscape Pattern and Its Driving Mechanism in the China-Myanmar Economic Corridor from 1995 to 2015; Yunnan University: Kunming, China, 2021. [Google Scholar]
- Zhou, J.; Li, S. Spatiotemporal Variations of Land Use/Cover in Important Node Area along the China-Myanmar Oil and Gas Pipeline during 2012–2015. Bull. Surv. Mapp. 2018, 3, 113–116. [Google Scholar]
- Zaw, N.T.; Paul, D.; McMoran, D.J.; Clive, M.; Genia, H. Patterns and Drivers of Deforestation and Forest Degradation in Myanmar. Sustainability 2021, 13, 7539. [Google Scholar]
- Ouyang, A. Legal System of Forest Protection in Myanmar. World Environ. 2010, 5, 58–59. [Google Scholar]
- Wen, L.; Wang, N. Exploration of the Forestry and the Protection Measures in Myanmar. J. Guangxi Univ. Natl. 2014, 36, 99–101. [Google Scholar]
- Huang, Q. Myanmar Government signed a framework agreement with the Food and Agriculture Organization of the United Nations. World Trop. Agric. Inf. 2019, 3, 26. [Google Scholar]
- Zeng, Y. Development Strategies for Rice Industry in Myanmar under the Perspective of Sino-Myanmar Cooperation. Chin. J. Trop. Agric. 2022, 42, 103–108. [Google Scholar]
- Pendrill, F.; Persson, U.M. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges. PLoS ONE 2017, 12, e0181202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Yan, H.; Hu, Y.; Xi, Y.; Yang, Y. Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study. Land 2022, 11, 758. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Ge, Y.; Chen, L.; Zhang, W.; Zhang, Y.; Zhao, Y. Land cover changes and their driving forces in Myanmar based on Globe-Land30. World Reg. Stud. 2021, 30, 478–489. [Google Scholar]
Code | Level 1 Classes | LC ID | Level 2 Classes |
---|---|---|---|
1 | Cropland | 10 | Rainfed cropland |
11 | Herbaceous cover | ||
12 | Tree or shrub cover (orchard) | ||
20 | Irrigated cropland | ||
2 | Forest | 51 | Open evergreen broad-leaved forest |
52 | Closed evergreen broad-leaved forest | ||
61 | Open deciduous broad-leaved forest (0.15 < fc < 0.4) | ||
62 | Closed deciduous broad-leaved forest (fc > 0.4) | ||
71 | Open evergreen needle-leaved forest (0.15 < fc < 0.4) | ||
72 | Closed evergreen needle-leaved forest (fc > 0.4) | ||
81 | Open deciduous needle-leaved forest (0.15 < fc < 0.4) | ||
82 | Closed deciduous needle-leaved forest (fc > 0.4) | ||
91 | Open mixed-leaf forest (broad-leaved and needle-leaved) | ||
92 | Closed mixed-leaf forest (broad-leaved and needle-leaved) | ||
3 | Shrubland | 120 | Shrubland |
121 | Evergreen shrubland | ||
122 | deciduous shrubland | ||
4 | Grassland | 130 | Grassland |
5 | Wetlands | 180 | Wetlands |
6 | Impervious surfaces | 190 | Impervious surfaces |
7 | Bare areas | 140 | Lichens and mosses |
150 | Sparse vegetation (fc < 0.15) | ||
152 | Sparse shrubland (fc < 0.15) | ||
153 | Sparse herbaceous (fc < 0.15) | ||
200 | Bare areas | ||
201 | Consolidated bare areas | ||
202 | Unconsolidated bare areas | ||
8 | Water body | 210 | Water body |
9 | Permanent ice and snow | 220 | Permanent ice and snow |
250 | Filled value |
Code | Level 1 Classes | LC ID | Level 2 Classes |
---|---|---|---|
1 | Cropland | 10 | Rainfed cropland |
11 | Herbaceous cover | ||
12 | Tree or shrub cover (orchard) | ||
20 | Irrigated cropland | ||
2 | Evergreen broad-leaved forest | 51 | Open evergreen broad-leaved forest |
52 | Closed evergreen broad-leaved forest | ||
3 | Deciduous broad-leaved forest | 61 | Open deciduous broad-leaved forest (0.15 < fc < 0.4) |
62 | Closed deciduous broad-leaved forest (fc > 0.4) | ||
4 | Evergreen needle-leaved forest | 71 | Open evergreen needle-leaved forest (0.15 < fc < 0.4) |
72 | Closed evergreen needle-leaved forest (fc > 0.4) | ||
5 | Shrubland | 120 | Shrubland |
121 | Evergreen shrubland | ||
122 | deciduous shrubland | ||
6 | Grassland | 130 | Grassland |
150 | Sparse vegetation (fc < 0.15) | ||
200 | Bare areas | ||
201 | Consolidated bare areas | ||
202 | Unconsolidated bare areas | ||
7 | Impervious surfaces | 190 | Impervious surfaces |
8 | Wetlands & Water body | 180 | Wetlands |
210 | Water body | ||
220 | Permanent ice and snow |
Category | Index | unit |
---|---|---|
Climate | X1 Average annual temperature | °C |
X2 Total annual precipitation | mm | |
Social development | X3 Total population | 104 |
X4 Rural population | 104 | |
X5 Urban population | 104 | |
X6 Urbanization rate | % | |
Economic development | X7 Gross Domestic Product (GDP) | USD billion (current USD) |
X8 Agricultural value added | USD billion (current USD) | |
X9 Industrial value added | USD billion (current USD) | |
X10 Natural rubber production | 104 t | |
X11 Wood charcoal production | 104 t | |
X12 Wood production | 104 m3 | |
X13 Vegetable production | 104 t | |
X14 Oil crop production | 104 t | |
X15 Food production | 104 t | |
X16 Fruit production | 104 t |
Variables | Description | Component | ||
---|---|---|---|---|
F1-Socio-Economic | F2-Climate | F3-Agriculture | ||
X1 | Average annual temperature | 0.637 | −0.356 | −0.425 |
X2 | Total annual precipitation | −0.203 | 0.881 | 0.362 |
X3 | Total population | 0.979 | −0.178 | 0.097 |
X4 | Rural population | 0.986 | −0.144 | 0.040 |
X5 | Urban population | 0.968 | −0.204 | 0.142 |
X6 | Urbanization rate | 0.964 | −0.206 | 0.157 |
X7 | Gross Domestic Product (GDP) | 0.945 | −0.108 | 0.307 |
X8 | Agricultural value added | 0.884 | 0.467 | 0.007 |
X9 | Industrial value added | 0.969 | 0.104 | 0.223 |
X10 | Natural rubber production | 0.949 | −0.171 | 0.263 |
X11 | Wood charcoal production | 0.966 | 0.155 | 0.121 |
X12 | Wood production | 0.839 | −0.066 | −0.496 |
X13 | Vegetable production | 0.956 | 0.132 | −0.130 |
X14 | Oil crop production | 0.858 | 0.466 | −0.181 |
X15 | Food production | 0.664 | 0.489 | −0.563 |
X16 | Fruit production | 0.989 | −0.077 | 0.111 |
Variance (%) | 56.29% | 27.14% | 13.46% | |
Eigenvalues | 9.00 | 4.34 | 2.15 |
Cropland | R2 = 0.99, p < 0.01 | |
Evergreen broad-leaved forest | R2 = 0.90, p < 0.05 | |
Deciduous broad-leaved forest | R2 = 0.84, p < 0.05 | |
Shrubland | R2 = 0.82, p < 0.05 | |
Grassland | R2 = 0.97, p < 0.01 | |
Impervious surfaces | R2 = 0.79, p < 0.05 |
Cropland | R2 = 0.99, p < 0.01 | |
Evergreen broad-leaved forest | R2 = 0.91, p < 0.05 | |
Deciduous broad-leaved forest | R2 = 0.98, p < 0.001 | |
Shrubland | R2 = 0.99, p < 0.001 | |
Grassland | R2 = 0.99, p < 0.05 | |
Impervious surfaces | R2 = 0.99, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hu, Y.; Niu, X.; Yan, H.; Zhen, L. Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020. Int. J. Environ. Res. Public Health 2023, 20, 2409. https://doi.org/10.3390/ijerph20032409
Wang Y, Hu Y, Niu X, Yan H, Zhen L. Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020. International Journal of Environmental Research and Public Health. 2023; 20(3):2409. https://doi.org/10.3390/ijerph20032409
Chicago/Turabian StyleWang, Yiming, Yunfeng Hu, Xiaoyu Niu, Huimin Yan, and Lin Zhen. 2023. "Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020" International Journal of Environmental Research and Public Health 20, no. 3: 2409. https://doi.org/10.3390/ijerph20032409
APA StyleWang, Y., Hu, Y., Niu, X., Yan, H., & Zhen, L. (2023). Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020. International Journal of Environmental Research and Public Health, 20(3), 2409. https://doi.org/10.3390/ijerph20032409