Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Frailty Definition
2.2. Biomarkers
2.3. Covariates
2.4. Statistical Analyses
2.5. Ethics Approval
3. Results
4. Discussion
4.1. Liver Function
4.2. Renal Function
4.3. Endocrine System
4.4. Chronic Inflammation
4.5. Metabolic Process
4.6. Cardiovascular System
4.7. Nutritional Markers
4.8. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaap, L.A.; Pluijm, S.M.F.; Smit, J.H.; Van Schoor, N.M.; Visser, M.; Gooren, L.J.G.; Lips, P. The association of sex hormone levels with poor mobility, low muscle strength and incidence of falls among older men and women. Clin. Endocrinol. 2005, 63, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, K.; Hogan, D.B.; MacKnight, C. Conceptualisation and Measurement of Frailty in Elderly People. Drugs Aging 2000, 17, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Majid, Z.; Welch, C.; Davies, J.; Jackson, T. Global frailty: The role of ethnicity, migration and socioeconomic factors. Maturitas 2020, 139, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Maxwell, C.A.; Yu, F. Biological Processes and Biomarkers Related to Frailty in Older Adults: A State-of-the-Science Literature Review. Biol. Res. Nurs. 2019, 21, 80–106. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Lyall, D.M.; Gray, S.R.; Esteban-Cornejo, I.; Quinn, T.J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Associations between physical frailty and dementia incidence: A prospective study from UK Biobank. Lancet Healthy Longev. 2020, 1, e58–e68. [Google Scholar] [CrossRef]
- Calvani, R.; Picca, A.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Coelho-Junior, H.J.; Cesari, M.; Bossola, M.; et al. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: Results from the BIOSPHERE study. GeroScience 2021, 43, 727–740. [Google Scholar] [CrossRef]
- Baylis, D.; Bartlett, D.B.; Syddall, H.E.; Ntani, G.; Gale, C.R.; Cooper, C.; Lord, J.M.; Sayer, A.A. Immune-endocrine biomarkers as predictors of frailty and mortality: A 10-year longitudinal study in community-dwelling older people. Age 2013, 35, 963–971. [Google Scholar] [CrossRef]
- Yanagita, I.; Fujihara, Y.; Eda, T.; Tajima, M.; Yonemura, K.; Kawajiri, T.; Yamaguchi, N.; Asakawa, H.; Nei, Y.; Kayashima, Y.; et al. Low glycated hemoglobin level is associated with severity of frailty in Japanese elderly diabetes patients. J. Diabetes Investig. 2018, 9, 419–425. [Google Scholar] [CrossRef]
- Barzilay, J.I.; Blaum, C.; Moore, T.; Xue, Q.L.; Hirsch, C.H.; Walston, J.D.; Fried, L.P. Insulin resistance and inflammation as precursors of frailty: The Cardiovascular Health Study. Arch. Intern. Med. 2007, 167, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boxer, R.S.; Dauser, D.A.; Walsh, S.J.; Hager, W.D.; Kenny, A.M. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J. Am. Geriatr. Soc. 2008, 56, 454–461. [Google Scholar] [CrossRef] [PubMed]
- McKechnie, D.G.J.; Papacosta, A.O.; Lennon, L.T.; Ramsay, S.E.; Whincup, P.H.; Wannamethee, S.G. Associations between inflammation, cardiovascular biomarkers and incident frailty: The British Regional Heart Study. Age Ageing 2021, 50, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, M.; Chen, D.; Jiang, X.; Xiong, Z. Inflammatory biomarkers in older adults with frailty: A systematic review and meta-analysis of cross-sectional studies. Aging Clin. Exp. Res. 2022, 34, 971–987. [Google Scholar] [CrossRef]
- Picca, A.; Coelho-Junior, H.J.; Calvani, R.; Marzetti, E.; Vetrano, D.L. Biomarkers shared by frailty and sarcopenia in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101530. [Google Scholar] [CrossRef]
- Ruangsuriya, J.; Siviroj, P.; Ayood, P.; Ongprasert, K.; Kaewtunjai, N.; Srichairatanakool, S.; Tuntiwechapikul, W.; Chittrakul, J. Biomarker: Trolox equivalent antioxidant capacity and telomere length of Thai elderly people with frailty. J. Health Sci. 2019, 9, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, O.; Walker, R.L.; Crane, P.K.; Gray, S.L.; Larson, E.B. Glucose Levels and Risk of Frailty. J. Gerontol. Ser. A 2016, 71, 1223–1229. [Google Scholar] [CrossRef] [Green Version]
- Collins, R. What makes UK Biobank special? Lancet 2012, 379, 1173–1174. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Ho, F.K.; Celis-Morales, C. The joint association of sarcopenia and frailty with incidence and mortality health outcomes: A prospective study. Clin. Nutr. 2021, 40, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Peakman, T.C.; UK Biobank. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 2008, 37, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Biomarkers Profile of People With Sarcopenia: A Cross-sectional Analysis From UK Biobank. J. Am. Med. Dir. Assoc. 2020, 21, 2017.e1–2017.e9. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Welsh, C.E.; Celis-Morales, C.A.; Mackay, D.; Lewsey, J.; Gray, S.R.; Lyall, D.M.; Cleland, J.G.; Gill, J.M.R.; Jhund, P.S.; et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat. Med. 2019, 25, 1753–1760. [Google Scholar] [CrossRef]
- Pillatt, A.P.; Silva, B.D.; Franz, L.B.B.; Berlezi, E.M.; Schneider, R.H. Muscle, endocrine, and immunological markers of frailty in older people. Exp. Gerontol. 2021, 151, 111405. [Google Scholar] [CrossRef] [PubMed]
- Mohr, B.A.; Bhasin, S.; Kupelian, V.; Araujo, A.B.; O’Donnell, A.B.; McKinlay, J.B. Testosterone, sex hormone-binding globulin, and frailty in older men. J. Am. Geriatr. Soc. 2007, 55, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, L.S.; Katz, R.; Rifkin, D.E.; Siscovick, D.; Newman, A.B.; Fried, L.F.; Sarnak, M.J.; Odden, M.C.; Shlipak, M.G. Kidney function and prevalent and incident frailty. Clin. J. Am. Soc. Nephrol. 2013, 8, 2091–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, M.J.; Matthews, D.E.; Tracy, R.P.; Previs, M.J. Age-related differences in skeletal muscle protein synthesis: Relation to markers of immune activation. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E883–E891. [Google Scholar] [CrossRef] [Green Version]
- Motta, F.; Sica, A.; Selmi, C. Frailty in Rheumatic Diseases. Front. Immunol. 2020, 11, 576134. [Google Scholar] [CrossRef]
- Kang, S.H.; Do, J.Y.; Kim, J.C. Association Between Alkaline Phosphatase and Muscle Mass, Strength, or Physical Performance in Patients on Maintenance Hemodialysis. Front. Med. 2021, 8, 657957. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Blyth, F.M.; Creasey, H.M.; Handelsman, D.J.; Naganathan, V.; Sambrook, P.N.; Seibel, M.J.; Waite, L.M.; Cumming, R.G. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Enomoto, H.; Yoh, K.; Iwata, Y.; Sakai, Y.; Kishino, K.; Ikeda, N.; Takashima, T.; Aizawa, N.; Takata, R.; et al. Combined Albumin-Bilirubin Grade and Skeletal Muscle Mass as a Predictor in Liver Cirrhosis. J. Clin. Med. 2019, 8, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagita, I.; Fujihara, Y.; Iwaya, C.; Kitajima, Y.; Tajima, M.; Honda, M.; Teruya, Y.; Asakawa, H.; Ito, T.; Eda, T.; et al. Low serum albumin, aspartate aminotransferase, and body mass are risk factors for frailty in elderly people with diabetes–A cross-sectional study. BMC Geriatr. 2020, 20, 200. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R. Cardiovascular Disease and Frailty: What Are the Mechanistic Links? Clin. Chem. 2019, 65, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.S.; Arnold, M.; Offer, A.; Hammami, I.; Mafham, M.; Armitage, J.; Perera, R.; Parish, S. A Biomarker-based Biological Age in UK Biobank: Composition and Prediction of Mortality and Hospital Admissions. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1295–1302. [Google Scholar] [CrossRef]
- Lv, Y.B.; Mao, C.; Gao, X.; Yin, Z.X.; Kraus, V.B.; Yuan, J.Q.; Zhang, J.; Luo, J.S.; Zeng, Y.; Shi, X.M. Triglycerides Paradox Among the Oldest Old: “The Lower the Better?”. J. Am. Geriatr. Soc. 2019, 67, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ballew, S.H.; Chen, Y.; Daya, N.R.; Godino, J.G.; Windham, B.G.; McAdams-DeMarco, M.; Coresh, J.; Selvin, E.; Grams, M.E. Frailty, Kidney Function, and Polypharmacy: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2017, 69, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Beasley, J.M.; LaCroix, A.Z.; Neuhouser, M.L.; Huang, Y.; Tinker, L.; Woods, N.; Michael, Y.; Curb, J.D.; Prentice, R.L. Protein intake and incident frailty in the Women’s Health Initiative observational study. J. Am. Geriatr. Soc. 2010, 58, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.; Carstairs, V. Which deprivation? A comparison of selected deprivation indexes. J. Public Health Med. 1991, 13, 318–326. [Google Scholar]
- Guo, W.; Key, T.J.; Reeves, G.K. Accelerometer compared with questionnaire measures of physical activity in relation to body size and composition: A large cross-sectional analysis of UK Biobank. BMJ Open 2019, 9, e024206. [Google Scholar] [CrossRef] [Green Version]
- Kyle, S.D.; Sexton, C.E.; Feige, B.; Luik, A.I.; Lane, J.; Saxena, R.; Anderson, S.G.; Bechtold, D.A.; Dixon, W.; Little, M.A.; et al. Sleep and cognitive performance: Cross-sectional associations in the UK Biobank. Sleep Med. 2017, 38, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jani, B.D.; McQueenie, R.; Nicholl, B.I.; Field, R.; Hanlon, P.; Gallacher, K.I.; Mair, F.S.; Lewsey, J. Association between patterns of alcohol consumption (beverage type, frequency and consumption with food) and risk of adverse health outcomes: A prospective cohort study. BMC Med. 2021, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J.; Steidley, D.E.; Aqel, B.A.; Byrne, T.J.; Mekeel, K.L.; Rakela, J.; Vargas, H.E.; Douglas, D.D. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transplant. 2010, 16, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Kameda, M.; Teruya, T.; Yanagida, M.; Kondoh, H. Reduced uremic metabolites are prominent feature of sarcopenia, distinct from antioxidative markers for frailty. Aging 2021, 13, 20915–20934. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Hu, F.; Xia, X.; Hou, L.; Zhang, G.; Peng, X.; Sun, X.; Luo, S.; Yue, J.; et al. Higher uric acid serum levels are associated with sarcopenia in west China: A cross-sectional study. BMC Geriatr. 2022, 22, 121. [Google Scholar] [CrossRef]
- Hyde, Z.; Flicker, L.; Almeida, O.P.; Hankey, G.J.; McCaul, K.A.; Chubb, S.A.; Yeap, B.B. Low free testosterone predicts frailty in older men: The health in men study. J. Clin. Endocrinol. Metab. 2010, 95, 3165–3172. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, O.; Cavalier, E.; Buckinx, F.; Reginster, J.Y. Relevance of vitamin D in the pathogenesis and therapy of frailty. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 26–29. [Google Scholar] [CrossRef]
- Landi, F.; Russo, A.; Pahor, M.; Capoluongo, E.; Liperoti, R.; Cesari, M.; Bernabei, R.; Onder, G. Serum high-density lipoprotein cholesterol levels and mortality in frail, community-living elderly. Gerontology 2008, 54, 71–78. [Google Scholar] [CrossRef]
- Bonnefoy, M.; Abidi, H.; Jauffret, M.; Garcia, I.; Surrace, J.P.; Drai, J. Hypocholesterolemia in hospitalized elderly: Relations with inflammatory and nutritional status. Rev. Med. Interne 2002, 23, 991–998. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Ray, K.; Borén, J.; Andreotti, F.; Watts, G.F.; Ginsberg, H.; Amarenco, P.; Catapano, A.; Descamps, O.S.; et al. Lipoprotein(a) as a cardiovascular risk factor: Current status. Eur. Heart J. 2010, 31, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R.; Barter, P.J.; Ehnholm, C.; Sullivan, D.R.; Mann, K.; Simes, J.; Best, J.D.; Hamwood, S.; Keech, A.C. Ability of traditional lipid ratios and apolipoprotein ratios to predict cardiovascular risk in people with type 2 diabetes. Diabetologia 2010, 53, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicek, H.; Bayil, S.; Zer, Y.; Celik, A.; Geyikli, I. Comparison of Lipoprotein(a) levels between elderly and middle-aged men with coronary artery disease. Ann. N. Y. Acad. Sci. 2007, 1100, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; Legault, V.; Fuellen, G.; Fülöp, T.; Fried, L.P.; Ferrucci, L. The risks of biomarker-based epidemiology: Associations of circulating calcium levels with age, mortality, and frailty vary substantially across populations. Exp. Gerontol. 2018, 107, 11–17. [Google Scholar] [CrossRef]
Biomarkers (Unit) | Classification | Role in Frailty/Aging |
---|---|---|
Phosphate (mmol/L) | Endocrine system | Endocrine disturbances, such as abnormal levels of phosphate, could be linked to frailty by muscle mass, bone growth, and strength losses [4,24]. |
Testosterone (nmol/L) | Endocrine system | Muscle strength. Bone mineral density. Impaired mobility [25]. |
SHBG (nmol/L) | Endocrine system | Type 2 diabetes. Weight loss, exhaustion, and physical activity [25]. |
Oestradiol (pmol/L) | Endocrine system | Declined oestradiol is associated with grip strength which is one of the indicators of frailty [1]. |
IGF-1 (mmol/L) | Endocrine system | IGF-1 is associated with a higher risk of fracture, heart failure, and mortality which may predispose to frailty [26]. |
Vitamin D (nmol/L) | Endocrine system | Muscle mass and strength loss [4]. High level of Vitamin D was related to the risk of frailty progression [24]. |
CRP (mg/L) | Inflammation | Influencing the skeletal muscle protein synthesis rate, CRP is linked to low muscle mass and strength [27]. |
Rheumatoid factor (IU/mL) | Inflammation | Rheumatic disease. Chronic inflammation contributes to the development of frailty [28]. |
ALP (U/L) | Liver function | ALP could influence bone disorder, muscle mass, strength, and physical performance [29]. |
GGT (U/L) | Liver function | GGT correlated with ALT activity, which can reflect hepatic origins and is related to frailty [30]. |
ALT (U/L) | Liver function | Age-related biomarker. Nonalcoholic fatty liver disease [30]. |
AST (U/L) | Liver function | AST also correlated with ALT activity, which can reflect hepatic origins and related to frailty [26,30]. |
Direct bilirubin (μmol/L) | Liver function | Bilirubin is linked to a higher risk of liver disease, which is associated with energy metabolic disorders [31]. |
Total bilirubin (μmol/L) | Liver function | Bilirubin is linked to a higher risk of liver disease, which is associated with energy metabolic disorders [31]. |
Albumin (g/L) | Liver function | Hypoalbuminemia is the result of malnutrition which is associated with frailty [32]. |
ApoA1 (g/L) | Cardiovascular system | ApoA is a biomarker of cardiovascular function. Frailty can be accelerated by cardiovascular disease (CVD), with the cumulative sharing burden of risk factors [33]. |
ApoB (g/L) | Cardiovascular system | ApoB is a biomarker of cardiovascular function. Frailty can be accelerated by cardiovascular disease (CVD), with the cumulative sharing burden of risk factors [33]. |
Total cholesterol (mmol/L) | Cardiovascular system | Cholesterol can reflect cardiovascular function. Patients with CVD were limited to engage physical activity; thus, their functional capability declined [33]. |
LDL cholesterol (nmol/L) | Cardiovascular system | Vascular and all-cause mortality. Coronary heart disease and CVD [34]. |
HDL cholesterol (mmol/L) | Cardiovascular system | HDL, as a biomarker of cardiovascular disease, is associated with aging and all-cause mortality [34]. |
Triglycerides (mmol/L) | Cardiovascular system | Cardio-metabolic disease. Activities of daily living decline [35]. |
Lipoprotein A (nmol/L) | Cardiovascular system | Cholesterol-rich particles and CVD. Lipoprotein was defined as the indicator of cardiovascular disease, which shared pathophysiological pathways with frailty [33]. |
Cystatin C (mg/L) | Renal function | Cystatin C is a biomarker of kidney disease which has been independently linked to physiological changes that may predispose to a higher risk of frailty [26,36]. |
Urate (μmol/L) | Renal function | Biomarker of renal function. Decreased urate was significantly associated with low skeleton muscle [36]. |
Urea (mmol/L) | Renal function | Biomarker of kidney disease. It has been independently linked to physiological changes that may predispose to a higher risk of frailty [26,36]. |
Creatinine (μmol/L) | Renal function | Owing to the association between creatinine and muscle mass, it could be linked to weight loss and physical inactivity, which are part of the frailty phenotype [26]. |
HbA1c (mmol/mol) | Metabolic biomarker | Increased levels of HbA1c might negatively influence lean body mass [4]. |
Glucose (mmol/L) | Metabolic biomarker | Type 2 diabetes. Affecting weight loss, handgrip, and slow gait speed [9]. |
Calcium (mmol/L) | Nutritional biomarker | Lower extremity lean mass and muscle strength [24]. |
Total protein (g/L) | Nutritional biomarker | A parameter of nutritional status. Decreased protein is associated with weight loss and may further lead to a higher risk of frailty [37]. |
Women (137,376) | Men (65,161) | |||||
---|---|---|---|---|---|---|
No Frail | Pre-Frail | Frail | No Frail | Pre-Frail | Frail | |
Sociodemographic | ||||||
Total, n (%) | 60,389 (44.0) | 69,989 (50.9) | 6998 (5.1) | 31,078 (47.7) | 31,332 (48.1) | 2751 (4.2) |
Age (years), mean (SD) | 56.1 (8.09) | 57.0 (8.02) | 57.8 (7.74) | 56.7 (8.4) | 57.2 (8.39) | 58.5 (7.83) |
Deprivation, mean (SD) | −1.7 (2.84) | −1.2 (3.06) | −0.1 (3.47) | −1.6 (2.94) | −1.1 (3.24) | 0.5 (3.64) |
Ethnicity | ||||||
White, n (%) | 57,716 (95.6) | 65,172 (93.1) | 6002 (85.8) | 29,270 (94.2) | 28,166 (89.9) | 2263 (82.3) |
South Asian, n (%) | ||||||
Black, n (%) | ||||||
Chinese, n (%) | ||||||
Others, n (%) | 2673 (4.4) | 4817 (6.9) | 996 (14.2) | 1808 (5.8) | 3166 (10.1) | 488 (17.7) |
Anthropometric | ||||||
BMI (kg/m2), mean (SD) | 25.6 (4.22) | 27.5 (5.20) | 30.9 (6.7) | 26.7 (3.8) | 27.9 (4.42) | 29.8 (5.67) |
Fitness and lifestyle | ||||||
Total sedentary behavior (h/day), mean (SD) | 4.4 (1.84) | 4.7 (2.01) | 5.1 (2.46) | 5.1 (2.29) | 5.4 (2.49) | 6.0 (2.96) |
Sleeping time (h/day), mean (SD) | 7.2 (1.05) | 7.1 (1.25) | 7.0 (1.74) | 7.1 (1.0) | 7.1 (1.21) | 7.1 (1.78) |
Processed meat (times/week), mean (SD) | 1.5 (0.99) | 1.6 (1.02) | 1.7 (1.11) | 2.0 (1.08) | 2.1 (1.11) | 2.1 (1.22) |
Red meat (times/week), mean (SD) | 1.9 (.99) | 1.9 (1.35) | 2.0 (1.51) | 2.1 (1.39) | 2.1 (1.49) | 2.1 (1.65) |
Fruit & Vegetables (grams/day), mean (SD) | 376.0 (189.34) | 364.1 (196.78) | 356.6 (215.83) | 333.4 (206.19) | 327.5 (223.03) | 322.7 (246.94) |
Smoking status, frequency (%) | ||||||
Never | 40,008 (66.3) | 44,703 (63.9) | 4181 (59.8) | 19,080 (61.4) | 18,002 (57.5) | 1195 (43.4) |
Previous | 16,770 (27.8) | 20,187 (28.9) | 2002 (28.6) | 9659 (31.1) | 10,365 (33.1) | 1097 (39.9) |
Current | 3611 (6.0) | 5009 (7.3) | 815 (11.7) | 2339 (7.5) | 2965 (9.5) | 459 (16.7) |
Alcohol intake, frequency (%) | ||||||
Almost daily | 4312 (7.1) | 3776 (5.4) | 184 (2.6) | 1610 (5.2) | 1412 (4.5) | 76 (2.8) |
3–4 times a week | 13,097 (21.7) | 11,563 (16.5) | 564 (8.1) | 5100 (16.4) | 4098 (13.1) | 178 (6.5) |
1–2 times a week | 22,333 (37.0) | 23,859 (34.1) | 1672 (23.9) | 13,233 (42.6) | 11,995 (38.3) | 726 (26.4) |
1–3 times a month | 3829 (6.3) | 4996 (7.1) | 457 (6.5) | 2.362 (7.6) | 2645 (8.4) | 215 (7.8) |
Special occasions only | 10,720 (17.8) | 16,054 (22.9) | 2306 (33.0) | 5032 (16.2) | 5925 (18.9) | 745 (27.1) |
Never | 6098 (10.1) | 9741 (13.9) | 1815 (25.9) | 3741 (12.0) | 5257 (16.8) | 811 (29.5) |
Morbidity count, frequency (%) | ||||||
0 | 25,075 (41.5) | 21,057 (30.1) | 883 (12.6) | 13,017 (41.9) | 9579 (30.6) | 283 (10.3) |
≥1 | 35,314 (58.5) | 48,932 (69.9) | 6115 (87.4) | 18,061 (58.1) | 21,753 (69.4) | 2468 (89.7) |
Medication, n (%) | ||||||
No | 54,902 (90.9) | 59,664 (85.3) | 5039 (72.0) | 25,451 (81.9) | 23,033 (73.5) | 1482 (53.9) |
Yes | 5487 (9.1) | 10,325 (14.8) | 1959 (28.0) | 5627 (18.1) | 8299 (26.5) | 1269 (46.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.; Lynskey, N.; Iain-Ross, J.; Pell, J.P.; Sattar, N.; Ho, F.K.; Welsh, P.; Celis-Morales, C.; Petermann-Rocha, F. Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank. Int. J. Environ. Res. Public Health 2023, 20, 2421. https://doi.org/10.3390/ijerph20032421
Chu W, Lynskey N, Iain-Ross J, Pell JP, Sattar N, Ho FK, Welsh P, Celis-Morales C, Petermann-Rocha F. Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank. International Journal of Environmental Research and Public Health. 2023; 20(3):2421. https://doi.org/10.3390/ijerph20032421
Chicago/Turabian StyleChu, Wenying, Nathan Lynskey, James Iain-Ross, Jill P. Pell, Naveed Sattar, Frederick K. Ho, Paul Welsh, Carlos Celis-Morales, and Fanny Petermann-Rocha. 2023. "Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank" International Journal of Environmental Research and Public Health 20, no. 3: 2421. https://doi.org/10.3390/ijerph20032421
APA StyleChu, W., Lynskey, N., Iain-Ross, J., Pell, J. P., Sattar, N., Ho, F. K., Welsh, P., Celis-Morales, C., & Petermann-Rocha, F. (2023). Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank. International Journal of Environmental Research and Public Health, 20(3), 2421. https://doi.org/10.3390/ijerph20032421