Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Low-Carbon Energy Vulnerability
2.2. ICT Service Industry Development and Low-Carbon Energy Vulnerability
2.3. Resource Consumption and Low-Carbon Energy Vulnerability
2.4. Technological Innovation Resource Consumption and Low-Carbon Energy Vulnerability
2.5. Summary
3. Evaluation and Analysis of Low-Carbon Energy Vulnerability Index
3.1. Low-Carbon Energy Vulnerability Assessment Design
3.1.1. Index System
3.1.2. Evaluation Method Design
3.1.3. Data Source and Description
3.2. Low-Carbon Energy Vulnerability Analysis of OECD Countries
3.2.1. Analysis of the Trend Characteristics of the Vulnerabilities of Low-Carbon Energy in OECD Countries
3.2.2. Analysis of the Dimensional Structure Characteristics of the Vulnerabilities of Low-Carbon Energy in OECD Countries
3.2.3. Analysis of the Structural Characteristics of the Vulnerabilities of Low-Carbon Energy in OECD Countries
4. Analysis of the Impact of the Development of ICT Service Industry on the Vulnerability of Low-Carbon Energy
4.1. Research Design
4.2. Variable Selection and Data Source Description
4.2.1. Variable Selection
4.2.2. Data Source Description
4.3. The Relationship between the ICT Industry Development and Energy Vulnerability
4.4. Heterogeneous Analysis of the Impact of ICT Service Industry Development on the Vulnerability of Low-Carbon Energy
5. Analysis of the Impact Mechanism
5.1. Research Design
5.2. The Moderating Effect of Technological Innovation
5.3. Moderating Effect of Resource Consumption
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
OECD | Organization for Economic Co-operation and Development |
ICT | Information Communication Technology |
COVID-19 | Coronavirus Disease 2019 |
CCUS | Carbon Capture, Utilization, and Storage |
IEA | International Energy Agency |
EU | European Union |
UN | United Nations |
US | United States |
USD | United States Dollar |
GDP | Gross Domestic Product |
GEVI | Global Energy Vulnerability Index |
EPS | Economy Prediction System |
CAFE | Corporate Average Fuel Economy |
Sivqr | Smoothed IV quantile regression |
IMF | International Monetary Fund |
IoT | Internet of Things |
R&D | Research and Development |
OLS | Orthogonal Least Square |
2SLS | Two Stage Least Square |
IV-GMM | Independent Variable Gaussian Mixed Model |
5G | 5th Generation |
References
- Zhang, Y.; Li, W.; Wu, F. Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project. Energy 2020, 206, 118–130. [Google Scholar] [CrossRef]
- Genave, A.; Blancard, S.; Garabedian, S. An assessment of energy vulnerability in Small Island Developing States. Ecol. Econ. 2020, 171, 106595. [Google Scholar] [CrossRef]
- Gatto, A.; Busato, F. Energy vulnerability around the world: The Global Energy Vulnerability Index (GEVI). J. Clean. Prod. 2019, 253, 118691. [Google Scholar] [CrossRef]
- Wang, B.; Ke, R.-Y.; Yuan, X.-C.; Wei, Y.-M. China’s regional assessment of renewable energy vulnerability to climate change. Renew. Sustain. Energy Rev. 2014, 40, 185–195. [Google Scholar] [CrossRef]
- Pilpola, S.; Lund, P.D. Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways. Energy 2020, 201, 117652. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Lou, Y.; Chen, Y. Low carbon transition in a distributed energy system regulated by localized energy markets. Energy Policy 2018, 122, 474–485. [Google Scholar] [CrossRef]
- Gnansounou, E. Assessing the energy vulnerability: Case of industrialised countries. Energy Policy 2008, 36, 3734–3744. [Google Scholar] [CrossRef]
- Liu, L.-C.; Wu, G. Assessment of energy supply vulnerability between China and USA. Nat. Hazards 2015, 75, 127–138. [Google Scholar] [CrossRef]
- GeSI. SMARTer2030: ICT Solutions for 21st Century Challenges. The Global eSustainability Initiative (GeSI). 2015. Available online: http://gesi.org/research/smarter2030-ict-solutions-for-21st-century-challenges (accessed on 20 April 2022).
- Muñiz, A.S.G.; Cuervo, M.R.V. Exploring research networks in Information and Communication Technologies for energy efficiency: An empirical analysis of the 7th Framework Programme. J. Clean. Prod. 2018, 198, 1133–1143. [Google Scholar] [CrossRef]
- Wissner, M. ICT, growth and productivity in the German energy sector—On the way to a smart grid? Util. Policy 2011, 19, 14–19. [Google Scholar] [CrossRef]
- Mourshed, M.; Robert, S.; Ranalli, A.; Messervey, T.; Reforgiato, D.; Contreau, R.; Becue, A.; Quinn, K.; Rezgui, Y.; Lennard, Z. Smart Grid Futures: Perspectives on the Integration of Energy and ICT Services. Energy Procedia 2015, 75, 1132–1137. [Google Scholar] [CrossRef]
- Gelenbe, E. Energy Packet Networks: Smart Electricity Storage to Meet Surges in Demand. In Proceedings of the SIMUTools 2012—5th International Conference on Simulation Tools and Techniques, Desenzano del Garda, Italy, 19–23 March 2012. [Google Scholar]
- Zheng, J.; Wang, X. Can mobile information communication technologies (ICTs) promote the development of renewables?—Evidence from seven countries. Energy Policy 2021, 149, 112041. [Google Scholar] [CrossRef]
- Chimbo, B. Energy Consumption, Information and Communication Technology and Economic Growth in an African Context. Int. J. Energy Econ. Policy 2020, 10, 486–493. [Google Scholar] [CrossRef]
- Dehghan, Z.; Shahnazi, R. Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy 2018, 169, 1064–1078. [Google Scholar] [CrossRef]
- Sharma, G.; Rahman, M.; Jain, M.; Chopra, R. Nexus between energy consumption, information and communications technology, and economic growth: An enquiry into emerging Asian countries. J. Public Aff. 2020, 21, e2172. [Google Scholar] [CrossRef]
- Lee, J.W.; Brahmasrene, T. ICT, CO2 Emissions and Economic Growth: Evidence from a Panel of ASEAN. Glob. Econ. Rev. 2014, 43, 17. [Google Scholar] [CrossRef]
- Khan, D. Effects of information and communication technology and real income on CO2 emissions: The experience of countries along Belt and Road. Telemat. Inform. 2019, 45, 101300. [Google Scholar] [CrossRef]
- Ishida, H. The effect of ICT development on economic growth and energy consumption in Japan. Telemat. Inform. 2015, 32, 79–88. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Hassan, A.; Maria Zafar, S.; Ullah, S. The effect of ICT on energy consumption and economic growth in South Asian economies: An empirical analysis. Telemat. Inform. 2021, 58, 101537. [Google Scholar] [CrossRef]
- Morán, A.J.; Profaizer, P.; Zapater, M.H.; Valdavida, M.A.; Bribián, I.Z. Information and Communications Technologies (ICTs) for energy efficiency in buildings: Review and analysis of results from EU pilot projects. Energy Build. 2016, 127, 128–137. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Tarroja, B.; Peer, R.A.M.; Sanders, K.T.; Grubert, E. How do non-carbon priorities affect zero-carbon electricity systems? A case study of freshwater consumption and cost for Senate Bill 100 compliance in California. Appl. Energy 2020, 265, 114824. [Google Scholar] [CrossRef]
- Opeyemi, B.M. Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy. Energy 2021, 228, 120519. [Google Scholar] [CrossRef]
- Cai, W.; Song, X.; Zhang, P.; Xin, Z.; Zhou, Y.; Wang, Y.; Wei, W. Carbon emissions and driving forces of an island economy: A case study of Chongming Island, China. J. Clean. Prod. 2020, 254, 120028. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Sun, W.; Xu, S.; Zhang, Z. Quantitative analysis of distributed and centralized development of renewable energy. Glob. Energy Interconnect. 2018, 1, 576–584. [Google Scholar] [CrossRef]
- Mohajeri, N.; Perera, A.T.D.; Coccolo, S.; Mosca, L.; Le Guen, M.; Scartezzini, J.-L. Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050. Renew. Energy 2019, 143, 810–826. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, B.; Tian, X.; Zhao, H.; Bai, Z. The greater the investment, the greater the loss?—Resource traps in Building energy efficiency retrofit (BEER) market. Resour. Conserv. Recycl. 2021, 168, 105459. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, J.; Wu, L.; Ma, C.; Zou, C.; Wei, N.; Zhang, Y.; Liu, Y.; Andre, M.; Li, D.; et al. Speed-guided intelligent transportation system helps achieve low-carbon and green traffic: Evidence from real-world measurements. J. Clean. Prod. 2020, 268, 122230. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. An empirical analysis of the non-linear effects of natural gas, nuclear energy, renewable energy and ICT-Trade in leading CO2 emitter countries: Policy towards CO2 mitigation and economic sustainability. J. Environ. Manag. 2021, 286, 112232. [Google Scholar] [CrossRef]
- Danish; Zhang, J.; Wang, B.; Latif, Z. Towards cross-regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions. Sustain. Dev. 2019, 27, 990–1000. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, T.; Feng, Q. Capital allocation efficiency, technological innovation and vehicle carbon emissions: Evidence from a panel threshold model of Chinese new energy vehicles enterprises. Sci. Total Environ. 2021, 784, 147104. [Google Scholar] [CrossRef]
- Irandoust, M. The renewable energy-growth nexus with carbon emissions and technological innovation: Evidence from the Nordic countries. Ecol. Indic. 2016, 69, 118–125. [Google Scholar] [CrossRef]
- Vural, G. Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries. Renew. Energy 2021, 171, 210–216. [Google Scholar] [CrossRef]
- Chen, W.; Lei, Y. The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression. Renew. Energy 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, A.; Hu, K.; Shah, M.I. Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development. Technol. Forecast. Soc. Chang. 2021, 164, 120521. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Yang, J.; Zhu, L. Does renewable energy technological innovation control China’s air pollution? A spatial analysis. J. Clean. Prod. 2020, 250, 119515. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities. Sci. Total Environ. 2020, 709, 136172. [Google Scholar] [CrossRef]
- Cai, Y.; Sam, C.Y.; Chang, T. Nexus between clean energy consumption, economic growth and CO2 emissions. J. Clean. Prod. 2018, 182, 1001–1011. [Google Scholar] [CrossRef]
- Khan, A.; Muhammad, F.; Chenggang, Y.; Hussain, J.; Bano, S.; Khan, M.A. The impression of technological innovations and natural resources in energy-growth-environment nexus: A new look into BRICS economies. Sci. Total Environ. 2020, 727, 138265. [Google Scholar] [CrossRef]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Hammond, G.P.; Howard, H.R.; Rana, H.S. Environmental and resource burdens associated with low carbon, more electric transition pathways to 2050: Footprint components from carbon emissions and land use to waste arisings and water consumption. Glob. Transit. 2019, 1, 28–43. [Google Scholar] [CrossRef]
- Wei, W.; Cai, W.; Guo, Y.; Bai, C.; Yang, L. Decoupling relationship between energy consumption and economic growth in China’s provinces from the perspective of resource security. Resour. Policy 2020, 68, 101693. [Google Scholar] [CrossRef]
- Luan, B.; Huang, J.; Zou, H.; Huang, C. Determining the factors driving China’s industrial energy intensity: Evidence from technological innovation sources and structural change. Sci. Total Environ. 2020, 737, 139767. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.P.; Doytch, N. The impact of ICT patents on economic growth: An international evidence. Telecommun. Policy 2021, 46, 102291. [Google Scholar] [CrossRef]
- Li, X.; Ma, D. Financial agglomeration, technological innovation, and green total factor energy efficiency. Alex. Eng. J. 2021, 60, 4085–4095. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Jangiti, S.; Vs, S.S. EMC2: Energy-efficient and multi-resource- fairness virtual machine consolidation in cloud data centres. Sustain. Comput. Inform. Syst. 2020, 27, 100414. [Google Scholar] [CrossRef]
- Gupta, E. Oil vulnerability index of oil-importing countries. Energy Policy 2008, 36, 1195–1211. [Google Scholar] [CrossRef]
- Genave, A. Energy vulnerability in the Southwest Indian Ocean islands. J. Indian Ocean. Reg. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Neofytou, H.; Nikas, A.; Doukas, H. Sustainable energy transition readiness: A multicriteria assessment index. Renew. Sustain. Energy Rev. 2020, 131, 109988. [Google Scholar] [CrossRef]
- Kaplan, D.M. SIVQR: Stata module to perform smoothed IV quantile regression. In Statistical Software Components; Boston, United States; IDEAS/RePEc: St. Louis, MI, USA, 2021. [Google Scholar]
- Guang, F.; Wen, L.; Sharp, B. Energy efficiency improvements and industry transition: An analysis of China’s electricity consumption. Energy 2021, 244, 122625. [Google Scholar] [CrossRef]
- Luan, B.; Zou, H.; Chen, S.; Huang, J. The effect of industrial structure adjustment on China’s energy intensity: Evidence from linear and nonlinear analysis. Energy 2021, 218, 119517. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Zhu, J. Industrial restructuring, energy consumption and economic growth: Evidence from China. J. Clean. Prod. 2022, 335, 130242. [Google Scholar] [CrossRef]
- Lopreite, M.; Zhu, Z. The effects of ageing population on health expenditure and economic growth in China: A Bayesian-VAR approach. Soc. Sci. Med. 2020, 265, 113513. [Google Scholar] [CrossRef]
- Tikoudis, I.; Farrow, K.; Mebiame, R.M.; Oueslati, W. Beyond average population density: Measuring sprawl with density-allocation indicators. Land Use Policy 2022, 112, 105832. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, S.; Li, Y. Removing the “Hats of Poverty”: Effects of ending the national poverty county program on fiscal expenditures. China Econ. Rev. 2021, 69, 101673. [Google Scholar] [CrossRef]
- Jiang, Y.; He, L.; Meng, J.; Nie, H. Nonlinear impact of economic policy uncertainty shocks on credit scale: Evidence from China. Phys. A Stat. Mech. Its Appl. 2019, 521, 626–634. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Lipson, M.M.; Chard, R. Temporality, vulnerability, and energy justice in household low carbon innovations. Energy Policy 2019, 128, 495–504. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Ai, B.; Li, C.; Pan, X.; Yan, Y. Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China. Technol. Forecast. Soc. Chang. 2019, 144, 428–435. [Google Scholar] [CrossRef]
Dimension | Code | Indicator | Unit | Symbol Direction |
---|---|---|---|---|
Social | SOL1 | Per capita oil consumption | Ton per capita | − |
SOL2 | Per capita nature gas consumption | Ton per capita | − | |
SOL3 | Per capita coal consumption | Ton per capita | − | |
SOL4 | Per capita electricity consumption | 10,000 kWH per captia | + | |
SOL5 | Per capita renewable energy consumption | 10,000 kW per capita | + | |
Economic | ECO1 | Oil consumption per unit GDP | Ton/USD | − |
ECO2 | Nature gas consumption per unit GDP | Ton/USD | + | |
ECO3 | Coal consumption per unit GDP | Ton/USD | − | |
ECO4 | Electricity consumption per unit GDP | Ten kilowatt hours/USD | + | |
ECO5 | Renewable energy consumption per unit GDP | Ten kilowatt hours/USD | + | |
ECO6 | Proportion of the net energy import in energy consumption | % | − | |
ECO7 | Proportion of the flammable renewable energy and waste in total energy consumption | % | + | |
Environment | EVI1 | Carbon emission produced by the energy consumption | Million metric tons | − |
EVI2 | CO2 emission per unit GDP | Metric tons/USD | − |
Methods | Characteristics | References |
---|---|---|
A modified MLBoD model | With desirable and reverse indicators construct composite indicators | Genave, Blancard, and Garabedian (2020) [2] |
Principal component analysis (PCA) | PCA was performed to further reduce the dimensions of the pillars and high correlations be displayed | Gatto and Busato (2019) [3] |
Entropy method | Can calculating comprehensive index system index composed of many indexes | Liu, Lan-Cui, and Wu, Gang (2014) [8] |
Analytic hierarchy process (AHP) | Relative priority of each criterion with respect to each of the others is derived by a pairwise comparison using a numerical scale | Neofytou, H., and Nikas, Alexandros, and Doukas, H. (2020) [57] |
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
lntindex | 3.7401 | 0.2195 | 3.2901 | 4.5743 |
lnict_exp | 1.8930 | 0.8590 | −1.5670 | 3.8326 |
lnintser | 6.0670 | 2.2292 | 0.1271 | 11.5187 |
lniv_moble | 4.6184 | 0.3367 | 2.4030 | 5.1485 |
lnre_gdp | 0.3581 | 0.5392 | −0.9203 | 2.1330 |
lnr_rd2 | 6.8878 | 2.2701 | 2.7726 | 12.6541 |
lnp_indty | 3.1950 | 0.2086 | 2.6161 | 3.6956 |
lnagdp | 10.1611 | 0.7897 | 7.7325 | 11.5431 |
lnr_older | 2.6360 | 0.4213 | 1.4270 | 3.1364 |
lnr_density | 4.4412 | 1.1383 | 1.2380 | 6.2373 |
e_gdp | 2.0136 | 4.1802 | −20.3348 | 13.8730 |
lnpcrd | 4.7390 | 0.4955 | 3.4230 | 5.5202 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
OLS | OLS | 2SLS | IV-gmm | |
lnict_exp | −0.0845 *** | −0.0477 *** | −0.0487 ** | −0.0578 *** |
(−5.65) | (−3.21) | (−2.18) | (−3.40) | |
lnagdp | −0.514 *** | −0.504 *** | −0.255 *** | |
(−10.05) | (−8.09) | (−6.74) | ||
lnp_indty | 0.217 ** | 0.200 * | 0.0715 | |
(2.09) | (1.94) | (0.71) | ||
e_gdp | −0.00180 | −0.00349 | −0.00480 * | |
(−0.62) | (−1.30) | (−1.89) | ||
lnpcrd | 0.0444 | 0.0455 | 0.0848 ** | |
(1.17) | (1.23) | (2.21) | ||
lnr_older | 0.0281 | 0.0187 | −0.303 *** | |
(0.18) | (0.12) | (−3.16) | ||
lnr_density | 0.724 *** | 0.787 *** | 0.524 *** | |
(3.80) | (4.06) | (2.87) | ||
_cons | 3.895 *** | 4.638 *** | 3.743 *** | |
(119.93) | (5.16) | (3.27) | ||
Year | Yes | Yes | Yes | Yes |
Country | Yes | Yes | Yes | Yes |
N | 408 | 408 | 384 | 384 |
R2 | 0.198 | 0.398 | 0.868 | 0.270 |
Variable | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|
lnict_exp | −0.175 *** | −0.166 *** | −0.150 * | −0.122 | −0.0630 *** |
(−6.28) | (−3.42) | (−1.81) | (−1.06) | (−2.78) | |
lnagdp | −0.0264 | −0.0378 | −0.0560 * | 0.0450 | −0.0500 |
(−0.68) | (−0.98) | (−1.83) | (0.69) | (−1.47) | |
lnp_indty | 0.324 *** | 0.304 *** | 0.238 * | 0.0844 | 0.293 ** |
(3.49) | (2.63) | (1.67) | (0.63) | (2.51) | |
e_gdp | 0.0119 *** | 0.0139 *** | 0.0149 ** | 0.0226 ** | 0.0149 ** |
(3.31) | (3.72) | (2.43) | (2.12) | (2.23) | |
lnpcrd | −0.0377 | −0.0231 | −0.0330 | −0.188 *** | −0.139 *** |
(−0.73) | (−0.41) | (−1.01) | (−3.13) | (−3.02) | |
lnr_older | 0.213 *** | 0.0415 | −0.0503 | −0.259 ** | −0.215 *** |
(4.48) | (0.43) | (−0.65) | (−2.52) | (−5.27) | |
lnr_density | 0.00247 | −0.00146 | −0.0210 | −0.0320 *** | −0.00851 |
(0.31) | (−0.12) | (−1.41) | (−3.48) | (−0.81) | |
_cons | 2.665 *** | 3.322 *** | 4.171 *** | 5.035 *** | 4.874 *** |
(5.25) | (5.04) | (5.06) | (5.41) | (9.79) | |
N | 408 | 408 | 408 | 408 | 384 |
Variable | (10) | (11) | (12) | (13) | (14) | (15) | (16) |
---|---|---|---|---|---|---|---|
OLS | OLS | OLS | 2SLS | 2SLS | IV-GMM | IV-GMM | |
lnict_exp | −0.0542 *** | −0.0447 *** | −0.0548 ** | −0.0462 ** | −0.0610 *** | −0.0457 *** | |
(−3.60) | (−3.12) | (−2.34) | (−2.42) | (−3.41) | (−2.66) | ||
lnr_rd2 | −0.0206 ** | −0.0255 *** | −0.0174 * | −0.0205 ** | −0.00739 | −0.0137 | |
(−2.22) | (−2.90) | (−1.86) | (−2.26) | (−0.69) | (−1.36) | ||
lnict_exp × lnr_rd2 | −0.0447 *** | −0.0435 *** | −0.0473 *** | ||||
(−6.60) | (−4.81) | (−6.46) | |||||
lnagdp | −0.560 *** | −0.553 *** | −0.455 *** | −0.533 *** | −0.440 *** | −0.262 *** | −0.212 *** |
(−11.26) | (−10.28) | (−8.58) | (−7.99) | (−7.28) | (−6.73) | (−5.66) | |
lnp_indty | 0.239 ** | 0.212 ** | 0.263 *** | 0.202 * | 0.222 ** | 0.0743 | 0.0791 |
(2.28) | (2.05) | (2.68) | (1.95) | (2.24) | (0.73) | (0.82) | |
e_gdp | −0.00240 | −0.00267 | 0.000647 | −0.00442 | −0.000817 | −0.00499 * | −0.00285 |
(−0.82) | (−0.91) | (0.23) | (−1.59) | (−0.30) | (−1.95) | (−1.17) | |
lnpcrd | 0.0520 | 0.0301 | −0.0591 | 0.0342 | −0.0566 * | 0.0801 ** | −0.0181 |
(1.35) | (0.78) | (−1.53) | (0.90) | (−1.65) | (2.05) | (−0.45) | |
lnr_older | 0.142 | 0.0698 | −0.238 | 0.0410 | −0.264 * | −0.314 *** | −0.460 *** |
(0.92) | (0.44) | (−1.53) | (0.26) | (−1.78) | (−3.23) | (−4.87) | |
lnr_density | 0.991 *** | 0.875 *** | 0.829 *** | 0.908 *** | 0.829 *** | 0.559 *** | 0.649 *** |
(5.71) | (4.35) | (4.35) | (4.58) | (4.57) | (2.97) | (3.64) | |
_cons | 3.437 *** | 4.489 *** | 4.783 *** | 3.487 *** | 4.194 *** | ||
(4.15) | (5.00) | (5.63) | (3.18) | (4.37) | |||
N | 408 | 408 | 408 | 384 | 384 | 384 | 384 |
R2 | 0.381 | 0.406 | 0.471 | 0.869 | 0.882 | 0.271 | 0.348 |
Variable | (17) | (18) | (19) | (20) | (21) | (22) | (23) |
---|---|---|---|---|---|---|---|
OLS | OLS | OLS | 2SLS | 2SLS | IV-GMM | IV-GMM | |
lnict_exp | −0.0465 *** | −0.0183 | −0.0497 ** | −0.0168 | −0.0641 *** | −0.0290 | |
(−3.06) | (−1.16) | (−2.11) | (−0.82) | (−3.61) | (−1.47) | ||
lnre_gdp | 0.0422 | 0.0285 | −0.0279 | −0.0358 | −0.113 | −0.143 | |
(0.42) | (0.29) | (−0.34) | (−0.46) | (−1.23) | (−1.59) | ||
lnict_exp × lnre_gdp | 0.127 *** | 0.125 *** | 0.127 *** | ||||
(4.77) | (3.44) | (4.29) | |||||
lnagdp | −0.560 *** | −0.523 *** | −0.508 *** | −0.498 *** | −0.499 *** | −0.242 *** | −0.246 *** |
(−11.26) | (−9.41) | (−9.40) | (−7.89) | (−7.82) | (−6.15) | (−6.41) | |
lnp_indty | 0.239 ** | 0.199 * | 0.197 * | 0.212 * | 0.216 * | 0.148 | 0.146 |
(2.28) | (1.76) | (1.80) | (1.91) | (1.95) | (1.25) | (1.27) | |
e_gdp | −0.00240 | −0.00197 | −0.000728 | −0.00337 | −0.00229 | −0.00402 | −0.00362 |
(−0.82) | (−0.67) | (−0.25) | (−1.26) | (−0.83) | (−1.53) | (−1.42) | |
lnpcrd | 0.0520 | 0.0436 | −0.000203 | 0.0461 | 0.00853 | 0.0809 ** | 0.0443 |
(1.35) | (1.14) | (−0.01) | (1.24) | (0.25) | (2.10) | (1.16) | |
lnr_older | 0.142 | 0.0172 | −0.165 | 0.0260 | −0.127 | −0.331 *** | −0.412 *** |
(0.92) | (0.11) | (−1.03) | (0.16) | (−0.81) | (−3.36) | (−4.22) | |
lnr_density | 0.991 *** | 0.710 *** | 0.589 *** | 0.795 *** | 0.700 *** | 0.520 *** | 0.486 *** |
(5.71) | (3.67) | (3.10) | (4.04) | (3.69) | (2.85) | (2.74) | |
_cons | 3.437 *** | 4.532 *** | 5.633 *** | 3.799 *** | 4.870 *** | ||
(4.15) | (4.85) | (6.01) | (3.33) | (4.59) | |||
N | 408 | 408 | 408 | 384 | 384 | 384 | 384 |
R2 | 0.381 | 0.399 | 0.434 | 0.868 | 0.876 | 0.273 | 0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Shi, T.; Zhou, Q. Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries. Int. J. Environ. Res. Public Health 2023, 20, 2444. https://doi.org/10.3390/ijerph20032444
Zhou L, Shi T, Zhou Q. Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries. International Journal of Environmental Research and Public Health. 2023; 20(3):2444. https://doi.org/10.3390/ijerph20032444
Chicago/Turabian StyleZhou, Lingling, Tao Shi, and Qian Zhou. 2023. "Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries" International Journal of Environmental Research and Public Health 20, no. 3: 2444. https://doi.org/10.3390/ijerph20032444
APA StyleZhou, L., Shi, T., & Zhou, Q. (2023). Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries. International Journal of Environmental Research and Public Health, 20(3), 2444. https://doi.org/10.3390/ijerph20032444