Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of Activators
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Analytical Determinations
2.3. Preparation of Almond Skin Extract (ASE) and Characterization Methodologies
2.4. Coagulation–Flocculation–Decantation Experiments
2.5. Box–Behnken Experimental Design
2.6. SR-AOP Set-Up
- (1)
- A UV-A LED system composed of 12 indium gallium nitride (InGaN) LED lamps (Roithner APG2C1-365E LEDs) with a λmax = 365 nm. Each UV-A LED had a nominal consumption of 1.4 W when the current was 350 mA, with an optical power of 135 mW and an opening angle of 120º, making any shadow zone impossible. The radiation was emitted in continuous mode for all 12 UV-A LEDs and was controlled using a power MOSFET in six different current settings, resulting in irradiance levels from 5.2 to 32.7 W m−2 measured at a 5 cm distance with a UVA Light Meter (Linshang model LS126A);
- (2)
- A Heraeus TNN 15/32 lamp (14.5 cm in length and 2.5 cm in diameter) mounted in the axial position inside the reactor, with 15 W power. The spectral output of the low-pressure mercury vapor lamp emitted mainly (85–90%) at 253.7 nm and about 7–10% at 184.9 nm;
- (3)
- An ultrasonic system (Vibracell Ultrasonic processor VCX 500, Sonics & Materials Inc., Danbury, CT, USA) with 500 W power, equipped with a titanium alloy probe (136 mm diameter, 13 mm) and a temperature control probe. For temperature control, a water jacket was installed.
2.7. Phytotoxicity Tests
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Almond Skin Powder
3.2. Coagulation–Flocculation–Decantation Experiments
3.3. SR-AOP Optimization through Response Surface Methodology
3.4. SR-AOPs Applied to a High Load WW
3.5. CFD + PMS/Co2+/Radiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlotman, D.E.; Key, D.; Bladergroen, B.J. Technological Advances in Winery Wastewater Treatment: A Comprehensive Review. South Afr. J. Enol. Vitic. 2022, 43, 58–80. [Google Scholar] [CrossRef]
- Ioannou, L.A.; Puma, G.L.; Fatta-Kassinos, D. Treatment of Winery Wastewater by Physicochemical, Biological and Advanced Processes: A Review. J. Hazard. Mater. 2015, 286, 343–368. [Google Scholar] [CrossRef]
- Jorge, N.; Santos, C.; Teixeira, A.R.; Marchão, L.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Treatment of Agro-Industrial Wastewaters by Coagulation-Flocculation-Decantation and Advanced Oxidation Processes—A Literature Review. Eng. Proc. 2022, 19, 33. [Google Scholar] [CrossRef]
- FAOSTAT Almonds, with Shell. Available online: https://www.fao.org/faostat/en/#home (accessed on 26 October 2022).
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef]
- Ahmad, A.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Exploring the Extraction Methods for Plant-Based Coagulants and Their Future Approaches. Sci. Total Environ. 2022, 818, 151668. [Google Scholar] [CrossRef]
- Madrona, G.S.; Serpelloni, G.B.; Vieira, A.M.S.; Nishi, L.; Cardoso, K.C.; Bergamasco, R. Study of the Effect of Saline Solution on the Extraction of the Moringa oleifera Seed’s Active Component for Water Treatment. Water Air Soil Pollut. 2010, 211, 409–415. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Jorge, N.; Fernandes, J.R.; Lucas, M.S.; Peres, J.A. Textile Dye Removal by Acacia dealbata Link. Pollen Adsorption Combined with UV-A/NTA/Fenton Process. Top. Catal. 2022, 65, 1045–1061. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Agro-Industrial Wastewater Treatment with Acacia dealbata Coagulation/Flocculation and Photo-Fenton-Based Processes. Recycling 2022, 7, 54. [Google Scholar] [CrossRef]
- Bello, M.M.; Raman, A.A.A.; Asghar, A. A Review on Approaches for Addressing the Limitations of Fenton Oxidation for Recalcitrant Wastewater Treatment. Process. Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D. Degradation of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate with Cobalt. Environ. Sci. Technol. 2003, 37, 4790–4797. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D. Transition Metal/UV-Based Advanced Oxidation Technologies for Water Decontamination. Appl. Catal. B Environ. 2004, 54, 155–163. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Combined Coagulation–Flocculation–Decantation/Photo-Fenton/Adsorption Process for Winery Wastewater Treatment. Eng. Proc. 2022, 19, 22. [Google Scholar] [CrossRef]
- Jorge, N.; Amor, C.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment. Eng. Proc. 2022, 19, 19. [Google Scholar] [CrossRef]
- Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M.; Ajassa, R.; Olariu, R.-I.; Arsene, C. Sources and Sinks of Hydroxyl Radicals upon Irradiation of Natural Water Samples. Environ. Sci. Technol. 2006, 40, 3775–3781. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 1999. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Šćiban, M.; Klašnja, M.; Antov, M.; Škrbić, B. Removal of Water Turbidity by Natural Coagulants Obtained from Chestnut and Acorn. Bioresour. Technol. 2009, 100, 6639–6643. [Google Scholar] [CrossRef]
- Oussalah, A.; Boukerroui, A.; Aichour, A.; Djellouli, B. Cationic and Anionic Dyes Removal by Low-Cost Hybrid Alginate/Natural Bentonite Composite Beads: Adsorption and Reusability Studies. Int. J. Biol. Macromol. 2019, 124, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Soufi, O.; Romero, C.; Hayette, L. Ortho-Diphenol Profile and Antioxidant Activity of Algerian Black Olive Cultivars: Effect of Dry Salting Process. Food Chem. 2014, 157, 504–510. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa Oleifera Lam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Jorge, N.; Teixeira, A.R.; Matos, C.C.; Lucas, M.S.; Peres, J.A. Combination of Coagulation–Flocculation–Decantation and Ozonation Processes for Winery Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 8882. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Guimarães, V.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater with a Combination of Adsorption and Thermocatalytic Processes. Processes 2022, 10, 75. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals: Terrestrial Plant Test; OECD: Paris, France, 2004; Volume 208. [Google Scholar]
- Lin, D.; Xing, B. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Varnero, M.T.; Rojas, C.; Orellana, R. Índices de Fitotoxicidad En Residuos Orgánicos Durante El Compostaje. Rev. Cienc. Suelo Nutr. Veg. 2007, 7, 28–37. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y. Elimination of Phytotoxicity during Co-Composting of Spent Pig-Manure Sawdust Litter and Pig Sludge. Bioresour. Technol. 1998, 65, 43–49. [Google Scholar] [CrossRef]
- Subramanian, A.; Harper, W.J.; Rodriguez-Saona, L.E. Rapid Prediction of Composition and Flavor Quality of Cheddar Cheese Using ATR–FTIR Spectroscopy. J. Food Sci. 2015, 74, C292–C297. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; Moya, P.; Maestre Pérez, S.E.; Grané Teruel, N.; Martín Carratalá, M.L. Classification of Four Almond Cultivars Using Oil Degradation Parameters Based on FTIR and GC Data. J. Am. Oil Chem. Soc. 2009, 86, 51–58. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Synergistic Effect of Tannic Acid and Modified Atmospheric Packaging on the Prevention of Lipid Oxidation and Quality Losses of Refrigerated Striped Catfish Slices. Food Chem. 2010, 121, 29–38. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- García, A.V.; Beltran Sanahuja, A.; Garrigos Selva, M.D.C. Characterization and Classification of Almond Cultivars by Using Spectroscopic and Thermal Techniques. J. Food Sci. 2013, 78, C138–C144. [Google Scholar] [CrossRef]
- Martins, R.B.; Jorge, N.; Lucas, M.S.; Raymundo, A.; Barros, A.I.; Peres, J.A. Food By-Product Valorization by Using Plant-Based Coagulants Combined with AOPs for Agro-Industrial Wastewater Treatment. Int. J. Environ. Res. Public Health 2022, 19, 4134. [Google Scholar] [CrossRef]
- Martin, N.; Bernard, D. Calcium Signaling and Cellular Senescence. Cell Calcium 2018, 70, 16–23. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Aires, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Phenolic and Fatty Acid Profiles, A-tocopherol and Sucrose Contents, and Antioxidant Capacities of Understudied Portuguese Almond Cultivars. J. Food Biochem. 2019, 43, e12887. [Google Scholar] [CrossRef]
- dos Santos Escobar, O.; de Azevedo, C.F.; Swarowsky, A.; Adebayo, M.A.; Netto, M.S.; Machado, F.M. Utilization of Different Parts of Moringa oleifera Lam. Seeds as Biosorbents to Remove Acid Blue 9 Synthetic Dye. J. Environ. Chem. Eng. 2021, 9, 105553. [Google Scholar] [CrossRef]
- Hussain, G.; Haydar, S. Textile Effluent Treatment Using Natural Coagulant Opuntia Stricta in Comparison with Alum. CLEAN–Soil Air Water 2021, 49, 2000342. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, Y.; Wei, W. Enhanced Brilliant Blue FCF Adsorption Using Microwave-Hydrothermal Synthesized Hydroxyapatite Nanoparticles. J. Dispers. Sci. Technol. 2020, 41, 1346–1355. [Google Scholar] [CrossRef]
- Beltrán-Heredia, J.; Sánchez-Martín, J.; Muñoz-Serrano, A.; Peres, J.A. Towards Overcoming TOC Increase in Wastewater Treated with Moringa oleifera Seed Extract. Chem. Eng. J. 2012, 188, 40–46. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Mota, J.; Lucas, M.S.; Peres, J.A. Oxidation of Winery Wastewater by Sulphate Radicals: Catalytic and Solar Photocatalytic Activations. Environ. Sci. Pollut. Res. 2017, 24, 22414–22426. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chueca, J.; Amor, C.; Silva, T.; Dionysiou, D.D.; Li Puma, G.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater by Sulphate Radicals: HSO5−/Transition Metal/UV-A LEDs. Chem. Eng. J. 2017, 310, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.C.; Fernandes, J.R.; Rodriguez-Chueca, J.; Peres, J.A.; Lucas, M.S.; Tavares, P.B. Photocatalytic Degradation of an Agro-Industrial Wastewater Model Compound Using a UV LEDs System: Kinetic Study. J. Environ. Manage. 2020, 269, 110740. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Fernandes, J.R.; Oliveira, I.; Lucas, M.S.; Peres, J.A. Degradation of Agro-Industrial Wastewater Model Compound by UV-A-Fenton Process: Batch vs. Continuous Mode. Int. J. Environ. Res. Public Health 2023, 20, 1276. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, H.; Yang, L.; Zhang, H. Copper-Spent Activated Carbon as a Heterogeneous Peroxydisulfate Catalyst for the Degradation of Acid Orange 7 in an Electrochemical Reactor. Water Sci. Technol. 2016, 73, 1802–1808. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jia, Y.; Zuo, L.; Huo, Y.; Zhang, Y. Comparison of VUV/H2O2 and VUV/PMS (Peroxymonosulfate) for the Degradation of Unsymmetrical Dimethylhydrazine in Water. J. Water Process Eng. 2022, 49, 102970. [Google Scholar] [CrossRef]
- He, B.; Yang, Y.; Liu, B.; Zhao, Z.; Shang, J.; Cheng, X. Degradation of Chlortetracycline Hydrochloride by Peroxymonosulfate Activation on Natural Manganese Sand Through Response Surface Methodology. Environ. Sci. Pollut. Res. 2022, 29, 82584–82599. [Google Scholar] [CrossRef]
- Govindan, K.; Raja, M.; Noel, M.; James, E.J. Degradation of Pentachlorophenol by Hydroxyl Radicals and Sulfate Radicals Using Electrochemical Activation of Peroxomonosulfate, Peroxodisulfate and Hydrogen Peroxide. J. Hazard. Mater. 2014, 272, 42–51. [Google Scholar] [CrossRef]
- Rastogi, A.; Al-abed, S.R.; Dionysiou, D.D. Sulfate Radical-Based Ferrous–Peroxymonosulfate Oxidative System for PCBs Degradation in Aqueous and Sediment Systems. Appl. Catal. B Environ. 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Huling, S.G.; Ko, S.; Park, S.; Kan, E. Persulfate Oxidation of MTBE-and Chloroform-Spent Granular Activated Carbon. J. Hazard. Mater. 2011, 192, 1484–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Q.; Tan, J.; Liu, W.; Lu, H.; Xing, M.; Zhang, J. Peroxymonosulfate Activation by Three-Dimensional Cobalt Hydroxide/Graphene Oxide Hydrogel for Wastewater Treatment through an Automated Process. Chem. Eng. J. 2020, 400, 125965. [Google Scholar] [CrossRef]
- Li, J.; Xu, M.; Yao, G.; Lai, B. Enhancement of the Degradation of Atrazine through CoFe2O4 Activated Peroxymonosulfate (PMS) Process: Kinetic, Degradation Intermediates, and Toxicity Evaluation. Chem. Eng. J. 2018, 348, 1012–1024. [Google Scholar] [CrossRef]
- Chen, J.; Qian, Y.; Liu, H.; Huang, T. Oxidative Degradation of Diclofenac by Thermally Activated Persulfate: Implication for ISCO. Environ. Sci. Pollut. Res. 2016, 23, 3824–3833. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Deng, Y.; An, N.; Deng, J. Heat-Activated Persulfate Oxidation of Diuron in Water. Chem. Eng. J. 2012, 203, 294–300. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Giannakisb, S.; Marjanovic, M.; Kohantorabi, M.; Gholami, M.R.; Grandjean, D.; de Alencastro, L.F.; Pulgarín, C. Solar-Assisted Bacterial Disinfection and Removal of Contaminants of Emerging Concern by Fe2+-Activated HSO5−vs. S2O82−in Drinking Water. Appl. Catal. B Environ. 2019, 248, 62–72. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F. Combination of UVC-LEDs and Ultrasound for Peroxymonosulfate Activation to Degrade Synthetic Dye: Influence of Promotional and Inhibitory Agents and Application for Real Wastewater. Environ. Sci. Pollut. Res. 2018, 25, 6003–6014. [Google Scholar] [CrossRef]
- Latif, A.; Kai, S.; Si, Y. Catalytic Degradation of Organic Pollutants in Fe (III)/Peroxymonosulfate (PMS) System: Performance, Influencing Factors, and Pathway. Environ. Sci. Pollut. Res. 2019, 26, 36410–36422. [Google Scholar] [CrossRef]
- Fang, X.; Gan, L.; Wang, L.; Gong, H.; Xu, L.; Wu, Y.; Lu, H.; Han, S.; Cui, J.; Xia, C. Enhanced Degradation of Bisphenol A by Mixed ZIF Derived CoZn Oxide Encapsulated N-Doped Carbon via Peroxymonosulfate Activation: The Importance of N Doping Amount. J. Hazard. Mater. 2021, 419, 126363. [Google Scholar] [CrossRef]
- Grehs, B.W.N.; Lopes, A.R.; Moreira, N.F.F.; Fernandes, T.; Linton, M.A.O.; Silva, A.M.T.; Manaia, C.M.; Carissimi, E.; Nunes, O.C. Removal of Microorganisms and Antibiotic Resistance Genes from Treated Urban Wastewater: A Comparison between Aluminium Sulphate and Tannin Coagulants. Water Res. 2019, 166, 115056. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Feng, J.; Tian, X. Oxone/Co2+ Oxidation as an Advanced Oxidation Process: Comparison with Traditional Fenton Oxidation for Treatment of Landfill Leachate. Water Res. 2009, 43, 4363–4369. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Narvaez, O.M.; Pacheco-Alvarez, M.O.A.; Wróbel, K.; Páramo-Vargas, J.; Bandala, E.R.; Brillas, E.; Peralta-Hernandez, J.M. Development of a Co2+/PMS Process Involving Target Contaminant Degradation and PMS Decomposition. Int. J. Environ. Sci. Technol. 2020, 17, 17–26. [Google Scholar] [CrossRef]
- Wang, Y.R.; Chu, W. Photo-Assisted Degradation of 2,4,5-Trichlorophenoxyacetic Acid by Fe(II)-Catalyzed Activation of Oxone Process: The Role of UV Irradiation, Reaction Mechanism and Mineralization. Appl. Catal. B Environ. 2012, 123–124, 151–161. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Ribeiro, A.R.L.; Ribeiro, R.S.; Rodríguez, E.; Silva, A.M.; Rodríguez-Chueca, J. UV-A Activation of Peroxymonosulfate for the Removal of Micropollutants from Secondary Treated Wastewater. Sci. Total Environ. 2021, 770, 145299. [Google Scholar] [CrossRef]
- Ao, X.; Li, Z.; Zhang, H. A Comprehensive Insight into a Rapid Degradation of Sulfamethoxazole by Peroxymonosulfate Enhanced UV-A LED/g-C3N4 Photocatalysis. J. Clean. Prod. 2022, 356, 131822. [Google Scholar] [CrossRef]
- Yin, R.; Guo, W.; Wang, H.; Du, J.; Zhou, X.; Wu, Q.; Zheng, H.; Chang, J.; Ren, N. Enhanced Peroxymonosulfate Activation for Sulfamethazine Degradation by Ultrasound Irradiation: Performances and Mechanisms. Chem. Eng. J. 2018, 335, 145–153. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, W.; Nie, H.; Zhang, Y.; Deng, N.; Zhang, J. Mechanism and Kinetic Analysis of Degradation of Atrazine by US/PMS. Int. J. Environ. Res. Public Health 2019, 16, 1781. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.S.; Peres, J.A.; Li, G. Treatment of Winery Wastewater by Ozone-Based Advanced Oxidation Processes (O3, O3/UV and O3/UV/H2O2) in a Pilot-Scale Bubble Column Reactor and Process Economics. Sep. Purif. Technol. 2010, 72, 235–241. [Google Scholar] [CrossRef]
- Marchão, L.; Fernandes, J.R.; Sampaio, A.; Peres, J.A.; Tavares, P.B.; Lucas, M.S. Microalgae and Immobilized TiO2/UV-A LEDs as a Sustainable Alternative for Winery Wastewater Treatment. Water Res. 2021, 203, 117464. [Google Scholar] [CrossRef]
- Esteves, B.M.; Rodrigues, C.S.D.; Maldonado-hódar, F.J.; Madeira, L.M. Treatment of High-Strength Olive Mill Wastewater by Combined Fenton-like Oxidation and Coagulation/Flocculation. J. Environ. Chem. Eng. 2019, 7, 103252. [Google Scholar] [CrossRef]
- Norzaee, S.; Taghavi, M.; Djahed, B.; Kord Mostafapour, F. Degradation of Penicillin G by Heat Activated Persulfate in Aqueous Solution. J. Environ. Manage. 2018, 215, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Pouran, S.R.; Raman, A.A.A.; Daud, W.M.A.W. Review on the Application of Modified Iron Oxides as Heterogeneous Catalysts in Fenton Reactions. J. Clean. Prod. 2014, 64, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yang, X.; Wang, D.; Yuan, J. Enhanced Oxidation of Erythromycin by Persulfate Activated Iron Powder–H2O2 System: Role of the Surface Fe Species and Synergistic Effect of Hydroxyl and Sulfate Radicals. Chem. Eng. J. 2017, 317, 103–111. [Google Scholar] [CrossRef]
- Jaafarzadeh, N.; Ghanbari, F.; Alvandi, M. Integration of Coagulation and Electro-Activated HSO5− to Treat Pulp and Paper Wastewater. Sustain. Environ. Res. 2017, 27, 223–229. [Google Scholar] [CrossRef]
- Amor, C.; Rodríguez-Chueca, J.; Fernandes, J.L.; Domínguez, J.R.; Lucas, M.S.; Peres, J.A. Winery Wastewater Treatment by Sulphate Radical Based-Advanced Oxidation Processes (SR-AOP): Thermally vs UV-Assisted Persulphate Activation. Process. Saf. Environ. Prot. 2019, 122, 94–101. [Google Scholar] [CrossRef]
- Jaafarzadeh, N.; Omidinasab, M.; Ghanbari, F. Combined Electrocoagulation and UV-Based Sulfate Radical Oxidation Processes for Treatment of Pulp and Paper Wastewater. Process. Saf. Environ. Prot. 2016, 102, 462–472. [Google Scholar] [CrossRef]
- Papastefanakis, N.; Mantzavinos, D.; Katsaounis, A. DSA Electrochemical Treatment of Olive Mill Wastewater on Ti/RuO2 Anode. J. Appl. Electrochem. 2010, 40, 729–737. [Google Scholar] [CrossRef]
- Amor, C.; Lucas, M.S.; Pirra, A.J.; Peres, J.A. Treatment of Concentrated Fruit Juice Wastewater by the Combination of Biological and Chemical Processes. J. Env. Sci. Health Part A 2012, 47, 1809–1817. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Fernandes, J.R.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Treatment of Crystallized-Fruit Wastewater by UV-A LED Photo-Fenton and Coagulation-Flocculation. Chemosphere 2016, 145, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Values | |
---|---|---|
WW1 | WW2 | |
pH (Sorensen scale) | 3.95 ± 0.20 | 3.61 ± 0.24 |
Conductivity (µS cm−1) | 45 ± 2.3 | 285 ± 14.3 |
Turbidity (NTU) | 69 ± 4 | 649 ± 32 |
Total suspended solids—TSS (mg L−1) | 200 ± 10 | 1405 ± 70 |
Dissolved organic carbon—DOC (mg C L−1) | 138 ± 7 | 976 ± 49 |
Total nitrogen—TN (mg N L−1) | 3.4 ± 0.2 | 10.7 ± 0.5 |
Chemical oxygen demand—COD (mg O2 L−1) | 616 ± 31 | 4925 ± 246 |
Biochemical oxygen demand—BOD5 (mg O2 L−1) | 163 ± 8 | 1438 ± 72 |
Biodegradability—BOD5/COD | 0.26 ± 0.01 | 0.29 ± 0.02 |
Total polyphenols—TPh (mg gallic acid L−1) | 1.90 ± 0.1 | 49.5 ± 2.5 |
Absorbance at 254 nm (diluted 1:25) | 0.102 ± 0.005 | 0.198 ± 0.010 |
Absorbance at 254 nm (diluted 1:10) | 0.124 ± 0.006 | 0.356 ± 0.018 |
Independent Variables | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
[PMS] (mM) | X1 | 0 | 5 | 10 |
[Co2+] (mM) | X2 | 0 | 2.5 | 5.0 |
Radiation | X3 | 0 | 16.35 | 32.70 |
Experiments | Coded Level | Response Values | |||
---|---|---|---|---|---|
[PMS] | [Co2+] | Radiation | COD Removal (%) | ||
(mM) | (mM) | Observed | Predicted | ||
SR1 | 5 | 5.0 | 32.70 | 54 | 49.1 |
SR2 | 5 | 2.5 | 16.35 | 46.4 | 46.4 |
SR3 | 0 | 5.0 | 16.35 | 16.8 | 14.4 |
SR4 | 5 | 5.0 | 0.00 | 44.3 | 42.5 |
SR5 | 10 | 5.0 | 16.35 | 58.7 | 67.8 |
SR6 | 5 | 0.0 | 32.70 | 33.7 | 35.5 |
SR7 | 0 | 0.0 | 16.35 | 23.1 | 14.0 |
SR8 | 10 | 2.5 | 32.70 | 62.9 | 58.7 |
SR9 | 10 | 2.5 | 0.00 | 52.5 | 45.2 |
SR10 | 5 | 2.5 | 16.35 | 46.4 | 46.4 |
SR11 | 5 | 2.5 | 16.35 | 46.4 | 46.4 |
SR12 | 5 | 0.0 | 0.00 | 10.1 | 14.9 |
SR13 | 10 | 0.0 | 16.35 | 24.6 | 27.0 |
SR14 | 0 | 2.5 | 32.70 | 18.3 | 25.6 |
SR15 | 0 | 2.5 | 0.00 | 7.7 | 11.9 |
Variable | X1 | X2 | X3 | X1X1 | X1X2 | X1X3 | X2X2 | X2X3 | X3X3 |
---|---|---|---|---|---|---|---|---|---|
F-value | 29.59 | 11.36 | 4.95 | 3.08 | 5.48 | 0.00 | 2.95 | 0.65 | 0.50 |
p-value | * | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, N.; Teixeira, A.R.; Fernandes, L.; Afonso, S.; Oliveira, I.; Gonçalves, B.; Lucas, M.S.; Peres, J.A.
Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of
Jorge N, Teixeira AR, Fernandes L, Afonso S, Oliveira I, Gonçalves B, Lucas MS, Peres JA.
Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of
Jorge, Nuno, Ana R. Teixeira, Lisete Fernandes, Sílvia Afonso, Ivo Oliveira, Berta Gonçalves, Marco S. Lucas, and José A. Peres.
2023. "Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of
Jorge, N., Teixeira, A. R., Fernandes, L., Afonso, S., Oliveira, I., Gonçalves, B., Lucas, M. S., & Peres, J. A.
(2023). Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of