Application of “Behind the Barriers” Model at Neighbourhood Scale to Improve Water Management under Multi-Risks Scenarios: A Case Study in Lyon, France
Abstract
:1. Introduction
2. Background
2.1. Urban Resilience and Water Management
2.2. The “Behind the Barriers” Model
- A cognitive dimension refers to knowledge, awareness, and the identification of resilience by the persons concerned. This dimension incorporates the assessment of resilience factors as well as the methods and tools that can be used for measuring them. How can the resilience of a technical urban system, a territory, or a natural environment be assessed? Does taking account of resilience change our way of observing, measuring, analysing, or representing urban systems?
- A functional dimension specific to material objects and technical urban systems forming the territory. Guaranteeing maintenance of service by the most important infrastructures corresponds to a type of resilience called “functional resilience”. Functional resilience is applied by carrying out reliability and operational dependability actions. To what extent do present approaches to risk management applied in urban environments need to be rethought and modified for taking into account resilience?
- A correlative dimension that recognises that service and utilisation form a whole whose different sections are interconnected together. None of these parts can vary without the others varying as well, and a system’s resilience can only exist when the way it operates in a degraded mode is acceptable in all risk periods. What can the effects of this dimension be on design, ways of development, operating conditions, and management of technical networks?
- A territorial/organisational dimension that raises the question of the persons involved (public and private players, populations, etc.) and the strategies that contribute to improving resilience.
3. Methods
3.1. The Water Balance
3.2. Applying the “Behind the Barriers” Model to Water Management
4. Case Study: The Water Management in the Part-Dieu Neighbourhood in Lyon
4.1. Understanding Hazard Scenario and Cognitive Resilience: The State of the Art
- A decrease in water inflow caused by a decrease in water resources.
- An increase in water outflow caused by an increase in water demand.
- A decrease in water storage caused by a decrease in water resources.
- An increase in water inflow both natural and socio-economic.
- A decrease in water outflow.
- An increase in water storage, and thus a decrease in water storage capacity.
4.2. Identification of Resilience Actions
4.2.1. Barriers Approach—Functional Resilience
- The runoff (from the roads, pedestrians, bicycles, and public transport) is reduced, the water becomes clean after being infiltrated using sustainable materials, and then it can be collected in an old underpass that has been retrofitted as underground water storage. The sustainable materials, planting soil, and structural growing medium are used for green space and permeable pavement, allowing an increase in groundwater storage (sub-indicators involved: si2, si5, si6, no1, no2, ns1, ss2) and reducing the outdoor temperature [103];
- The collected clean water can be reused for green space irrigation and/or street cleaning, especially during the drought season when the water demand increases;
- In the case of heavy storms, the water can also be controlled and conveyed to the existing combined sewer by using the pump in the storage.
4.2.2. Behind the Barriers Approach—Correlative and Territorial Resilience
5. Discussion
- Analyse cognitive resilience to understand the current state scenario and potential crisis scenarios;
- Analyse functional resilience to understand how the retrofitting project of Rue Garibaldi and its functional actions could improve the performance of the water system in case of drought and flood scenarios;
- Analyse correlative resilience to understand how correlative actions could improve the performance of the water system in case of a drought scenario;
- Analyse territorial resilience to understand how territorial actions could improve the performance of the water system in case of a COVID-19 scenario.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. (Eds.) 2007: Technical Summary. In Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 23–78. [Google Scholar]
- Lamarre, D. Climat et Risques: Changements D’Approches; Technique et Documentation: Paris, France, 2008. [Google Scholar]
- IPCC. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 6 June 2022).
- Zevenbergen, C.; Cashman, A.; Evelpidou, N.; Pasche, E.; Garvin, S.; Ashley, R. Urban Flood Management; CRC Press: Boca Raton, FL, USA, 2010; p. 340. ISBN 139780415559447. [Google Scholar]
- Serre, D.; Barroca, B.; Laganier, R. Resilience and Urban Risk Management; CRC Press Balkema, Taylor & Francis Group: London, UK, 2012. [Google Scholar]
- United Nation. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 6 July 2022).
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Change 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Salvati, N.; Guerrini, A. An Empirical Analysis of the Determinants of Water Demand in Italy. J. Clean. Prod. 2016, 130, 74–81. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.J.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Haddeland, I.; Biemans, H.; Flörke, M.; Hanasaki, N.; Stacke, T.; Tessler, Z.D.; Wada, Y. Multimodel Estimate of Global Water Resources Affected by Human Interventions and Climate Change. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Hagemann, S.; Chen, C.; Clark, D.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hannasaki, N.; Heinke, J.; Ludwig, F.; Voss, F. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of Urban Development Patterns on Municipal Water Shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- United Nation. Available online: https://www.unwater.org/equitable-access-to-water-and-sanitation-is-still-a-challenge-for-europe/ (accessed on 11 July 2022).
- Mukhtarov, F.; Papyrakis, E.; Rieger, M. COVID-19 and water. In COVID-19 and International Development; Springer: Cham, Switzerland, 2022; pp. 157–173. [Google Scholar]
- Coombes, P.; Mitchell, G. Urban water harvesting and reuse. In Australian Runoff Quality: A Guide to Water Sensitive Urban Design; Wong, T.H.F., Ed.; Engineers Australia: Sydney, Australia, 2006; pp. 6-1–6-15. [Google Scholar]
- Jiri, M.; Blanca, J.C.; Mohammed, K.; Per-Arne, M.; Joel, G.; Bernard, C. Urban Water Cycle Process and Interactions; Routledge: London, UK, 2007. [Google Scholar]
- Hardy, M.J.; Kuczera, G.; Coombes, P.J. Integrated urban water cycle management: The Urban Cycle model. Water Sci. Technol. 2005, 52, 1–9. [Google Scholar] [CrossRef]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef]
- Ma, X.C.; Xue, X.; González-Mejía, A.; Garland, J.; Cashdollar, J. Sustainable water systems for the city of tomorrow—A conceptual framework. Sustainability 2015, 7, 12071–12105. [Google Scholar] [CrossRef] [Green Version]
- Piratla, K.R.; Goverdhanam, S. Decentralized Water Systems for Sustainable and Reliable Supply. Procedia Eng. 2015, 118, 720–726. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Pucher, B.; Calheiros, C.S.C.; Hoffmann, K.A.; Aicher, A.; Pinho, P.; Stracqualursi, A.; Korolova, A.; Pobric, A.; Galvão, A.; et al. Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs. Water 2021, 13, 2165. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; Van der Leeuw, S.; Rockström, J.; et al. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 2010, 15, 11. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, J.; Yue, Y.; Zhou, H.; Yin, W. Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Nat. Hazards 2014, 70, 609–627. [Google Scholar] [CrossRef]
- Proag, V. The concept of vulnerability and resilience. Procedia Econ. Financ. 2014, 18, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Falkenmark, M.; Galaz, V. Agriculture, Water and Ecosystems, Policy Brief No. 6; Swedish Water House: Stockholm, Sweden, 2007. [Google Scholar]
- Imbulana, N.; Manoharan, S. Hydrological and water balance studies to evaluate options for climate resilience in smallholder irrigation systems in Sri Lanka. Water Policy 2020, 22, 1024–1046. [Google Scholar] [CrossRef]
- Liu, L.; Jensen, M.B.; Zhang, X. Urban Water Management in Beijing and Copenhagen: Sustainability, Climate Resilience, and the Local Water Balance. In Greening China’s Urban Governance; Springer: Singapore, 2019; pp. 89–106. [Google Scholar]
- Sokolov, A.A.; Chapman, T.G. Methods for Water Balance Computations; The Unesco Press: Paris, France, 1974; Volume 1, p. 118. [Google Scholar]
- de Ridder, N.A.; Boonstra, J. Analysis of Water Balances. In Drainage Principles and Application; Ritzema, H.P., Ed.; International Institute for Land Reclamation and Improvement/ILRI: Wageningen, The Netherlands, 1994; pp. 601–633. ISBN 90-70754-3-39. [Google Scholar]
- European Commission. Available online: https://op.europa.eu/en/publication-detail/-/publication/7d148604-faf0-11e5-b713-01aa75ed71a1/language-en (accessed on 13 July 2022).
- Barroca, B.; Serre, D. Behind the Barriers: A Resilience Conceptual Model. Surv. Perspect. Integr. Environ. Soc. 2013, 6, 1–10. [Google Scholar]
- Bahri, A. Integrated Urban Water Management; Global Water Partnership: Stockholm, Sweden, 2012. [Google Scholar]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Balsells, M.; Barroca, B.; Amdal, J.R.; Diab, Y.; Becue, V.; Serre, D. Analysing urban resilience through alternative stormwater management options: Application of the conceptual Spatial Decision Support System model at the neighbourhood scale. Water Sci. Technol. 2013, 68, 2448–2457. [Google Scholar] [CrossRef] [PubMed]
- Weichselgartner, J.; Kelman, I. Challenges and opportunities for building urban resilience. J. Facul. Architectur. 2014, 11, 20–35. [Google Scholar]
- Pearson, L.J.; Newton, P.W.; Roberts, P. Introduction to the magic and practice of resilient, sustainable cities. In Resilient Sustainable Cities; Routledge: London, UK, 2014; pp. 3–6. [Google Scholar]
- Gersonius, B.; Nasruddin, F.; Ashley, R.; Jeuken, A.; Pathirana, A.; Zevenbergen, C. Developing the evidence base for mainstreaming adaptation of stormwater systems to climate change. Water Res. 2012, 46, 6824–6835. [Google Scholar] [CrossRef] [PubMed]
- Bacchin, T.; Ashley, R.; Veerbeek, W.; Pont, M.B. A multi-scale approach in the planning and design of water sensitive environments. In Proceedings of the 8ème Conférence Internationale sur les Techniques et Stratégies Durables pour la Gestion des Eaux Urbaines par temps de pluie/8th International Conference on Planning and Technologies for Sustainable Management of Water in the City, Lyon, France, 24–26 June 2013. [Google Scholar]
- RESILIS Project. Available online: www.resilis.fr/en (accessed on 12 July 2022).
- Heinzlef, C.; Barroca, B.; Leone, M.; Serre, D. Urban resilience operationalization issues in climate risk management: A review. Int. J. Disaster Risk Reduct. 2022, 75, 102974. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Sajaloli, B.; Servain-Courant, S.; Dournel, S.; Andrieu, D. L’inscription paysagère du risque d’inondation dans les politiques urbaines des agglomérations ligériennes, proposition d’un marqueur de résilience spatiale. Rev. Géographique de l’Est 2011, 51. [Google Scholar] [CrossRef]
- Lhomme, S. Les Réseaux Techniques Comme Vecteur de Propagation des Risques en Milieu Urbain-Une Contribution Théorique et Pratique à L’analyse de la Résilience Urbaine. Ph.D. Dissertation, Université Paris-Diderot-Paris VII, Paris, France, 2012. [Google Scholar]
- Barroca, B.; Clemente, M.F.; D’Ambrosio, V. Resilienza funzionale dei sistemi portuali e strategie per il progetto climate proof. In Dialoghi tra Porto e Città Nell’epoca Della Globalizzazione; Bonciani, B., Bordato, L., Giovene di Girasole, E., Eds.; Arance Editore: Rome, Italy, 2021; pp. 233–250. [Google Scholar]
- FloodProBE. Available online: https://www.floodprobe.eu/ (accessed on 12 July 2022).
- SMARTeST Project. Available online: https://www.floodguidance.co.uk/smartest-project/ (accessed on 12 July 2022).
- De Graff, R.; Roeffen, B.; Czapiewska, K.M.; Dal Bo Zanon, B.; Lindemans, W.; Escarameia, M.; Walliman, N.S.R.; Zevenbergen, C. The effectiveness of flood proofing vulnerable hotspots to improve urban flood resilience. Comprehensive flood risk management: Research for policy and practice. In 2nd European conference on floodrisk management FLOODrisk2012; Klijn, F., Schweckendiek, T., Eds.; CRC Press, Balkema—Taylor & Francis Group: London, UK, 2012; pp. 1351–1358. [Google Scholar]
- Zevenbergen, C.; Veerbeek, W.; Gersonius, B.; Van Herk, S. Challenges in urban flood management: Travelling across spatial and temporal scales. J. Flood Risk Manag. 2008, 1, 81–88. [Google Scholar] [CrossRef]
- Howe, C.A.; Butterworth, J.; Smout, I.K.; Duffy, A.M.; Vairavamoorthy, K. Sustainable Water Management in the City of the Future: Findings from the SWITCH Project 2006–2011; UNESCO-IHE: Katwijk, The Netherlands, 2011. [Google Scholar]
- Johannessen, Å.; Wamsler, C. What does resilience mean for urban water services? Ecol. Soc. 2017, 22, 1. [Google Scholar] [CrossRef] [Green Version]
- Pizzo, B. Problematizing resilience: Implications for planning theory and practice. Cities 2015, 43, 133–140. [Google Scholar] [CrossRef]
- Sterk, M.; van de Leemput, I.A.; Peeters, E.T. How to conceptualize and operationalize resilience in socio-ecological systems? Curr. Opin. Environ. Sustain. 2017, 28, 108–113. [Google Scholar] [CrossRef]
- Gonzva, M. Résilience des Systèmes de Transport Guidé en Milieu Urbain: Approche Quantitative des Perturbations et Stratégies de Gestion. Ph.D. Dissertation, Université Paris-Est, Champs-sur-Marne, France, 2017. [Google Scholar]
- Gonzva, M.; Barroca, B. Improving urban infrastructures resilience using conceptual models: Application of the “Behind the Barriers” model to the flooding of a rail transport system. In Proceedings of the 7th Resilience Engineering Association Symposium, Liège, Belgium, 26–29 June 2017. [Google Scholar]
- Barroca, B.; Serre, D.; Youssef, D. Le concept de résilience à l’épreuve du génie urbain. VertigO—La Rev. Électron. Sci. L’Environ. 2012, 12. [Google Scholar] [CrossRef]
- Beraud, H. Initier la Résilience du Service de Gestion des Déchets aux Catastrophes Naturelles: Le cas des Territoires Urbains et de L’inondation. Ph.D. Dissertation, Université Paris-Est, Champs-sur-Marne, France, 2013. [Google Scholar]
- Sebesvari, Z.; Renaud, F.G.; Haas, S.; Tessler, Z.; Hagenlocher, M.; Kloos, J.; Szabo, S.; Tejedor, A.; Kuenzer, C. A review of vulnerability indicators for deltaic social–ecological systems. Sustain. Sci. 2016, 11, 575–590. [Google Scholar] [CrossRef]
- Balaei, B.; Wilkinson, S.; Potangaroa, R.; Hassani, N.; Alavi-Shoshtari, M. Developing a framework for measuring water supply resilience. Nat. Hazards Rev. 2018, 19, 04018013. [Google Scholar] [CrossRef]
- Balaei, B.; Wilkinson, S.; Potangaroa, R.; McFarlane, P. Investigating the technical dimension of water supply resilience to disasters. Sustain. Cities Soc. 2020, 56, 102077. [Google Scholar] [CrossRef]
- Plummer, R.; de Loë, R.; Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 2012, 26, 4327–4346. [Google Scholar] [CrossRef] [Green Version]
- Baghersad, M.; Wilkinson, S.; Khatibi, H. Comprehensive indicator bank for resilience of water supply systems. Adv. Civ. Eng. 2021, 2021, 2360759. [Google Scholar] [CrossRef]
- Li, Y.; Lence, B.J. Estimating resilience for water resources systems. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Ghosn, M.; Dueñas-Osorio, L.; Frangopol, D.M.; McAllister, T.P.; Bocchini, P.; Manuel, L.; Ellingwood, B.R.; Arangio, S.; Bontempi, F.; Shah, M.; et al. Performance Indicators for Structural Systems and Infrastructure Networks. J. Struct. Eng. 2016, 142, F4016003. [Google Scholar] [CrossRef]
- Zhan, X.; Meng, F.; Liu, S.; Fu, G. Comparing performance indicators for assessing and building resilient water distribution systems. J. Water Resour. Plan. Manag. 2020, 146, 06020012. [Google Scholar] [CrossRef]
- Merlin, F.; Choay, F. Dictionnaire de L’Urbanisme et de L’Amenagement, 1st ed.; Presses Universitaires de France: Paris, France, 2005; p. 723. [Google Scholar]
- Serre, D. Advanced methodology for risk and vulnerability assessment of interdependency of critical infrastructure in respect to urban floods. E3S Web Conf. 2016, 7, 07002. [Google Scholar] [CrossRef] [Green Version]
- Zwingelstein, G. La Maintenance basée Sur la Fiabilité: Guide Pratique D’Application de la RCM; Hermès: Paris, France, 1996. [Google Scholar]
- Yang, Z.; Barroca, B.; Bony-Dandrieux, A.; Dolidon, H. Resilience Indicator of Urban Transport Infrastructure: A Review on Current Approaches. Infrastructures 2022, 7, 33. [Google Scholar] [CrossRef]
- Yang, Z.; Barroca, B.; Weppe, A.; Bony-Dandrieux, A.; Laffréchine, K.; Daclin, N.; November, V.; Kamissoko, D.; Benaben, F.; Dolidon, H.; et al. Indicator-based resilience assessment for critical infrastructures—A review. Saf. Sci. 2023, 160, 106049. [Google Scholar] [CrossRef]
- Lhomme, S.; Serre, D.; Diab, Y.; Laganier, R. Urban technical networks resilience assessment. In Resilience and Urban Risk Management; Laganier, R., Ed.; CRC Press: London, UK, 2013; pp. 109–117. [Google Scholar]
- Serre, D.; Heinzlef, C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. Int. J. Disaster Risk Reduct. 2018, 30, 235–243. [Google Scholar] [CrossRef]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=legissum%3Al33259 (accessed on 12 July 2022).
- Brown, G.; Carlyle, M.; Salmerón, J.; Wood, K. Defending critical infrastructure. Interfaces 2006, 36, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Kalbusch, A.; Henning, E.; Brikalski, M.P.; de Luca, F.V.; Konrath, A.C. Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption. Resour. Conserv. Recycl. 2020, 163, 105098. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.; Hoolohan, C.; Lawson, R.; Browne, A.L. COVID-19 and water demand: A review of literature and research evidence. Wiley Interdiscip. Rev. Water 2022, 9, e1570. [Google Scholar] [CrossRef]
- Dzimińska, P.; Drzewiecki, S.; Ruman, M.; Kosek, K.; Mikołajewski, K.; Licznar, P. The Use of Cluster Analysis to Evaluate the Impact of COVID-19 Pandemic on Daily Water Demand Patterns. Sustainability 2021, 13, 5772. [Google Scholar] [CrossRef]
- Kazak, J.K.; Szewranski, S.; Pilawka, T.; Tokarczyk-Dorociak, K.; Janiak, K.; Swiader, M. Changes in water demand patterns in a European city due to restrictions caused by the COVID-19 pandemic. Desalination Water Treat. 2021, 222, 1–15. [Google Scholar] [CrossRef]
- Lüdtke, D.U.; Luetkemeier, R.; Schneemann, M.; Liehr, S. Increase in Daily Household Water Demand during the First Wave of the COVID-19 Pandemic in Germany. Water 2021, 13, 260. [Google Scholar] [CrossRef]
- Pesantez, J.E.; Alghamdi, F.; Sabu, S.; Mahinthakumar, G.; Berglund, E.Z. Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 77, 103520. [Google Scholar] [CrossRef]
- Cooley, H.; Gleick, P.; Abraham, S.; Cai, W. Water and the COVID-19 Pandemic: Impacts on Municipal Water Demand; Pacific Institute: Oakland, CA, USA, 2020. [Google Scholar]
- Grand Lyon, la Métropole. Available online: https://www.grandlyon.com/actions/lyon-rue-garibaldi.html (accessed on 12 July 2022).
- L’agence de L’eau Rhône Méditerranée Corse. Available online: https://www.eaurmc.fr/jcms/vmr_35758/fr/l-adaptation-au-changement-climatique?cid=vmr_35721&portal=cbl_7386 (accessed on 12 July 2022).
- GrandLyon. Available online: https://www.grandlyon.com/fileadmin/user_upload/media/pdf/espace-presse/dp/2021/20211207_dp_politique-eau.pdf (accessed on 12 July 2022).
- Préfet de la Région Auvergne-Rhône-Alpes. Available online: https://www.auvergne-rhone-alpes.developpement-durable.gouv.fr/consultation-du-public-sur-la-gestion-de-l-eau-et-a14891.html (accessed on 12 July 2022).
- Maillard, P.; David, F.; Dechesne, M.; Bailly, J.B.; Lesueur, E. Caractérisation des îlots de chaleur urbains et test d’une solution d’humidification de chaussée dans le quartier de la Part-Dieu à Lyon. Tech. Sci. Méthodes 2014, 6, 23–35. [Google Scholar] [CrossRef]
- Renard, F.; Alonso, L. La combinaison de l’image satellitaire avec les données citoyennes pour la mesure de l’îlot de chaleur urbain. Premiers résultats sur la métropole de Lyon. Ingéniérie Des Syst. D’Inf. 2017, 22, 105. [Google Scholar] [CrossRef]
- Champiat, C. Identifier les îlots de chaleur urbains pour réduire l’impact sanitaire des vagues de chaleur. Environ. Risques St. 2009, 8, 399–411. [Google Scholar]
- Toutlyon. Available online: https://www.le-tout-lyon.fr/canicule-comment-la-metropole-de-lyon-lutte-contre-les-ilots-de-chaleur-109808.html (accessed on 16 January 2023).
- Rue89Lyon. Available online: https://www.rue89lyon.fr/2022/08/17/secheresse-quelles-nouvelles-restrictions-lyon-rhone/ (accessed on 16 January 2023).
- Wilhite, D.A. Drought and Water Crises; CRC Press: Boca Raton, FL, USA, 2005; p. 406. [Google Scholar]
- Calow, R.C.; MacDonald, A.M.; Nicol, A.L.; Robins, N.S. Ground water security and drought in Africa: Linking availability, access, and demand. Groundwater 2010, 48, 246–256. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Vargas, J.; Paneque, P. Challenges for the Integration of Water Resource and Drought-Risk Management in Spain. Sustainability 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Préfet du Rhône. Available online: https://www.rhone.gouv.fr/Politiques-publiques/Securite-et-protection-de-la-population/La-securite-civile/Les-risques-majeurs/Les-risques-majeurs-dans-le-Rhone/Le-Dossier-Departemental-sur-les-Risques-Majeurs/Risque-d-inondation/Les-inondations-dans-le-Rhone (accessed on 16 January 2023).
- ActuLyon. Available online: https://actu.fr/auvergne-rhone-alpes/lyon_69123/des-orages-inattendus-eclatent-a-lyon-des-inondations-a-prevoir_53369323.html (accessed on 16 January 2023).
- Insee. Available online: https://www.insee.fr/fr/statistiques/4994488 (accessed on 16 January 2023).
- TDAG—Trees & Design Action Group. Available online: https://www.tdag.org.uk/casestudies/building-local-identities-through-tree-diversification (accessed on 12 July 2022).
- Graie. Available online: http://www.graie.org/graie/BaseDonneesTA/07_69_Lyon6_Garibaldi.pdf (accessed on 12 July 2022).
- Wang, J.; Meng, Q.; Tan, K.; Zhang, L.; Zhang, Y. Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Build. Environ. 2018, 140, 184–193. [Google Scholar] [CrossRef]
Indicators | Sub-Indicators | |
---|---|---|
Water inflow | Natural water inflow (ni) | Precipitation water (ni) |
Socio-economic water inflow resource (si) | River water (si1) | |
Groundwater (si2) | ||
Residential building (si3) | ||
Other buildings (office, school, etc.) (si4) | ||
Polluted surface rainwater (si5) | ||
Infiltrated rainwater (si6) | ||
Water outflow | Natural water outflow (no) | Water evaporation (no1) |
Water runoff (no2) | ||
Socio-economic water outflow (so) | Green space irrigation (so1) | |
Street cleaning water (so2) | ||
Residential building (so3) | ||
Other buildings (office, school, etc.) (so4) | ||
Water storage | Natural water storage (ns) | Groundwater storage (ns1) |
External neighbourhood water support (ns2) | ||
Socio-economic water storage (ss) | Water supply plant (ss1) | |
Underground water storage (ss2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroca, B.; Clemente, M.F.; Yang, Z. Application of “Behind the Barriers” Model at Neighbourhood Scale to Improve Water Management under Multi-Risks Scenarios: A Case Study in Lyon, France. Int. J. Environ. Res. Public Health 2023, 20, 2587. https://doi.org/10.3390/ijerph20032587
Barroca B, Clemente MF, Yang Z. Application of “Behind the Barriers” Model at Neighbourhood Scale to Improve Water Management under Multi-Risks Scenarios: A Case Study in Lyon, France. International Journal of Environmental Research and Public Health. 2023; 20(3):2587. https://doi.org/10.3390/ijerph20032587
Chicago/Turabian StyleBarroca, Bruno, Maria Fabrizia Clemente, and Zhuyu Yang. 2023. "Application of “Behind the Barriers” Model at Neighbourhood Scale to Improve Water Management under Multi-Risks Scenarios: A Case Study in Lyon, France" International Journal of Environmental Research and Public Health 20, no. 3: 2587. https://doi.org/10.3390/ijerph20032587
APA StyleBarroca, B., Clemente, M. F., & Yang, Z. (2023). Application of “Behind the Barriers” Model at Neighbourhood Scale to Improve Water Management under Multi-Risks Scenarios: A Case Study in Lyon, France. International Journal of Environmental Research and Public Health, 20(3), 2587. https://doi.org/10.3390/ijerph20032587