Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Select Evaluation Indicators
- (1)
- Ecological sensitivity
- (2)
- Ecological resilience
- (3)
- Ecological pressure
2.3.2. Standardization of Indicators
- (1)
- Positive index
- (2)
- Negative index
2.3.3. Spatial Principal Component Analysis
2.3.4. The Classification of EV
2.3.5. Transfer Matrix
2.3.6. Optimal Parameters-Based Geographical Detector
3. Results
3.1. The Spatial Distribution of EV
3.2. Dynamic Changes of EV
3.3. Different Administrative Regions of EV
3.4. Factors Influencing the Spatial Heterogeneity of EV
3.4.1. Factor Detection Results
3.4.2. Interaction Detection Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Shi, X.Y.; Wu, Q.Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zang, W.Q.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Meinke, H.; Howden, S.M. The vulnerability of Australian rural communities to climate variability and change: Part I—Conceptualising and measuring vulnerability. Environ. Sci. Policy 2010, 13, 8–17. [Google Scholar] [CrossRef]
- Tian, Y.P.; Chang, H. Bibliometric analysis of research progress on ecological vulnerability in China. Acta Geogr. Sin. 2012, 67, 1515–1525. (In Chinese) [Google Scholar]
- Chen, T.; Bao, A.M.; Guo, H.; Zheng, G.X.; Yuan, Y.; Yu, T. Ecological vulnerability assessment for a transboundary basin in Central Asia and its spatiotemporal characteristics analysis: Taking Amu Darya River Basin as an example. J. Nat. Resour. 2019, 34, 2643–2657. (In Chinese) [Google Scholar] [CrossRef]
- Xu, J.; Li, G.F.; Wang, Y.H. Review and prospect of research on ecological vulnerability in China and Abroad. East China Econ. Manag. 2016, 30, 149–162. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, K.; Wang, S.D.; Wu, T.X.; Li, X.K.; Wang, J.N.; Wang, D.C.; Zhu, H.T.; Tan, C.; Ji, Y.H. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Cai, X.R.; Li, Z.Q.; Liang, Y.Q. Tempo-spatial changes of ecological vulnerability in the arid area based on ordered weighted average model. Ecol. Indic. 2021, 133, 108398. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.S.; Bi, J. Characterizing water purification services and quantifying their driving factors in watershed terrestrial ecosystems. Prog. Geogr. 2019, 38, 588–599. (In Chinese) [Google Scholar] [CrossRef]
- Deng, C.X.; Liu, C.C.; Li, Z.W. Research path on the resilience of watershed territorial space under the background of ecological restoration. China Land Sci. 2022, 36, 11–20. (In Chinese) [Google Scholar]
- Wen, Y.L.; Xie, Y.C.; Xu, M.; Lu, R.; Wang, D. Study on construction of watershed ecology and environment spatial management system under the new territory development planning. Chin. J. Environ. Manag. 2020, 12, 58–64. (In Chinese) [Google Scholar]
- Zhao, W.; Wang, M. Opportunities, challenges and countermeasures of ecological system management in watershed. Environ. Prot. 2019, 47, 21–24. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, W.J.; Sun, X.Y.; Zhou, J. Spatial-temporal dynamics of tradeoffs between crucial ecosystem services in Nansihu Lake Basin, China. Acta Ecol. Sin. 2021, 41, 8003–8015. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.L.; Liang, C.L.; Guan, Y.B. Assessment of wetland ecosystem health in the Nansihu Lake, China. China Popul. Resour. Environ. 2008, 18, 180–184. (In Chinese) [Google Scholar]
- Fan, Q.; Du, T.; Yang, J.; Xi, J.C.; Li, X.M.; Chen, P. Landscape Pattern Changes for Nansihu Wetland from 1982 to 2012, China. Resour. Sci. 2014, 36, 865–873. (In Chinese) [Google Scholar] [CrossRef]
- Yu, Q.Z.; Zhang, Z.L.; Gao, B.; Lv, J.S.; Yuan, Y. Study on the Changes of Landscape Pattern in Nansihu Wetland Based on RS and FRAGSTATS. For. Resour. Manag. 2013, 1, 108–115. (In Chinese) [Google Scholar] [CrossRef]
- Yao, J.P.; Wang, G.Q.; Wang, L.B.; Zhang, X.J.; Wang, P.Z. Assessing the spatiotemporal variability of lake water quality using A novel multidimensional shape—Position similarity cloud model. J. Hydrol. 2021, 599, 126379. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.Y.; Jiang, W. Coupling coordination and spatiotemporal dynamic evolution between social economy and water environmental quality—A case study from Nansi Lake catchment, China. Ecol. Indic. 2020, 119, 106870. [Google Scholar] [CrossRef]
- Zhang, D.J.; Gao, H.; Yang, J.; Xi, J.C.; Li, X.M. Assessment for the ecological vulnerability of Nansihu Wetland based on GIS technology, China. Resour. Sci. 2014, 36, 874–882. (In Chinese) [Google Scholar]
- Xu, C.X.; Lu, C.X.; Huang, S.L. Study on ecological vulnerability and its influencing factors in Zhangjiakou area. J. Nat. Resour. 2020, 35, 1288–1300. (In Chinese) [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.M.; Jing, Z.R.; Yan, Y.L.; Niu, H.B. Response of ecological vulnerability to land use change in a resource-based city, China. Resour. Policy 2021, 74, 102324. [Google Scholar] [CrossRef]
- Wu, X.L.; Tang, S.Y. Comprehensive evaluation of ecological vulnerability based on the AHP-CV method and SOM model: A case study of Badong County, China. Ecol. Indic. 2022, 137, 108758. [Google Scholar] [CrossRef]
- Xue, L.Q.; Wang, J.; Zhang, L.C.; Wei, G.H.; Zhu, B.L. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Gao, J.F.; Gao, Y.N.; Zhang, Z.M. Theory and application of aquatic ecoregion delineation in lake-basin. Prog. Geogr. 2019, 38, 1159–1170. (In Chinese) [Google Scholar] [CrossRef]
- Cui, B.S.; Zhai, H.J. Characterization of functional degradation of upland wetlands and their ecological water demand in restoration. Chin. Sci. Bull. 2006, 51 (Suppl. 2), 106–113. (In Chinese) [Google Scholar]
- Wang, H.; Wang, J.H.; Hu, P. New connotation of water resources protection: “quantity-quality-domain-connectivity-biology” coordinated protection and restoration. Water Resour. Prot. 2021, 37, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Groll, M.; Issanova, G.; Maihemuti, B. Changes in intra-annual runoff and its response to climate variability and anthropogenic activity in the Lake Issyk-Kul Basin, Kyrgyzstan. CATENA 2021, 198, 104974. [Google Scholar] [CrossRef]
- Chi, G.Y.; Su, X.S.; Lyu, H.; Li, H.Y.; Xu, G.G.; Zhang, Y.W. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Environ. Res. 2022, 212, 113104. [Google Scholar] [CrossRef]
- Yuan, B.D.; Fu, L.N.; Zou, Y.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.K.; Singh, V.P.; Zhu, J.Y.; Jiang, L.L.; Zeng, D.B.; Liu, D.F.; Zeng, X.K.; Wu, J.C.; Wang, L.C.; et al. Ecological and health risk assessment of PAHs, OCPs, and PCBs in Taihu Lake basin. Ecol. Indic. 2018, 92, 171–180. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.L.; Liu, D.; Song, K.; Liu, Q.; He, Y.J. Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China. J. Environ. Manag. 2021, 285, 112176. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Guo, H.W.; Lian, L.S.; Liu, F.; Li, F.B. The spatial pattern of water yield and its driving factors in Nansi Lake Basin, China. J. Nat. Resour. 2017, 32, 669–679. (In Chinese) [Google Scholar] [CrossRef]
- Hou, K.; Tao, W.D.; Wang, L.M.; Li, X.X. Study on hierarchical transformation mechanisms of regional ecological vulnerability and its applicability. Ecol. Indic. 2020, 114, 106343. [Google Scholar] [CrossRef]
- Li, L.; Sun, G.L.; Lu, H.Y.; Lu, H.; Shi, H.B. Spatial-temporal variation and driving forces of ecological vulnerability in Kashi Prefecture, China. Arid Land Geogr. 2021, 44, 277–288. (In Chinese) [Google Scholar] [CrossRef]
- Lv, X.J.; Xiao, W.; Zhao, Y.L.; Zhang, W.K.; Li, S.C.; Sun, H.X. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Yang, X.; Hao, L.N. Spatial and temporal differentiation and driving mechanism of ecological vulnerability along Sichuan-Tibet railway during 2010–2020 based on SRP model. Bull. Soil Water Conserv. 2021, 41, 201–208. (In Chinese) [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Z.F.; Zhu, C.L.; Ma, G.X.; Chen, Q. Coupling relation between ecological vulnerability and economic poverty in Karst Mountain area—A case study at Libo county of Guizhou Province, China. Bull. Soil Water Conserv. 2020, 40, 227–233. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Y.J.; Shi, B.; Su, G.J.; Lu, Y.; Li, Q.Q.; Meng, J.; Ding, Y.P.; Song, S.; Dai, L.W. Spatiotemporal analysis of ecological vulnerability in the Tibet Autonomous Region based on a pressure-state-response-management framework. Ecol. Indic. 2021, 130, 108054. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Using RS/GIS for spatiotemporal ecological vulnerability analysis based on DPSIR framework in the Republic of Tatarstan, Russia. Ecol. Inform. 2022, 67, 101490. [Google Scholar] [CrossRef]
- Wu, H.W.; Guo, B.; Fan, J.F.; Yang, F.; Han, B.M.; Wei, C.X.; Lu, Y.F.; Zang, W.Q.; Zhen, X.Y.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar] [CrossRef]
- Ma, W.C.; Zhao, H.J.; Li, L.; Zhou, Y.D.; Pan, H.; Bao, C.K. Spatial scale of regional plan environmental impact assessment: The Gaoqiao Town and Pudong New District cases in Shanghai, China. Prog. Geogr. 2015, 34, 739–748. (In Chinese) [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.S.; Liao, X.C.; Yan, J.P. Understanding fishermen's willingness and preferences for eco-compensation of Lake Conservation Projects: A case study from Nansi Lake Nature Reserve, China. Environ. Manag. 2022, 70, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Jiang, Z.; Liu, F.; Zhang, D.Z. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Jia, J.J.; Zhao, J.; Wang, J.B.; Gao, C.; Chang, R.Y. Ecological vulnerability assessment of Shiyang River basin based on SRP model, China. J. Arid Land Resour. Environ. 2020, 34, 34–41. (In Chinese) [Google Scholar] [CrossRef]
- Gao, Y.L.; Li, H.B. Influence of landscape pattern change on soil erosion in Han River Basin, China. Acta Ecol. Sin. 2021, 41, 2248–2260. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method. Acta Geogr. Sin. 2018, 73, 1674–1686. (In Chinese) [Google Scholar] [CrossRef]
- Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of Applying USLE and geographical information system IDRISI to predict soil erosion in small watershed, China. J. Soil Water Conserv. 2000, 14, 19–24. (In Chinese) [Google Scholar] [CrossRef]
- Xie, Y.F.; Yao, S.B.; Ding, Z.M.; Hou, M.Y.; Deng, Y.J.; Liu, G.Q. The Grain for Green project, geographical features and soil erosion: Taking 107 counties in Shaanxi Provinces as examples. Acta Ecol. Sin. 2022, 42, 301–312. (In Chinese) [Google Scholar] [CrossRef]
- Meng, M.; Ni, J.; Zhang, Z.G. Aridity index and its applications in geo-ecological study. Chin. J. Plant Ecol. 2004, 28, 853–861. (In Chinese) [Google Scholar]
- Ru, S.F.; Ma, R.H. Evaluation, spatial analysis and prediction of ecological environment vulnerability of Yellow River Basin. J. Nat. Resour. 2022, 37, 1722–1734. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.H.; Dai, E.F.; Ma, L.; Yin, L. Spatiotemporal and influencing factors analysis of water yield in the Hengduan Mountain region. J. Nat. Resour. 2020, 35, 371–386. (In Chinese) [Google Scholar] [CrossRef]
- Wu, J.S.; Wang, Z.; Zhang, L.Q.; Song, J. Research progresses on driving forces of the changes of landscape pattern. Prog. Geogr. 2012, 31, 1739–1746. (In Chinese) [Google Scholar]
- Li, Z.Y.; Wei, W.; Zhou, L.; Liu, C.F.; Guo, Z.C.; Pang, S.F.; Zhang, J. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China. Acta Geogr. Sin. 2022, 77, 150–163. (In Chinese) [Google Scholar] [CrossRef]
- Lv, J.S.; Wu, Q.Y.; Zhang, Z.L.; Liu, Y. Land use change and ecological security assessment in Jining ci-ty based on RS and GIS. Sci. Geogr. Sin. 2012, 32, 928–935. (In Chinese) [Google Scholar] [CrossRef]
Original Data | Resolution | Source |
---|---|---|
Digital elevation model (DEM) | 90 m | Resources and Environment Science and Data Center (https://www.resdc.cn) |
Land use data | 1 km | Resources and Environment Science and Data Center (https://www.resdc.cn) |
Soil map based Harmonized world Soil Database (v1.2) | 1 km | National Cryosphere Desert Data Center (http://www.ncdc.ac.cn/portal/) |
Meteorological data | - | China Meteorological Data Service Center (https://data.cma.cn/) |
Normalized difference vegetation index (NDVI) | 30 m | National Ecosystem Science Data Center (http://www.nesdc.org.cn/) |
Net primary productivity (NPP) from MOD17A3 | 500 m | Nation Aeronautics and Space Administration (NASA) (https://ladsweb.modaps.eosdis.nasa.gov/) |
GDP data | 1 km | Resources and Environment Science and Data Center (https://www.resdc.cn) |
Populations data | 1 km | Resources and Environment Science and Data Center (https://www.resdc.cn) |
Boundary vector data for the Nansi Lake Basin | - | Nanjing Institute of Geography & Limnology Chinese academy of Sciences (http://www.niglas.ac.cn/) |
Target Layer | Criteria Layer | Indicator Layer | Indicator Code | Functional Relationship |
---|---|---|---|---|
Ecological sensitivity | Terrain conditions | Elevation | X1 | Positive |
Slope | X2 | Positive | ||
Topographic relief | X3 | Positive | ||
Surface conditions | Land use type | X4 | Positive | |
Soil erosion degree | X5 | Positive | ||
Climatic factors | Average annual temperature | X6 | Negative | |
Average annual precipitation | X7 | Negative | ||
Dryness | X8 | Negative | ||
Ecological resilience | Vegetation conditions | NDVI | X9 | Negative |
NPP | X10 | Negative | ||
Environmental protection | Landscape diversity index | X11 | Negative | |
Habitat quality index | X12 | Negative | ||
Hydrological condition | Water yield | X13 | Negative | |
Nitrogen output | X14 | Positive | ||
Phosphorus output | X15 | Positive | ||
Ecological pressure | Human disturbance | Population density | X16 | Positive |
GDP density | X17 | Positive |
Evaluation Indicators | Standardize Assignments | ||||
---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1 | |
Land use type | Forest land and water body | Grassland | Cultivated land | Construction land | Unused land |
Soil erosion grade | Slight | Mild | Moderate | Intense | Extremely intense and violent |
Year | Principal Component Coefficients | Principal Components | |||||
---|---|---|---|---|---|---|---|
SPCA1 | SPCA2 | SPCA3 | SPCA4 | SPCA5 | SPCA6 | ||
2010 | Eigenvalue | 0.0608 | 0.0346 | 0.0289 | 0.0265 | 0.0211 | 0.0126 |
Contribution rate (%) | 28.0059 | 15.9483 | 13.2982 | 12.2064 | 9.7294 | 5.8256 | |
Cumulative contribution rate (%) | 28.0059 | 43.9542 | 57.2524 | 69.4588 | 79.1882 | 85.0138 | |
2015 | Eigenvalue | 0.1206 | 0.0526 | 0.0313 | 0.0256 | 0.0131 | 0.0121 |
Contribution rate (%) | 40.6916 | 17.7536 | 10.5570 | 8.6413 | 4.4337 | 4.0852 | |
Cumulative contribution rate (%) | 40.6916 | 58.4451 | 69.0022 | 77.6435 | 82.0771 | 86.1623 | |
2020 | Eigenvalue | 0.0981 | 0.0551 | 0.0430 | 0.0284 | 0.0238 | 0.0140 |
Contribution rate (%) | 32.3703 | 18.1596 | 14.1940 | 9.3804 | 7.8544 | 4.6076 | |
Cumulative contribution rate (%) | 32.3703 | 50.5299 | 64.7239 | 74.1043 | 81.9587 | 86.5664 |
Year | Category | Slight | Mild | Moderate | Severe | Extreme | CEVI |
---|---|---|---|---|---|---|---|
2010 | Area (km2) | 1705 | 1168 | 9868 | 14,073 | 1435 | 3.437 |
Area Percentage (%) | 6.063 | 4.135 | 34.932 | 49.818 | 5.079 | ||
2015 | Area (km2) | 842 | 2985 | 8087 | 13,369 | 2966 | 3.518 |
Area Percentage (%) | 2.981 | 10.567 | 28.628 | 47.326 | 10.498 | ||
2020 | Area (km2) | 3954 | 8087 | 8426 | 7124 | 658 | 2.733 |
Area Percentage (%) | 13.997 | 28.628 | 29.828 | 25.218 | 2.329 |
County | Mean SEVI | County | Mean SEVI | ||||
---|---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010 | 2015 | 2020 | ||
Tongshan | 0.4487 | 0.4164 | 0.1125 | Liangshan | 0.7703 | 0.8543 | 0.8132 |
Fengxian | 0.4931 | 0.4575 | 0.1741 | Qufu | 0.6303 | 0.6149 | 0.5524 |
Peixian | 0.4829 | 0.4470 | 0.1625 | Zoucheng | 0.4810 | 0.4430 | 0.3993 |
Shanting | 0.4870 | 0.2938 | 0.2471 | Ningyang | 0.8211 | 0.7670 | 0.7107 |
Tengzhou | 0.5414 | 0.4809 | 0.2994 | Mudan | 0.6591 | 0.7368 | 0.6257 |
Rencheng | 0.5546 | 0.7069 | 0.5368 | Dingtao | 0.6377 | 0.6927 | 0.5277 |
Yanzhou | 0.6331 | 0.7423 | 0.6302 | Caoxian | 0.6209 | 0.6700 | 0.4676 |
Weishan | 0.2383 | 0.3202 | 0.2460 | Shanxian | 0.6230 | 0.6269 | 0.3058 |
Yutai | 0.5382 | 0.5020 | 0.2652 | Chengwu | 0.6191 | 0.6500 | 0.4147 |
Jinxiang | 0.6004 | 0.6526 | 0.3634 | Juye | 0.6449 | 0.7026 | 0.5528 |
Jiaxiang | 0.5747 | 0.7196 | 0.5877 | Yuncheng | 0.7408 | 0.7867 | 0.7223 |
Wenshang | 0.7222 | 0.8122 | 0.7428 | Juancheng | 0.6659 | 0.7496 | 0.6899 |
Sishui | 0.7019 | 0.4488 | 0.4582 | Dongming | 0.6600 | 0.7839 | 0.6757 |
Variable Name | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Discrete Method | Intervals | q Value | Discrete Method | Intervals | q Value | Discrete Method | Intervals | q Value | |
X1 | ■ | 6 | 0.243 | ● | 6 | 0.377 | ■ | 6 | 0.197 |
X2 | ■ | 6 | 0.053 | ○ | 6 | 0.216 | ○ | 6 | 0.032 |
X3 | □ | 5 | 0.030 | ● | 6 | 0.226 | □ | 6 | 0.035 |
X4 | △ | 6 | 0.746 | △ | 6 | 0.499 | △ | 6 | 0.083 |
X5 | ◆ | 6 | 0.025 | ◆ | 6 | 0.174 | ◆ | 6 | 0.029 |
X6 | ■ | 5 | 0.326 | □ | 6 | 0.675 | ■ | 5 | 0.271 |
X7 | ○ | 6 | 0.118 | ● | 6 | 0.732 | ● | 6 | 0.897 |
X8 | ○ | 5 | 0.147 | ● | 6 | 0.714 | ● | 6 | 0.867 |
X9 | □ | 5 | 0.157 | □ | 6 | 0.060 | ○ | 6 | 0.036 |
X10 | ○ | 6 | 0.104 | ○ | 6 | 0.039 | ○ | 6 | 0.267 |
X11 | ● | 5 | 0.081 | ○ | 6 | 0.199 | ○ | 5 | 0.067 |
X12 | ○ | 5 | 0.748 | ■ | 6 | 0.602 | ■ | 6 | 0.184 |
X13 | ○ | 6 | 0.537 | ● | 6 | 0.282 | ● | 6 | 0.408 |
X14 | ■ | 6 | 0.439 | □ | 6 | 0.250 | ● | 5 | 0.241 |
X15 | ○ | 6 | 0.445 | ■ | 6 | 0.175 | ■ | 6 | 0.205 |
X16 | ■ | 6 | 0.212 | ● | 6 | 0.304 | ● | 6 | 0.090 |
X17 | ■ | 6 | 0.066 | □ | 5 | 0.066 | ■ | 6 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Liu, Y.; Sang, H. Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 2653. https://doi.org/10.3390/ijerph20032653
Sun Z, Liu Y, Sang H. Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China. International Journal of Environmental Research and Public Health. 2023; 20(3):2653. https://doi.org/10.3390/ijerph20032653
Chicago/Turabian StyleSun, Zhixian, Yang Liu, and Hongbin Sang. 2023. "Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China" International Journal of Environmental Research and Public Health 20, no. 3: 2653. https://doi.org/10.3390/ijerph20032653
APA StyleSun, Z., Liu, Y., & Sang, H. (2023). Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China. International Journal of Environmental Research and Public Health, 20(3), 2653. https://doi.org/10.3390/ijerph20032653