Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Collection
2.3. Experiment Analysis
2.4. Bioaccumulation and Trophic Magnification Factors
2.5. Human Health Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Concentrations and Congener Profiles of PBDEs
3.2. Bioaccumulation and Trophic Magnification Factors
3.3. Dietary Exposure and Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.L.; Qiu, Y.L.; Ge, Y.X.; Zhu, Z.L.; Lin, Z.F.; Zhao, J.F. Study Progress on Pollution Characteristics of Brominated Flame Retardants(BFRs)in China Atmospheric Environment. Environ. Sci. Technol. 2016, 39, 192–199. [Google Scholar]
- Li, Y.; Li, J.H.; Deng, C. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China. Environ. Pollut. 2014, 184, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.D.; Muir, D.C.G.; Solomon, K.R.; Teixeira, C.F.; Duric, M.D.; Wang, X.W. Bioaccumulation of Polybrominated Diphenyl Ethers and Alternative Halogenated Flame Retardants in a Vegetation-Caribou-Wolf Food Chain of the Canadian Arctic. Environ. Sci. Technol. 2018, 52, 3136–3145. [Google Scholar] [CrossRef]
- Piersanti, A.; Tavoloni, T.; Bastari, E.; Lestingi, C.; Romanelli, S.; Saluti, G.; Moretti, S.; Galarini, R. Polybrominated diphenyl ethers in mussels (Mytilus galloprovincialis) collected from Central Adriatic Sea. Mar. Pollut. Bull. 2015, 101, 417–421. [Google Scholar] [CrossRef]
- Wang, G.G.; Peng, J.L.; Zhang, D.H.; Li, X.G. Characterizing distributions, composition profiles, sources and potential health risk of polybrominated diphenyl ethers (PBDEs) in the coastal sediments from East China Sea. Environ. Pollut. 2016, 213, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Markham, E.; Brault, E.K.; Khairy, M.; Robuck, A.R.; Goebel, M.E.; Cantwell, M.G.; Dickhut, R.M.; Lohmann, R. Time Trends of Polybrominated Diphenyl Ethers (PBDEs) in Antarctic Biota. ACS Omega 2018, 3, 6595–6604. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Ma, W.L.; Jia, H.L.; Hong, W.J.; Moon, H.B.; Nakata, H.; Minh, N.H.; Sinha, R.K.; Chi, K.H.; Kannan, K. Polybrominated Diphenyl Ethers (PBDEs) in Surface Soils across Five Asian Countries: Levels, Spatial Distribution, and Source Contribution. Environ. Sci. Technol. 2016, 50, 12779–12788. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Zhu, Y.; Chang, Z.; Hu, Y.; Tao, L.; Zheng, T.; Xiang, M.; Yu, Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. Sci. Total Environ. 2022, 845, 157307. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Tao, W.; Zhao, X.; Li, X. Reflection of concentrations of polybrominated diphenyl ethers in health risk assessment: A case study in sediments from the metropolitan river, North China. Environ. Pollut. 2019, 247, 80–88. [Google Scholar] [CrossRef]
- Baron, E.; Gimenez, J.; Verborgh, R.; Gauffier, P.; De Stephanis, R.; Eljarrat, E.; Barcelo, D. Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters. Environ. Pollut. 2015, 203, 107–115. [Google Scholar] [CrossRef]
- Eljarrat, E.; Barcelo, D. How do measured PBDE and HCBD levels in river fish compare to the European Environmental Quality Standards? Environ. Res. 2018, 160, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jeong, H.J.; Jang, Y.L.; Kim, G.B. Distribution, accumulation, and potential risk of polybrominated diphenyl ethers in the marine environment receiving effluents from a sewage treatment plant. Mar. Pollut. Bull. 2018, 129, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Choo, G.; Lee, I.S.; Oh, J.E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites. J. Hazard. Mater. 2019, 371, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Chen, Q.F.; Du, X.Y.; Yin, G.; Qiu, Y.L.; Ye, L.; Zhu, Z.L.; Zhao, J.F. Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China. Environ. Pollut. 2016, 219, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Windsor, F.M.; Pereira, M.G.; Tyler, C.R.; Ormerod, S.J. Biological Traits and the Transfer of Persistent Organic Pollutants through River Food Webs. Environ. Sci. Technol. 2019, 53, 13246–13256. [Google Scholar] [CrossRef]
- Cheng, J.O.; Ko, F.C. Occurrence of PBDEs in surface sediments of metropolitan rivers: Sources, distribution pattern, and risk assessment. Sci. Total Environ. 2018, 637, 1578–1585. [Google Scholar] [CrossRef]
- Costa, L.G.; Laat, R.D.; Tagliaferri, S.; Pellacani, C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol. Lett. 2014, 230, 282–294. [Google Scholar] [CrossRef]
- Siddique, S.; Kubwabo, C.; Harris, S.A. A review of the role of emerging environmental contaminants in the development of breast cancer in women. Emerg. Contam. 2016, 2, 204–219. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Yuan, L.M.; Lin, Q.H.; Ma, S.T.; Yu, Y.X. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. Sci. Total Environ. 2019, 696, 133902. [Google Scholar] [CrossRef]
- Li, D.; Cai, K.; Li, X.; Giesy, J.P.; Niu, Z.; Cai, Y.; Dai, J.; Xu, D.; Zhou, X.; Liu, H. Influence of Environmental Variables on Benthic Macroinvertebrate Communities in a Shallow Eutrophic Lowland Lake (Ge Lake, China). Tecnol. Y Cienc. Del Agua 2019, 10, 88–119. [Google Scholar] [CrossRef]
- Liu, W.; Lin, Q.; Zhang, K.; Shen, J. Eco-environmental evolutionprocess during the past century in Lake Changdang, Lake Taihu Basin. J. Lake Sci. 2022, 34, 675–683. [Google Scholar]
- Chen, L.; Zhou, S.L.; Shi, Y.X.; Wang, C.H.; Li, B.J.; Li, Y.; Wu, S.H. Heavymetals in food crops, soil, andwater in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.H.; Wu, X.G.; Wang, Z.D.; Wang, B.Y.; Ke, F.; Han, C.; Zhou, Q.; Ren, J.H. Spatial distribution and pollution assessment on the main nutrients and heavy metals in sediments of Lake Gehu, Taihu Basin after removing the aquaculture net. J. Lake Sci. 2021, 33, 1436–1447. [Google Scholar]
- Zhang, Y.D.; Su, Y.L.; Liu, Z.W.; Sun, K.H.; Kong, L.Y.; Yu, J.L.; Jin, M. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu basin, Eastern China. Sci. Total Environ. 2018, 613, 907–918. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, J.; Dai, X.; Xu, H.; Xue, Q.; Gong, Z. Community structure of macrozoobenthos and bioassessment of water quality in Lake Changdang, Jiangsu Province. Chin. J. Ecol. 2014, 33, 1224–1232. [Google Scholar]
- Zhang, Y.D.; Su, Y.L.; Liu, Z.W.; Yu, J.L.; Jin, M. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecol. Indic. 2017, 77, 397–408. [Google Scholar] [CrossRef]
- Wang, L.; Wu, L.; Zhang, R.; Zhang, Y. Spatiotemporal variation of zoobenthos community and bio-assessment of water quality in Gehu Lake. Chin. J. Ecol. 2012, 31, 1990–1996. [Google Scholar]
- Bao, X.M.; Chao, J.Y.; Yin, H.B. Occurrence characteristics and bioavailability of heavy metals in surface sediments of Lake Gehu, Taihu Basin. J. Lake Sci. 2016, 28, 1010–1017. [Google Scholar]
- Wang, J.Z.; Jia, X.W.; Gao, S.T.; Zeng, X.Y.; Li, H.R.; Zhou, Z.; Sheng, G.Y.; Yu, Z.Q. Levels and distributions of polybrominated diphenyl ethers, hexabromocyclododecane, and tetrabromobisphenol A in sediments from Taihu Lake, China. Environ. Sci. Pollut. Res. 2016, 23, 10361–10370. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Deng, J.; Zhang, H.; Liu, X. Spatial distribution and contamination characteristics of nutrients in surface sediment of Changdang Lake. Water Resour. Prot. 2015, 31, 135–140. [Google Scholar]
- Liu, Y.; Luo, X.J.; Huang, L.Q.; Tao, L.; Zeng, Y.H.; Mai, B.X. Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: Habitat-dependent accumulation and maternal transfer in watersnake. Environ. Pollut. 2018, 241, 1063–1070. [Google Scholar] [CrossRef]
- Gu, S.Y.; Ekpeghere, K.I.; Kim, H.Y.; Lee, I.S.; Kim, D.H.; Choo, G.; Oh, J.E. Brominated flame retardants in marine environment focused on aquaculture area: Occurrence, source and bioaccumulation. Sci. Total Environ. 2017, 601, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Fisk, A.T.; Hobson, K.A.; Norstrom, R.J. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web (vol 35, pg 732, 2001). Environ. Sci. Technol. 2001, 35, 1700. [Google Scholar] [CrossRef]
- Hu, G.C.; Dai, J.Y.; Xu, Z.C.; Luo, X.J.; Cao, H.; Wang, J.S.; Mai, B.X.; Xu, M.Q. Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian Lake, North China. Environ. Int. 2010, 36, 309–315. [Google Scholar] [CrossRef]
- Chan, J.K.Y.; Man, Y.B.; Wu, S.C.; Wong, M.H. Dietary intake of PBDEs of residents at two major electronic waste recycling sites in China. Sci. Total Environ. 2013, 463, 1138–1146. [Google Scholar] [CrossRef]
- Zhu, Q.R.; Dai, Y.; Xie, W.; Zhang, J.X. Assessment of dietary patern and nutrients intake status of the residents in Jiangsu province. Jiangsu J. Prev. Med. 2017, 28, 4. (In Chinese) [Google Scholar] [CrossRef]
- Yang, L.; Wang, M.; Yu, Q.Q.; Zhang, X.L. Inhalation exposure factors and their regional disparity among residents in 13 regions of Jiangsu. J. Environ. Health 2019, 36, 5. (In Chinese) [Google Scholar] [CrossRef]
- Yu, Y.J.; Liu, L.T.; Chen, X.C.; Xiang, M.D.; Li, Z.R.; Liu, Y.; Zeng, Y.; Han, Y.J.; Yu, Z.L. Brominated flame retardants and heavy metals in common aquatic products from the pearl river delta, south china: Bioaccessibility assessment and human health implications. J. Hazard. Mater. 2021, 403, 124036. [Google Scholar] [CrossRef]
- Yu, Y.X.; Zhang, S.H.; Huang, N.B.; Li, J.L.; Pang, Y.P.; Zhang, X.Y.; Yu, Z.Q.; Xu, Z.G. Polybrominated diphenyl ethers and polychlorinated biphenyls in freshwater fish from Taihu Lake, China: Their levels and the factors that influence biomagnification. Environ. Toxicol. Chem. 2012, 31, 542–549. [Google Scholar] [CrossRef]
- Wang, Y.W.; Li, X.M.; Li, A.; Wang, T.; Zhang, Q.H.; Wang, P.; Fu, J.J.; Jiang, G.B. Effect of municipal sewage treatment plant effluent on bioaccumulation of polychlorinated biphenyls and polybrominated diphenyl ethers in the recipient water. Environ. Sci. Technol. 2007, 41, 6026–6032. [Google Scholar] [CrossRef]
- Gebbink, W.A.; van der Lee, M.K.; Peters, R.J.B.; Traag, W.A.; ten Dam, G.; Hoogenboom, R.; van Leeuwen, S.P.J. Brominated flame retardants in animal derived foods in the Netherlands between 2009 and 2014. Chemosphere 2019, 234, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.D.; Zhang, D.N.; Yang, Y.; Zeng, X.Y.; Ran, Y. Distribution and partitioning of polybrominated diphenyl ethers in sediments from the Pearl River Delta and Guiyu, South China. Environ. Pollut. 2018, 235, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Yao, H.; Wang, H.; Li, H.Y.; Lu, S.; Zhang, X.; Xiang, X.X. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution. Mar. Pollut. Bull. 2018, 129, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.L.; Luo, X.J.; Ye, M.X.; Zeng, Y.H.; Chen, S.J.; Mai, B.X. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism. Environ. Toxicol. Chem. 2017, 36, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.H.; Yu, L.H.; Luo, X.J.; Chen, S.J.; Wu, J.P.; Mai, B.X. Tissue accumulation and species-specific metabolism of technical pentabrominated diphenyl ether (DE-71) in two predator fish. Environ. Toxicol. Chem. 2013, 32, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.H.; Luo, X.J.; Yu, L.H.; Chen, H.S.; Wu, J.P.; Chen, S.J.; Mai, B.X. Using Compound-Specific Stable Carbon Isotope Analysis to Trace Metabolism and Trophic Transfer of PCBs and PBDEs in Fish from an e-Waste Site, South China. Environ. Sci. Technol. 2013, 47, 4062–4068. [Google Scholar] [CrossRef]
- Lapointe, D.; Pelletier, M.; Paradis, Y.; Armellin, A.; Verreault, J.; Champoux, L.; Desrosiers, M. Trophic transfer of polybrominated diphenyl ethers in a recently modified freshwater food web from the St. Lawrence River, Canada. Chemosphere 2020, 255, 126877. [Google Scholar] [CrossRef]
- Gandhi, N.; Bhavsar, S.P.; Gewurtz, S.B.; Diamond, M.L.; Evenset, A.; Christensen, G.N.; Gregor, D. Development of a multichemical food web model: Application to PBDEs in Lake Ellasjoen, Bear Island, Norway. Environ. Sci. Technol. 2006, 40, 4714–4721. [Google Scholar] [CrossRef]
- Xian, Q.M.; Ramu, K.; Isobe, T.; Sudaryanto, A.; Liu, X.H.; Gao, Z.S.; Takahashi, S.; Yu, H.X.; Tanabe, S. Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere 2008, 71, 268–276. [Google Scholar] [CrossRef]
- Bradley, P.W.; Wan, Y.; Jones, P.D.; Wiseman, S.; Chang, H.; Lam, M.H.W.; Long, D.T.; Giesy, J.P. PBDES and methoxylated analogues in sediment corss from two michigan, USA, inland lakes. Environ. Toxicol. Chem. 2011, 30, 1236–1242. [Google Scholar] [CrossRef]
- He, J.Z.; Robrock, K.R.; Alvarez-Cohen, L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ. Sci. Technol. 2006, 40, 4429–4434. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Luo, X.J.; Wu, J.P.; Chen, S.J.; Mai, B.X. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers (PBDEs) in biota from the Pearl River Estuary, South China. Environ. Int. 2009, 35, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Mao, L.; Zhao, Z.G.; Shen, M.N.; Zhang, S.H.; Huang, Q.G.; Gao, S.X. Bioaccumulation, depuration and biotransformation of 4,4′-dibromodiphenyl ether in crucian carp (Carassius auratus). Chemosphere 2012, 86, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.H.; Niu, B.; Wang, R.; Gao, R.T.; Guo, J.; Xu, Z.M. Reveal the Release and Transformation Mechanism of Polybrominated Diphenyl Ethers during the Crushing of Waste Printed Circuit Boards Based on the Experimental Monitoring and Theoretical Simulation. ACS Sustain. Chem. Eng. 2021, 9, 4926–4935. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Kalafata, K.; Risticevic, S.; Pawliszyn, J.; Lores, M.; Llompart, M.; Kalogerakis, N.; Psillakis, E. Ice photolysis of 2,2′,4,4′,6-pentabromodiphenyl ether (BDE-100): Laboratory investigations using solid phase microextraction. Anal. Chim. Acta 2012, 742, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Lee, C.C.; Ku, H.; Chang, B.V. Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment. Environ. Sci. Pollut. Res. 2017, 24, 5391–5403. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.W.; Bai, Y.; Wang, D.J.; Chen, T. Research progress on the effect of polybrominated diphenyl ether on thyroid hormone and its mechanism. Environ. Occup. Med. 2019, 36, 979–987. [Google Scholar]
- Shao, M.H.; Tao, P.; Wang, M.; Jia, H.L.; Li, Y.F. Trophic magnification of polybrominated diphenyl ethers in the marine food web from coastal area of Bohai Bay, North China. Environ. Pollut. 2016, 213, 379–385. [Google Scholar] [CrossRef]
- Su, G.Y.; Letcher, R.J.; McGoldrick, D.J.; Backus, S.M. Halogenated Flame Retardants in Predator and Prey Fish From the Laurentian Great Lakes: Age-Dependent Accumulation and Trophic Transfer. Environ. Sci. Technol. 2017, 51, 8432–8441. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, G.L.; Li, J.; Li, J.C.; Wang, G.H. Polybrominated diphenyl ethers in surface soils near the Changwengluozha Glacier of Central Tibetan Plateau, China. Sci. Total Environ. 2015, 511, 399–406. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, Y.; Wu, J.P.; Wu, S.K.; Liu, Y.; Zeng, Y.H.; Luo, X.J.; Mai, B.X. Biomagnification of PBDEs and alternative brominated flame retardants in a predatory fish: Using fatty acid signature as a primer. Environ. Int. 2019, 127, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.G.; Driffield, M.; Fernandes, A.R.; Smith, F.; Tarbin, J.; Lloyd, A.S.; Christy, J.; Holland, M.; Steel, Z.; Tlustos, C. Occurrence of polybrominated diphenylethers, hexabromocyclododecanes, bromophenols and tetrabromobisphenols A and S in Irish foods. Chemosphere 2018, 197, 709–715. [Google Scholar] [CrossRef] [PubMed]
Sample | BDE-28 | BDE-47 | BDE-100 | BDE-99 | BDE-153 | BDE-154 | BDE-183 | BDE-209 | ∑8PBDE |
---|---|---|---|---|---|---|---|---|---|
DF | 99.3% | 100% | 98.6% | 80.1% | 100% | 100% | 97.3% | 59.6% | - |
Plankton | 0.21 a | 0.27 | 0.06 | 0.16 | 1.19 | 1.08 | 5.05 | 0.94 | 8.97 |
0.21 b | 0.27 | 0.06 | 0.16 | 1.19 | 1.08 | 5.05 | 0.94 | 8.97 | |
0.2–0.25 c | 0.27–0.28 | nd–0.11 | nd–0.27 | 0.97–1.4 | 0.88–1.27 | 1.86–8.23 | nd | 5.23–12.7 | |
Grass crap | 0.34 | 1.02 | 0.26 | 0.15 | 3.07 | 0.97 | 1.37 | 0.94 | 8.12 |
0.2 | 0.55 | 0.18 | 0.13 | 2.29 | 1.01 | 1.78 | 0.94 | 7.4 | |
0.18–0.65 | 0.43–2.08 | 0.17–0.42 | nd–0.27 | 1.72–5.19 | 0.62–1.27 | 0.31–2.03 | nd | 4.54–12.4 | |
Black carp | 0.64 | 1.2 | 0.44 | 0.26 | 0.5 | 0.65 | 0.97 | 0.94 | 5.59 |
0.64 | 1.2 | 0.44 | 0.26 | 0.5 | 0.65 | 0.97 | 0.94 | 5.59 | |
0.49–0.78 | 0.96–1.44 | 0.26–0.61 | 0.23–0.28 | 0.15–0.85 | 0.36–0.94 | 0.64–1.29 | nd | 4.69–6.49 | |
White amur bream | 0.11 | 0.31 | 0.25 | 0.10 | 1.98 | 0.65 | 1.74 | 0.94 | 6.10 |
0.11 | 0.3 | 0.19 | 0.05 | 2.16 | 0.67 | 1.21 | 0.94 | 6.39 | |
nd–0.18 | 0.13–0.46 | 0.1–0.43 | nd–0.47 | 0.15–3.4 | 0.17–0.98 | nd–4.63 | nd | 2.43–9.75 | |
Bighead carp | 0.16 | 0.61 | 0.40 | 0.05 | 1.74 | 0.9 | 0.47 | 0.94 | 5.26 |
0.16 | 0.61 | 0.40 | 0.05 | 1.74 | 0.9 | 0.47 | 0.94 | 5.26 | |
0.1–0.21 | 0.41–0.8 | 0.18–0.61 | nd | 1.31–2.16 | 0.4–1.4 | 0.42–0.51 | nd | 3.82–6.69 | |
English perch | 0.57 | 1.1 | 0.14 | 0.11 | 0.25 | 0.74 | 0.24 | 1.42 | 4.57 |
0.38 | 0.93 | 0.15 | 0.14 | 0.24 | 0.4 | 0.23 | 0.94 | 3.38 | |
0.37–0.96 | 0.77–1.59 | 0.11–0.17 | nd–0.15 | 0.23–0.29 | 0.4–1.41 | 0.21–0.27 | nd–2.39 | 3.16–7.18 | |
Finless eel | 2.29 | 2.91 | 1.80 | 2.13 | 3.48 | 3.95 | 2.00 | 2.09 | 20.6 |
1.55 | 2.59 | 1.38 | 2.1 | 3.85 | 4.31 | 1.32 | 0.94 | 19.8 | |
0.52–5.34 | 1.13–5.07 | 0.47–4.54 | 0.23–3.63 | 0.26–6 | 0.6–6.43 | nd–6.55 | nd–4.43 | 15–26.9 | |
Common carp | 2.18 | 14 | 5.34 | 1.72 | 7.17 | 14 | 1.66 | 6.01 | 52 |
2.54 | 14 | 6.42 | 1.6 | 7.45 | 14.3 | 1.72 | 7.52 | 46.6 | |
0.11–3.27 | 8.5–21 | 1.26–9.45 | 0.7–2.77 | 4.5–9.51 | 6.33–22.2 | 1.19–2.02 | nd–8.29 | 40.2–66 | |
Yellow catfish | 1.23 | 6.67 | 1.88 | 1.22 | 6.40 | 6.35 | 3.92 | 11.4 | 39.1 |
1.16 | 5.64 | 1.58 | 1.03 | 5.71 | 4.77 | 3.45 | 9.91 | 33.1 | |
0.23–2.54 | 0.99–17.8 | 0.49–5.68 | 0.11–2.84 | 0.45–17.8 | 1.38–14.4 | 1.32–8.86 | 3.35–22.4 | 14.2–72.2 | |
Silver carp | 0.6 | 2.41 | 0.53 | 0.22 | 1.17 | 1.37 | 1.50 | 1.85 | 9.65 |
0.65 | 2.07 | 0.48 | 0.24 | 0.99 | 1.24 | 1.21 | 0.94 | 9.08 | |
0.29–0.8 | 1.55–3.96 | 0.45–0.7 | nd–0.35 | 0.58–2.11 | 0.74–2.27 | 0.32–3.24 | nd–4.59 | 5.58–14.9 | |
White semiknife carp | 0.83 | 2.67 | 0.88 | 0.18 | 2.25 | 1.62 | 1.71 | 4.16 | 14.3 |
0.68 | 2.05 | 0.57 | 0.17 | 2.31 | 1.68 | 1.49 | 0.94 | 13.2 | |
0.38–1.75 | 1.32–8.34 | 0.43–1.91 | nd–0.36 | 0.94–4.94 | 0.1–3.22 | 0.21–4.75 | nd–9.81 | 8.06–22.6 | |
Crucian carp | 0.99 | 2.36 | 0.76 | 0.41 | 1.88 | 1.69 | 1.73 | 9.79 | 19.6 |
0.98 | 2.03 | 0.63 | 0.22 | 1.08 | 1.65 | 1.22 | 7.74 | 17.9 | |
0.19–2.56 | 1.03–5.81 | 0.09–1.72 | nd–1.99 | 0.37–5.08 | 0.36–3.43 | 0.27–4.34 | 2.34–21.7 | 7.01–35 | |
Loach | 0.32 | 0.79 | 0.29 | 0.1 | 0.85 | 0.51 | 0.66 | 2.36 | 5.88 |
0.26 | 0.66 | 0.19 | 0.05 | 0.5 | 0.44 | 0.69 | 0.94 | 5.28 | |
0.07–0.86 | 0.33–2.2 | 0.06–1.15 | nd–0.26 | 0.09–3.03 | 0.09–1.34 | nd–1.15 | nd–8.5 | 2.36–12.4 | |
Crab | 0.79 | 1.32 | 0.46 | 0.27 | 5.62 | 2.41 | 2.09 | 5.17 | 18 |
0.75 | 1.29 | 0.46 | 0.26 | 4.32 | 1.66 | 2.01 | 5.94 | 18.8 | |
0.47–1.14 | 0.88–2.01 | 0.24–0.68 | nd–0.61 | 1.91–11.9 | 1.21–6.12 | 0.81–3.55 | nd–12.3 | 11.9–22.7 | |
Shrimp | 1.95 | 1.36 | 0.44 | 0.57 | 4.99 | 1.99 | 3.55 | 4.70 | 19.6 |
1.38 | 1.38 | 0.29 | 0.34 | 5.12 | 1.95 | 3.51 | 4.16 | 17.2 | |
0.95–3.48 | 0.31–2.54 | 0.19–1.15 | 0.17–1.81 | 1.59–6.78 | 1.46–2.57 | 2–5.58 | nd–9.54 | 14–29.3 | |
River snail | 3.91 | 5.81 | 8.52 | 2.08 | 3.09 | 6.40 | 4.22 | 26.7 | 60.7 |
1.79 | 5.41 | 6.88 | 1.51 | 3.8 | 6.07 | 4.42 | 26.1 | 58.5 | |
1.05–10.6 | 4.52–7.74 | 4.59–17.6 | 0.53–5.39 | 0.96–3.82 | 2.84–9.82 | 2.19–6.76 | 21.3–32.4 | 52.9–74.8 | |
Aucha perch | 0.47 | 3.46 | 0.74 | 0.13 | 1.09 | 1.1 | 1.41 | 2.62 | 11 |
0.47 | 3.46 | 0.74 | 0.13 | 1.09 | 1.1 | 1.41 | 2.62 | 11 | |
0.45–0.48 | 3.36–3.56 | 0.65–0.82 | 0.13–0.13 | 0.98–1.2 | 0.88–1.32 | 1.01–1.8 | nd–4.3 | 10–12 | |
Coilia nasus | 3.2 | 6.55 | 2.91 | 0.81 | 2.44 | 2.41 | 0.77 | 3.07 | 22.1 |
3.49 | 5.02 | 1.58 | 0.69 | 2.17 | 2.07 | 0.7 | 2.79 | 18.1 | |
0.34–6.73 | 1.78–13.2 | 0.18–10.4 | 0.22–1.81 | 0.51–4.91 | 1.26–4.13 | nd–1.4 | nd–6.19 | 12.9–39.5 | |
Northern snakehead | 0.94 | 2.59 | 1.07 | 0.51 | 4.28 | 2.23 | 1.67 | 10 | 23.3 |
0.62 | 2.12 | 0.8 | 0.45 | 5.30 | 2.15 | 1.69 | 10.1 | 22.8 | |
0.45–1.74 | 1.77–4.29 | 0.59–2.07 | 0.22–0.97 | 0.34–7.35 | 1.52–3.39 | 0.5–2.78 | 5.77–15.4 | 17.3–29.9 | |
Culter alburnus | 5.65 | 13.25 | 1.62 | 0.41 | 14.23 | 10.6 | 6.80 | 15.6 | 68.2 |
4.3 | 13.03 | 0.72 | 0.34 | 14.65 | 9.64 | 7.22 | 13.6 | 68.7 | |
0.86–13.2 | 3.34–23.6 | nd–5.02 | nd–0.89 | 9.61–18 | 5.52–17.7 | 1.24–11.5 | nd–34.4 | 49.6–85.8 | |
Oriental sheatfish | 3.39 | 10.5 | 1.80 | 1.01 | 2.64 | 3.29 | 2.51 | 8.88 | 34 |
2.93 | 11.5 | 1.82 | 0.84 | 2.27 | 3.24 | 2.16 | 3.61 | 28.8 | |
1.56–5.88 | 3.97–17.8 | 0.21–2.77 | 0.25–2 | 0.6–5.72 | 0.43–7.01 | 0.64–4.37 | nd–25.8 | 24–49.3 | |
Silver sillago | 4.83 | 4.21 | 10.3 | 0.52 | 10.5 | 9.65 | 3.18 | 4.41 | 47.6 |
4.5 | 3.56 | 8.94 | 0.5 | 9.98 | 4.64 | 2.89 | 3.44 | 48.3 | |
3.85–6.14 | 2.95–6.13 | 8.25–13.8 | 0.43–0.64 | 7.58–13.9 | 3.55–20.8 | 1.06–5.6 | nd–8.84 | 45.6–48.9 | |
Japanese eel | 0.43 | 2.17 | 0.64 | 0.15 | 2.17 | 1.03 | 1.5 | 0.94 | 9.02 |
0.43 | 2.17 | 0.64 | 0.15 | 2.17 | 1.03 | 1.5 | 0.94 | 9.02 | |
0.37–0.48 | 2.11–2.22 | 0.63–0.64 | 0.14–0.15 | 0.4–3.93 | 1.01–1.05 | 1.48–1.52 | nd | 7.37–10.7 |
PBDE | BSAF | BCF | log Kow | TMF | p | r | Slope |
---|---|---|---|---|---|---|---|
BDE-28 | 5.51 | 2.30 × 105 | 5.94 | 1.65 | 0.000 | 0.62 | 0.5 |
BDE-47 | 3.74 | 2.32 × 105 | 6.81 | 1.63 | 0.004 | 0.48 | 0.49 |
BDE-100 | 2.76 | 1.72 × 105 | 7.24 | 1.32 | 0.049 | 0.67 | 0.28 |
BDE-99 | 1.14 | 4.72 × 104 | 7.32 | 1.09 | 0.077 | 0.49 | 0.09 |
BDE-153 | 6.56 | 4.07 × 104 | 7.90 | 1.40 | 0.069 | 0.34 | 0.34 |
BDE-154 | 4.28 | 3.26 × 104 | 7.82 | 0.90 | 0.283 | 0.50 | −0.11 |
BDE-183 | 1.67 | 1.77 × 104 | 8.27 | 1.57 | 0.003 | 0.06 | 0.45 |
BDE-209 | 1.98 | 2.39 × 105 | 6.27 | 1.49 | 0.001 | 0.40 | 0.4 |
ΣPBDEs | 3.64 | 7.37 × 104 | - | 1.54 | 0.001 | 0.50 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, J.; Hu, G.; Liu, X.; Yu, Y.; Cai, D.; Ding, P.; Li, X.; Zhang, L.; Xiang, C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. Int. J. Environ. Res. Public Health 2023, 20, 2671. https://doi.org/10.3390/ijerph20032671
Li B, Wang J, Hu G, Liu X, Yu Y, Cai D, Ding P, Li X, Zhang L, Xiang C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. International Journal of Environmental Research and Public Health. 2023; 20(3):2671. https://doi.org/10.3390/ijerph20032671
Chicago/Turabian StyleLi, Bei, Juanheng Wang, Guocheng Hu, Xiaolin Liu, Yunjiang Yu, Dan Cai, Ping Ding, Xin Li, Lijuan Zhang, and Chongdan Xiang. 2023. "Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta" International Journal of Environmental Research and Public Health 20, no. 3: 2671. https://doi.org/10.3390/ijerph20032671
APA StyleLi, B., Wang, J., Hu, G., Liu, X., Yu, Y., Cai, D., Ding, P., Li, X., Zhang, L., & Xiang, C. (2023). Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. International Journal of Environmental Research and Public Health, 20(3), 2671. https://doi.org/10.3390/ijerph20032671