Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethics Approval and Informed Consent
2.3. Study Population and Measurements
2.4. Quantification of 1-OHPG and t,t-MA Concentrations
2.5. Measurement of Haematological, Hepatic, and Renal Parameters
2.6. Statistical Analysis
3. Results
3.1. Demographics of All Oil Spill Clean-Up Workers (n = 869)
3.2. Characteristics of Subgroup of Oil Spill Clean-Up Workers (n = 169)
3.3. Latent Trajectories and Trends of Haematological, Hepatic, and Renal Parameters (n = 869)
3.4. Longitudinal Trajectories by Age Group
3.5. Longitudinal Trajectories by Smoking Status (n = 169)
3.6. Longitudinal Trajectories by Concentrations of Urinary 1-OHPG and t,t-MA (n = 169)
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beyer, J.; Jonsson, G.; Porte, C.; Krahn, M.M.; Ariese, F. Analytical Methods for Determining Metabolites of Polycyclic Aromatic Hydrocarbon (PAH) Pollutants in Fish Bile: A Review. Environ. Toxicol. Pharmacol. 2010, 30, 224–244. [Google Scholar] [CrossRef] [PubMed]
- De Hoop, L.; Schipper, A.M.; Leuven, R.S.E.W.; Huijbregts, M.A.J.; Olsen, G.H.; Smit, M.G.D.; Hendriks, A.J. Sensitivity of Polar and Temperate Marine Organisms to Oil Components. Environ. Sci. Technol. 2011, 45, 9017–9023. [Google Scholar] [CrossRef] [PubMed]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens--Part F: Chemical Agents and Related Occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Occupational Exposures in Petroleum Refining; Crude on and Major Petroleum Fuels. Int. Agency Res. Cancer 1988, 45, 331. [Google Scholar]
- Choi, Y.H.; Hong, J.Y.; Lee, M.S. A Retrospective Mid- and Long-Term Follow-up Study on the Changes in Hematologic Parameters in the Highly Exposed Residents of the Hebei Spirit Oil Spill in Taean, South Korea. Osong Public Health Res. Perspect. 2017, 8, 358–366. [Google Scholar] [CrossRef]
- D’Andrea, M.A.; Reddy, G.K. The Development of Long-Term Adverse Health Effects in Oil Spill Cleanup Workers of the Deepwater Horizon Offshore Drilling Rig Disaster. Front. Public Health 2018, 6, 117. [Google Scholar] [CrossRef]
- Jongeneelen, F.J. Benchmark Guideline for Urinary 1-Hydroxypyrene as Biomarker of Occupational Exposure to Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg. 2001, 45, 3–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Shen, G.; Zhong, J.; Wang, C.; Wei, S.; Chen, C.; Chen, Y.; Lu, Y.; Shen, H.; et al. Dietary and Inhalation Exposure to Polycyclic Aromatic Hydrocarbons and Urinary Excretion of Monohydroxy Metabolites—A Controlled Case Study in Beijing, China. Environ. Pollut. 2014, 184, 515–522. [Google Scholar] [CrossRef]
- Sithisarankul, P.; Intawong, C. Preliminary Report of Health Effects Among Oil Spill Cleanup Workers and Volunteers, Thailand, 2013. J. Health Res. 2015, 29, 197–201. [Google Scholar]
- Wiwanitkit, V.; Suwansaksri, J.; Nasuan, P. Urine Trans,Trans-Muconic Acid as a Biomarker for Benzene Exposure in Gas Station Attendants in Bangkok, Thailand. Ann. Clin. Lab. Sci. 2001, 31, 399–401. [Google Scholar]
- Bechtold, W.E.; Lucier, G.; Birnbaum, L.S.; Yin, S.N.; Li, G.L.; Henderson, R.F. Muconic Acid Determinations in Urine as a Biological Exposure Index for Workers Occupationally Exposed to Benzene. Am. Ind. Hyg. Assoc. J. 1991, 52, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B. Levels of Selected Urinary Metabolites of Volatile Organic Compounds among Children Aged 6-11 Years. Environ. Res. 2015, 142, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Strickland, P.; Kang, D.; Sithisarankul, P. Polycyclic Aromatic Hydrocarbon Metabolites in Urine as Biomarkers of Exposure and Effect. Environ. Health Perspect. 1996, 104, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Abou-ElWafa, H.S.; Albadry, A.A.; El-Gilany, A.H.; Bazeed, F.B. Some Biochemical and Hematological Parameters among Petrol Station Attendants: A Comparative Study. BioMed Res. Int. 2015, 2015, 418724. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Cincinelli, A.; Martellini, T.; Malik, R.N. Biomarkers of PAH Exposure and Hematologic Effects in Subjects Exposed to Combustion Emission during Residential (and Professional) Cooking Practices in Pakistan. Environ. Sci. Pollut. Res. 2016, 23, 1284–1299. [Google Scholar] [CrossRef]
- Samadi, M.T.; Shakerkhatibi, M.; Poorolajal, J.; Rahmani, A.; Rafieemehr, H.; Hesam, M. Association of Long Term Exposure to Outdoor Volatile Organic Compounds (BTXS)with pro-Inflammatory Biomarkers and Hematologic Parameters in Urban Adults: A Cross-Sectional Study in Tabriz, Iran. Ecotoxicol. Environ. Saf. 2019, 180, 152–159. [Google Scholar] [CrossRef]
- Ingviya, T.; Intawong, C.; Abubaker, S.; Strickland, P.T. Exposure Assessment of Rayong Oil Spill Cleanup Workers. Expo. Health 2020, 12, 617–628. [Google Scholar] [CrossRef]
- Owusu, B.A.; Lim, A.; Intawong, C.; Rheanpumikankit, S.; Suksri, S.; Ingviya, T. Haematological, Renal, and Hepatic Function Changes among Rayong Oil Spill Clean-up Workers: A Longitudinal Study. Int. Arch. Occup. Environ. Health 2022, 95, 1481–1489. [Google Scholar] [CrossRef]
- Zielinska-Danch, W.; Wardas, W.; Sobczak, A.; Szołtysek-Bołdys, I. Estimation of Urinary Cotinine Cut-off Points Distinguishing Non-Smokers, Passive and Active Smokers. Biomarkers 2007, 12, 484–496. [Google Scholar] [CrossRef]
- Kang, D.; Rothman, N.; Cho, S.H.; Lim, H.S.; Kwon, H.J.; Kim, S.M.; Schwartz, B.; Strickland, P.T. Association of Exposure to Polycyclic Aromatic Hydrocarbons (Estimated from Job Category) with Concentration of 1-Hydroxypyrene Glucuronide in Urine from Workers at a Steel Plant. Occup. Environ. Med. 1995, 52, 593–599. [Google Scholar] [CrossRef]
- Intawong, C.; Khunkitti, R.; Sripaung, N.; Yapun, C.; Buachoom, P.; Tupwongse, V.; Sithisarankul, P. Interlaboratory Comparison for Urinary Trans, Trans-Muconic Acid Testing in Rayong Province. Thammasat Med. J. 2015, 15, 363–375. [Google Scholar]
- Dayimu, A.; Qian, W.; Fan, B.; Wang, C.; Li, J.; Wang, S.; Ji, X.; Zhou, G.; Zhang, T.; Xue, F. Trajectories of Haemoglobin and Incident Stroke Risk: A Longitudinal Cohort Study. BMC Public Health 2019, 19, 1395. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, W.A.; Uddin, M.; Qadeer, R.; Shafique, K. Trajectories of Vital Status Parameters and Risk of Mortality among Acute Organophosphorus Poisoning Patients-A Latent Class Growth Analysis. BMC Public Health 2020, 20, 1538. [Google Scholar] [CrossRef] [PubMed]
- Randall, D.A.; Patterson, J.A.; Gallimore, F.; Morris, J.M.; Simpson, J.M.; McGee, T.M.; Ford, J.B. Haemoglobin Trajectories during Pregnancy and Associated Outcomes Using Pooled Maternity and Hospitalization Data from Two Tertiary Hospitals. Vox Sang. 2019, 114, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Proust-Lima, C.; Philipps, V.; Liquet, B. Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package Lcmm. J. Stat. Softw. 2017, 78. [Google Scholar] [CrossRef]
- Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, L.J.; Loscalzo, J. Harrison’s Principles of Internal Medicine Vol 1, 20th ed.; Mcgraw-Hill: New York, NY, USA, 2015. [Google Scholar]
- R Core Team. The R Project for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Cakmak, S.; Cole, C.; Hebbern, C.; Andrade, J.; Dales, R. Associations between Blood Volatile Organic Compounds, and Changes in Hematologic and Biochemical Profiles, in a Population-Based Study. Environ. Int. 2020, 145, 106121. [Google Scholar] [CrossRef]
- Kponee, K.Z.; Chiger, A.; Kakulu, I.I.; Vorhees, D.; Heiger-Bernays, W. Petroleum Contaminated Water and Health Symptoms: A Cross-Sectional Pilot Study in a Rural Nigerian Community. Environ. Health Glob. Access Sci. Source 2015, 14, 86. [Google Scholar] [CrossRef]
- McLoone, P.; Dyussupov, O.; Nurtlessov, Z.; Kenessariyev, U.; Kenessary, D. The Effect of Exposure to Crude Oil on the Immune System. Health Implications for People Living near Oil Exploration Activities. Int. J. Environ. Health Res. 2021, 31, 762–787. [Google Scholar] [CrossRef]
- Malenica, M.; Prnjavorac, B.; Bego, T.; Dujic, T.; Semiz, S.; Skrbo, S.; Gusic, A.; Hadzic, A.; Causevic, A. Effect of Cigarette Smoking on Haematological Parameters in Healthy Population. Med. Arch. 2017, 71, 132–136. [Google Scholar] [CrossRef]
- Pedersen, K.M.; Çolak, Y.; Ellervik, C.; Hasselbalch, H.C.; Bojesen, S.E.; Nordestgaard, B.G. Smoking and Increased White and Red Blood Cells: A Mendelian Randomization Approach in the Copenhagen General Population Study. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 965–977. [Google Scholar] [CrossRef]
- Ramírez, M.I.; Arévalo-Jaramillo, A.P.; Espinosa, C.I.; Bailon-Moscoso, N. Is the Anemia in Men an Effect of the Risk of Crude Oil Contamination? Toxicol. Rep. 2022, 9, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Shahsavani, S.; Fararouei, M.; Soveid, M.; Hoseini, M.; Dehghani, M. The Association between the Urinary Biomarkers of Polycyclic Aromatic Hydrocarbons and Risk of Metabolic Syndromes and Blood Cell Levels in Adults in a Middle Eastern Area. J. Environ. Health Sci. Eng. 2021, 19, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Ross, D. The Role of Metabolism and Specific Metabolites in Benzene-Induced Toxicity: Evidence and Issues. J. Toxicol. Environ. Health Part A 2000, 61, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, X.; Bi, Y.; Ma, Q. Stem Cell and Benzene-Induced Malignancy and Hematotoxicity. Chem. Res. Toxicol. 2012, 25, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Poli, D.; Mozzoni, P.; Pinelli, S.; Cavallo, D.; Papaleo, B.; Caporossi, L. Sex Difference and Benzene Exposure: Does It Matter? Int. J. Environ. Res. Public Health 2022, 19, 2339. [Google Scholar] [CrossRef]
- Palackal, N.T.; Lee, S.H.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Activation of Polycyclic Aromatic Hydrocarbon Trans-Dihydrodiol Proximate Carcinogens by Human Aldo-Keto Reductase (AKR1C) Enzymes and Their Functional Overexpression in Human Lung Carcinoma (A549) Cells. J. Biol. Chem. 2002, 277, 24799–24808. [Google Scholar] [CrossRef]
- Sun, S.; Mao, W.; Tao, S.; Zou, X.; Tian, S.; Qian, S.; Yao, C.; Zhang, G.; Chen, M. Polycyclic Aromatic Hydrocarbons and the Risk of Kidney Stones in US Adults: An Exposure-Response Analysis of NHANES 2007–2012. Int. J. Gen. Med. 2021, 14, 2665–2676. [Google Scholar] [CrossRef]
- Zhu, L.; Fang, Z.; Jin, Y.; Chang, W.; Huang, M.; He, L.; Chen, Y.; Yao, Y. Association between Serum Alanine and Aspartate Aminotransferase and Blood Pressure: A Cross-Sectional Study of Chinese Freshmen. BMC Cardiovasc. Disord. 2021, 21, 472. [Google Scholar] [CrossRef]
- Wu, M.-T.; Mao, I.-F.; Wypij, D.; Ho, C.-K.; Chen, J.-R.; Christiani, D.C. Serum Liver Function Profiles in Coking Workers. Am. J. Ind. Med. 1997, 32, 478–486. [Google Scholar] [CrossRef]
Demographic Factor | Description | Number of Workers | Percentage |
---|---|---|---|
Sex | Men | 750 | 86.30% |
Women | 119 | 13.70% | |
Age group at baseline | 20–29 | 140 | 16.10% |
30–39 | 167 | 19.20% | |
40–49 | 276 | 31.80% | |
50+ | 93 | 10.70% | |
Not stated | 193 | 22.20% | |
Background occupation | * PTTGC staff | 337 | 38.80% |
Civilian | 259 | 29.80% | |
Military | 273 | 31.40% | |
Smoking status | |||
Non-smokers | Cotinine < 50 ng/mL | 60 | 6.90% |
Smokers | Cotinine > 50 ng/mL | 109 | 12.50% |
Unknown | Cotinine levels are not available. | 700 | 80.60% |
Demographic Factors | Description | Number of Workers | Percentage |
---|---|---|---|
Sex | Men | 160 | 94.70% |
Women | 9 | 5.30% | |
Age group at baseline (years) | 20–29 | 22 | 13.00% |
30–39 | 40 | 23.90% | |
40–49 | 73 | 43.10% | |
50+ | 34 | 20.00% | |
Background occupation | PTTGC staff | 29 | 17.20% |
Civilian | 75 | 44.40% | |
Military | 65 | 38.40% | |
Cotinine level (ng/mL) | Median (1st–3rd quartiles) | 7.51 (3.11–1040.79) | |
Non-smokers | Cotinine < 50 ng/mL | 109 | 64.50% |
Smokers | Cotinine > 50 ng/mL | 60 | 35.50% |
* 1-OHPG (n = 169) | Median (1st–3rd quartiles) | 0.76 (0.31–2.27) | |
High | 1-OHPG > 5.0 pmol/mL | 17 | 10.10% |
Low | 1-OHPG < 1.0 pmol/mL | 97 | 57.40% |
Moderate | 1.0–5.0 pmol/mL | 55 | 32.50% |
** t,t-MA (n = 169) | Median (1st–3rd quartiles) | 0. 00 (0.00–36.40) | |
Detectable | 48 | 28.40% | |
Undetectable | 121 | 71.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusu, B.A.; Lim, A.; Pongsiri, N.; Intawong, C.; Rheanpumikankit, S.; Suksri, S.; Ingviya, T. Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2871. https://doi.org/10.3390/ijerph20042871
Owusu BA, Lim A, Pongsiri N, Intawong C, Rheanpumikankit S, Suksri S, Ingviya T. Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis. International Journal of Environmental Research and Public Health. 2023; 20(4):2871. https://doi.org/10.3390/ijerph20042871
Chicago/Turabian StyleOwusu, Benjamin Atta, Apiradee Lim, Nitinun Pongsiri, Chanthip Intawong, Sunthorn Rheanpumikankit, Saijit Suksri, and Thammasin Ingviya. 2023. "Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis" International Journal of Environmental Research and Public Health 20, no. 4: 2871. https://doi.org/10.3390/ijerph20042871
APA StyleOwusu, B. A., Lim, A., Pongsiri, N., Intawong, C., Rheanpumikankit, S., Suksri, S., & Ingviya, T. (2023). Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis. International Journal of Environmental Research and Public Health, 20(4), 2871. https://doi.org/10.3390/ijerph20042871