Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity
Abstract
:1. Introduction
2. Methods
2.1. Participants and Procedures
2.2. Liver Assessment and NAFLD
2.3. Dietary Intake Assessment
3. Statistical Analysis
4. Results
4.1. Sample Characteristics
4.2. Dietary Intake
4.3. Fat Intake
4.4. High n-6 to n-3 Ratio
4.5. Fatty Acid Intake and Liver Steatosis and Fibrosis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Census Bureau. Profile America Facts for Features: Hispanic Heritage Month 2015; U.S. Department of Commerce, Economics and Statistics Administration: Washington, DC, USA, 2015; pp. 1–6.
- Lazo, M.; Bilal, U.; Perez-Escamilla, R. Epidemiology of NAFLD and Type 2 Diabetes: Health Disparities among Persons of Hispanic Origin. Curr. Diab. Rep. 2015, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, M.W.; Budoff, M.; Zeb, I.; Li, D.; Foster, T. NAFLD prevalence differs among hispanic subgroups: The Multi-Ethnic Study of Atherosclerosis. World J. Gastroenterol. 2014, 20, 4987–4993. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Raman, M.; Taylor, L.; Swain, M.G.; Shaheen, A.A. Dietary Patterns and Components in Nonalcoholic Fatty Liver Disease (NAFLD): What Key Messages Can Health Care Providers Offer? Nutrients 2019, 11, 2878. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef]
- Khadge, S.; Sharp, J.G.; Thiele, G.M.; McGuire, T.R.; Klassen, L.W.; Duryee, M.J.; Britton, H.C.; Dafferner, A.J.; Beck, J.; Black, P.N.; et al. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. J. Nutr. Biochem. 2018, 52, 92–102. [Google Scholar] [CrossRef]
- Tobin, D.; Brevik-Andersen, M.; Qin, Y.; Innes, J.K.; Calder, P.C. Evaluation of a High Concentrate Omega-3 for Correcting the Omega-3 Fatty Acid Nutritional Deficiency in Non-Alcoholic Fatty Liver Disease (CONDIN). Nutrients 2018, 10, 1126. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Perez-Escamilla, R.; Putnik, P. The role of acculturation in nutrition, lifestyle, and incidence of type 2 diabetes among Latinos. J. Nutr. 2007, 137, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Perez-Escamilla, R. Dietary quality among Latinos: Is acculturation making us sick? J. Am. Diet. Assoc. 2009, 109, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Torres, M.; Tinker, L.F.; Allison, M.A.; Breymeyer, K.L.; Garcia, L.; Kroenke, C.H.; Lampe, J.W.; Shikany, J.M.; Van Horn, L.; Neuhouser, M.L. Development and Use of a Traditional Mexican Diet Score in Relation to Systemic Inflammation and Insulin Resistance among Women of Mexican Descent. J. Nutr. 2015, 145, 2732–2740. [Google Scholar] [CrossRef]
- Santiago-Torres, M.; Kratz, M.; Lampe, J.W.; Tapsoba Jde, D.; Breymeyer, K.L.; Levy, L.; Villasenor, A.; Wang, C.Y.; Song, X.; Neuhouser, M.L. Metabolic responses to a traditional Mexican diet compared with a commonly consumed US diet in women of Mexican descent: A randomized crossover feeding trial. Am. J. Clin. Nutr. 2016, 103, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Valerino-Perea, S.; Lara-Castor, L.; Armstrong, M.E.G.; Papadaki, A. Definition of the Traditional Mexican Diet and Its Role in Health: A Systematic Review. Nutrients 2019, 11, 2803. [Google Scholar] [CrossRef] [PubMed]
- Valerino-Perea, S.; Armstrong, M.E.G.; Papadaki, A. Adherence to a traditional Mexican diet and non-communicable disease-related outcomes: Secondary data analysis of the cross-sectional Mexican National Health and Nutrition Survey. Br. J. Nutr. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Amirhamidi, Z.; Ejtahed, H.S.; Bahadoran, Z.; Azizi, F. Relationship between Diet and Non-alcoholic Fatty Liver Disease: A Review Article. Iran. J. Public Health 2017, 46, 1007–1017. [Google Scholar]
- Drake, I.; Sonestedt, E.; Ericson, U.; Wallstrom, P.; Orho-Melander, M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 2018, 119, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Blomquist, S.; Coletta, D.; Mandarino, L.J.; Hallmark, B.; Yang, C.; Rich, S.; Manichaikul, A.W.; Chilton, F. Fatty Acid Desaturase Gene-Induced Omega-3 Deficiency in Amerindian-Ancestry Hispanic Populations. FASEB J. 2020, 34, 1-1. [Google Scholar] [CrossRef]
- Elizondo, A.; Araya, J.; Rodrigo, R.; Poniachik, J.; Csendes, A.; Maluenda, F.; Diaz, J.C.; Signorini, C.; Sgherri, C.; Comporti, M.; et al. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity 2007, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004, 106, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.O.; Morrill, K.E.; Lopez-Pentecost, M.; Villavicencio, E.A.; Vogel, R.M.; Bell, M.L.; Klimentidis, Y.C.; Marrero, D.G.; Thomson, C.A. Nonalcoholic Fatty Liver Disease and Associated Risk Factors in a Community-Based Sample of Mexican-Origin Adults. Hepatol. Commun. 2022, 6, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J.; et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.; Le Bail, B.; Choi, P.C.; Kowo, M.; Chan, A.W.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.W.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Han, K.H.; Chon, C.Y.; Park, Y.N.; Choi, E.H.; Kim, D.Y. How many valid measurements are necessary to assess liver fibrosis using FibroScan(R) in patients with chronic viral hepatitis? An analysis of subjects with at least 10 valid measurements. Yonsei Med. J. 2012, 53, 337–345. [Google Scholar] [CrossRef]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef]
- Xia, M.F.; Bian, H.; Gao, X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019, 10, 877. [Google Scholar] [CrossRef]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef]
- Ramirez-Silva, I.; Villalpando, S.; Moreno-Saracho, J.E.; Bernal-Medina, D. Fatty acids intake in the Mexican population. Results of the National Nutrition Survey 2006. Nutr. Metab. 2011, 8, 33. [Google Scholar] [CrossRef]
- Han, J.M.; Jo, A.N.; Lee, S.M.; Bae, H.S.; Jun, D.W.; Cho, Y.K.; Suk, K.T.; Yoon, J.H.; Ahn, S.B.; Cho, Y.J.; et al. Associations between intakes of individual nutrients or whole food groups and non-alcoholic fatty liver disease among Korean adults. J. Gastroenterol. Hepatol. 2014, 29, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- de Castro, G.S.; Calder, P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018, 37, 37–55. [Google Scholar] [CrossRef]
- Guo, X.F.; Yang, B.; Tang, J.; Li, D. Fatty acid and non-alcoholic fatty liver disease: Meta-analyses of case-control and randomized controlled trials. Clin. Nutr. 2018, 37, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef]
- Heinzer, K.; Lang, S.; Farowski, F.; Wisplinghoff, H.; Vehreschild, M.; Martin, A.; Nowag, A.; Kretzschmar, A.; Scholz, C.J.; Roderburg, C.; et al. Dietary omega-6/omega-3 ratio is not associated with gut microbiota composition and disease severity in patients with nonalcoholic fatty liver disease. Nutr. Res. 2022, 107, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Enos, R.T.; Velazquez, K.T.; McClellan, J.L.; Cranford, T.L.; Walla, M.D.; Murphy, E.A. Lowering the dietary omega-6: Omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model. Nutr. Res. 2015, 35, 449–459. [Google Scholar] [CrossRef]
- Tanaka, N.; Sano, K.; Horiuchi, A.; Tanaka, E.; Kiyosawa, K.; Aoyama, T. Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 2008, 42, 413–418. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Abdelmalek, M.F.; Suzuki, A.; Cummings, O.W.; Chojkier, M.; Group, E.-A.S. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 2014, 147, 377–384.e1. [Google Scholar] [CrossRef]
- Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg. Nutr. 2015, 4, 109–116. [Google Scholar] [CrossRef]
- Bothwell, E.K.; Ayala, G.X.; Conway, T.L.; Rock, C.L.; Gallo, L.C.; Elder, J.P. Underreporting of food intake among Mexican/Mexican-American Women: Rates and correlates. J. Am. Diet. Assoc. 2009, 109, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.; Blundell, J. Assessing dietary intake: Who, what and why of under-reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banna, J.C.; Fialkowski, M.K.; Townsend, M.S. Misreporting of dietary intake affects estimated nutrient intakes in low-income Spanish-speaking women. J. Acad. Nutr. Diet. 2015, 115, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Non-NAFLD Participants (n = 140) | Suspected NAFLD Cases a (n = 145) |
---|---|---|
Liver steatosis (CAP dB/m, mean ± SD) * | 246.61 ± 30.25 | 328.86 ± 28.80 |
Liver fibrosis (kPa, mean ± SD) * | 4.93 ± 1.20 | 6.39 ± 3.66 |
Age (years, mean ± SD) | 44.5 ± 11.6 | 44.8 ± 10.8 |
Sex, n (%) | ||
Men | 53 (38%) | 50 (34%) |
Women | 87 (62%) | 95 (66%) |
Health insurance, n (%) | ||
Yes | 90 (64%) | 85 (59%) |
Education, n (%) | ||
Less than high school | 34 (24%) | 46 (32%) |
High school or GED | 30 (21%) | 35 (24%) |
Greater than high school | 76 (54%) | 64 (44%) |
Language Spoken at Home, n (%) | ||
English | 40 (29%) | 36 (25%) |
Spanish | 100 (71%) | 109 (75%) |
Birthplace, n (%) | ||
Foreign Born | 92 (66%) | 107 (74%) |
U.S. Born | 48 (38%) | 38 (26%) |
BMI (kg/m2, mean ± SD) | 30.7 ± 4.1 | 34.5 ± 5.6 |
BMI Classification, n (%) * | ||
Overweight (25–29.9 kg/m2) | 69 (49%) | 33 (23%) |
Obese (≥30 kg/m2) | 71 (51%) | 112 (77%) |
Type 2 Diabetes, n (%) * | 11 (8%) | 17 (12%) |
Cancer History, n (%) | 2 (1%) | 2 (1%) |
Non-NAFLD Participants (n = 140) | Suspected NAFLD Cases (n = 145) | |||
---|---|---|---|---|
Component | Mean | SD | Mean | SD |
Total Grams | 3581.66 | 1450.34 | 3596.22 | 1347.85 |
Energy (kcal) | 1548.45 | 552.81 | 1436.75 | 522.34 |
Total Protein (g) | 69.30 | 26.26 | 65.83 | 25.79 |
Total Carbohydrate (g) * | 184.82 | 70.92 | 165.64 | 67.51 |
Total Sugars (g) * | 73.18 | 35.29 | 65.74 | 36.10 |
Added Sugars (g) | 46.05 | 33.36 | 41.12 | 31.30 |
Alcohol (g) * | 2.27 | 5.58 | 1.05 | 3.99 |
Cholesterol (mg) | 280.20 | 153.09 | 292.12 | 152.02 |
Total Fat (g) | 60.37 | 26.24 | 58.86 | 26.83 |
Total Saturated Fatty acid (SFA) (g) | 19.11 | 9.07 | 18.73 | 9.72 |
SFA 14:0 (myristic acid) (g) | 1.46 | 0.89 | 1.49 | 1.16 |
SFA 16:0 (palmitic acid) (g) | 10.76 | 4.75 | 10.63 | 5.15 |
SFA 18:0 (stearic acid) (g) | 4.71 | 2.43 | 4.52 | 2.39 |
Total Monounsaturated Fatty acid (MUFA) (g) | 21.54 | 9.55 | 21.25 | 10.35 |
MUFA 16:1 (palmitoleic acid) (g) | 0.97 | 0.50 | 1.01 | 0.60 |
MUFA 18:1 (oleic acid) (g) | 20.13 | 8.94 | 19.78 | 9.62 |
Total Polyunsaturated Fatty acid (PUFA) (g) | 14.15 | 7.63 | 13.46 | 7.29 |
PUFA 18:2 n-6 (linoleic acid) (g) | 12.36 | 6.69 | 11.65 | 6.30 |
PUFA 18:3 n-3 (alpha-linolenic acid [ALA]) (g) | 1.38 | 0.89 | 1.34 | 0.95 |
PUFA 20:4 n-6 (arachidonic acid) (g) | 0.14 | 0.08 | 0.16 | 0.23 |
PUFA 20:5 n-3 (eicosapentaenoic acid [EPA]) (g) | 0.03 | 0.04 | 0.04 | 0.14 |
PUFA 22:5 n-3 (docosapentaenoic acid [DPA]) (g) | 0.02 | 0.02 | 0.02 | 0.04 |
PUFA 22:6 n-3 (docosahexaenoic acid [DHA]) (g) | 0.07 | 0.11 | 0.09 | 0.27 |
Total Trans-Fatty acid (TRANS) (g) | 1.50 | 0.97 | 1.49 | 1.08 |
n-3 Fatty acid (g) | 1.50 | 0.95 | 1.51 | 1.08 |
n-6: n-3 ratio | 8.95 | 2.65 | 8.71 | 2.70 |
LA: ALA ratio | 9.61 | 2.87 | 9.60 | 2.78 |
% Calories from Fat | 33.68 | 5.71 | 35.29 | 7.48 |
% Calories from Carbohydrate | 46.86 | 7.53 | 45.07 | 9.34 |
% Calories from Protein | 18.65 | 5.57 | 19.20 | 5.48 |
% Calories from Alcohol * | 0.82 | 2.01 | 0.43 | 1.55 |
% Calories from SFA | 10.63 | 2.68 | 11.19 | 3.19 |
% Calories from MUFA | 12.19 | 2.76 | 12.75 | 3.38 |
% Calories from PUFA | 7.67 | 2.27 | 8.00 | 2.62 |
% Calories from n-3s | 0.85 | 0.37 | 0.93 | 0.50 |
% Calories from LA | 6.97 | 2.23 | 7.15 | 2.39 |
Model 1 (Crude) | Model 2 a | Model 3 b | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | p-Value | Adjusted R2 | Estimate | p-Value | Adjusted R2 | Estimate | p-Value | Adjusted R2 | |
Steatosis | |||||||||
LA:ALA Ratio | 0.17 | 0.87 | −0.003 | 0.20 | 0.83 | 0.183 | - | - | |
n-6:n-3 Ratio | −0.51 | 0.64 | −0.003 | −0.11 | 0.91 | 0.183 | - | - | |
Fibrosis c | |||||||||
LA:ALA Ratio | 1.01 | 0.06 | 0.009 | 1.01 | 0.04 | 0.134 | 1.01 | 0.03 | 0.135 |
n-6:n-3 Ratio | 1.02 | 0.03 | 0.014 | 1.02 | 0.01 | 0.143 | 1.02 | 0.01 | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Pentecost, M.; Hallmark, B.; Thomson, C.A.; Chilton, F.; Garcia, D.O. Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity. Int. J. Environ. Res. Public Health 2023, 20, 3103. https://doi.org/10.3390/ijerph20043103
Lopez-Pentecost M, Hallmark B, Thomson CA, Chilton F, Garcia DO. Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity. International Journal of Environmental Research and Public Health. 2023; 20(4):3103. https://doi.org/10.3390/ijerph20043103
Chicago/Turabian StyleLopez-Pentecost, Melissa, Brian Hallmark, Cynthia A. Thomson, Floyd Chilton, and David O. Garcia. 2023. "Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity" International Journal of Environmental Research and Public Health 20, no. 4: 3103. https://doi.org/10.3390/ijerph20043103
APA StyleLopez-Pentecost, M., Hallmark, B., Thomson, C. A., Chilton, F., & Garcia, D. O. (2023). Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity. International Journal of Environmental Research and Public Health, 20(4), 3103. https://doi.org/10.3390/ijerph20043103