Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate
Abstract
:1. Introduction and Background—Glyphosate Use and Exposure
2. Difficulties in Laboratory Assessment of Glyphosate—Ongoing Research
3. Scope, Methods, and Results
4. Discussion
4.1. Sample Matrix Selection
4.2. Sample Preparation Method
4.3. Analytical Technique
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dill, G.M.; Douglas Sammons, R.; Feng, P.C.; Kohn, F.; Kretzmer, K.; Mehrsheikh, A.; Bleeke, M.; Honegger, J.L.; Farmer, D.; Wright, D.; et al. Glyphosate: Discovery, Development, Applications, and Properties. In Glyphosate Resistance in Crops and Weeds: History, Development, and Management; Nandula, V.K., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2010; pp. 2–34. [Google Scholar]
- Fon, T.A.D.; Uhing, E.H. Aminomethylenephosphonic Acids, Salts Thereof, and Process for Their Production. U.S. Patent 3,160,632, 8 December 1964. [Google Scholar]
- Schuette, J. Environmental Fate of Glyphosate; Environmental Monitoring & Pest Management Department of Pesticide Regulation Sacramento: Sacramento, CA, USA, 1998. [Google Scholar]
- Pollegioni, L.; Schonbrunn, E.; Siehl, D. Molecular basis of glyphosate resistance—Different approaches through protein engineering. FEBS J. 2011, 278, 2753–2766. [Google Scholar] [CrossRef]
- Nagy, K.; Tessema, R.A.; Szász, I.; Smeirat, T.; Al Rajo, A.; Ádám, B. Micronucleus Formation Induced by Glyphosate and Glyphosate-Based Herbicides in Human Peripheral White Blood Cells. Front. Public Health 2021, 9, 639143. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency—Ingredients Used in Pesticide Products: Glyphosate. Available online: https://www.epa.gov/ingredients-used-pesticide-products/glyphosate (accessed on 10 October 2022).
- European Food Safety Authority—Glyphosate: EFSA Updates Toxicological Profile. Available online: https://www.efsa.europa.eu/en/press/news/151112 (accessed on 10 October 2022).
- International Agency for Research on Cancer—IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/MonographVolume112-1.pdf (accessed on 10 October 2022).
- Suárez-Larios, K.; Salazar-Martínez, A.-M.; Montero-Montoya, R. Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. J. Toxicol. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- George, J.; Prasad, S.; Mahmood, Z.; Shukla, Y. Studies on glyphosate-induced carcinogenicity in mouse skin: A proteomic approach. J. Proteom. 2010, 73, 951. [Google Scholar] [CrossRef]
- Glyphosate Gets Five-Year Respite as License Renewed. Available online: https://www.foodnavigator.com/Article/2017/11/28/Glyphosate-gets-five-year-respite-as-license-renewed (accessed on 10 October 2022).
- Rendón-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef]
- Székács, A.; Darvas, B. Re-registration Challenges of Glyphosate in the European Union. Front. Environ. Sci. 2018, 6, 78. [Google Scholar] [CrossRef]
- Center for Food Safety—Major Flaws in European Glyphosate Assessment. Available online: https://www.centerforfoodsafety.org/press-releases/4121/major-flaws-in-european-glyphosate-assessment (accessed on 10 October 2022).
- Buekers, J.; Remy, S.; Bessems, J.; Govarts, E.; Rambaud, L.; Riou, M.; Tratnik, J.S.; Stajnko, A.; Katsonouri, A.; Makris, K.C.; et al. Glyphosate and AMPA in Human Urine of HBM4EU Aligned Studies: Part A Children. Toxics 2022, 10, 470. [Google Scholar] [CrossRef]
- Antier, C.; Kudsk, P.; Reboud, X.; Ulber, L.; Baret, P.; Messéan, A. Glyphosate Use in the European Agricultural Sector and a Framework for Its Further Monitoring. Sustainability 2020, 12, 5682. [Google Scholar] [CrossRef]
- Rydz, E.; Larsen, K.; Peters, C.E. Estimating Exposure to Three Commonly Used, Potentially Carcinogenic Pesticides (Chlorolathonil, 2,4-D, and Glyphosate) Among Agricultural Workers in Canada. Ann. Work. Expo. Health 2021, 65, 377. [Google Scholar] [CrossRef]
- Zouaoui, K.; Dulaurent, S.; Gaulier, J.; Moesch, C.; Lachâtre, G. Determination of glyphosate and AMPA in blood and urine from humans: About 13 cases of acute intoxication. Forensic Sci. Int. 2013, 226, e20. [Google Scholar] [CrossRef] [PubMed]
- Wongta, A.; Sawarng, N.; Tongchai, P.; Sutan, K.; Kerdnoi, T.; Prapamontol, T.; Hongsibsong, S. The Pesticide Exposure of People Living in Agricultural Community, Northern Thailand. J. Toxicol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.J.; Mandrioli, D.; Belpoggi, F.; Manservisi, F.; Panzacchi, S.; Irwin, C. Historical evidence of glyphosate exposure from a US agricultural cohort. Environ. Health 2019, 18, 42. [Google Scholar] [CrossRef]
- Saito, T.; Aoki, H.; Namera, A.; Oikawa, H.; Miyazaki, S.; Nakamoto, A.; Inokuchi, S. Mix-mode TiO-C18 Monolith Spin Column Extraction and GC-MS for the Simultaneous Assay of Organophosphorus Compounds and Glufosinate, and Glyphosate in Human Serum and Urine. Anal. Sci. 2011, 27, 999. [Google Scholar] [CrossRef] [PubMed]
- United Nations—Food and Agriculture Organization. Guidance on Good Labelling Practices for Pesticides. Available online: https://www.fao.org/3/i4854e/i4854e.pdf (accessed on 3 February 2023).
- European Medicines Agency. QRD Guidance on the Use of Approved Pictograms on the Packaging of Veterinary Medicinal Products Authorised via the Centralised, Mutual Recognition and Decentralised Procedures. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/quality-review-documents-qrd-guidance-use-approved-pictograms-packaging-veterinary-medicinal_en.pdf (accessed on 3 February 2023).
- Koskinen, W.C.; Marek, L.J.; Hall, K.E. Analysis of glyphosate andaminomethylphosphonic acid in water, plantmaterials and soil. Pest Manag. Sci. 2016, 72, 423. [Google Scholar] [CrossRef]
- Carretta, L.; Cardinali, A.; Marotta, E.; Zanin, G.; Masin, R. A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level. J. Chromatogr. A 2019, 1600, 65. [Google Scholar] [CrossRef]
- Gunarathna, S.; Gunawardana, B.; Jayaweera, M.; Manatunge, J.; Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J. Environ. Sci. Health Part B 2018, 53, 729. [Google Scholar] [CrossRef]
- Liao, Y.; Berthion, J.-M.; Colet, I.; Merlo, M.; Nougadère, A.; Hu, R. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1549, 31. [Google Scholar] [CrossRef]
- Poiger, T.; Buerge, I.J.; Bächli, A.; Müller, M.D.; Balmer, M.E. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ. Sci. Pollut. Res. 2017, 24, 1588. [Google Scholar] [CrossRef]
- Ehling, S.; Reddy, T.M. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 10562–10568. [Google Scholar] [CrossRef]
- Islas, G.; Rodriguez, J.A.; Mendoza-Huizar, L.H.; Pérez, F.; Carrillo, E.G. Determination of Glyphosate and Aminomethylphosphonic Acid in Soils by Hplc with Pre-Column Derivatization Using 1,2-Naphthoquinone-4-Sulfonate. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1298. [Google Scholar] [CrossRef]
- Farczádi, L.; Moldovan, H.; Duca, R.C.; Imre, S. A Quick, Simple, Sensitive and Selective LC-MS/MS Method Used for the Screening of Ethephon, Glyphosate and Aminomethylphosphonic Acid from Water and Food Samples. ABMJ 2022, 5, 41. [Google Scholar] [CrossRef]
- Berni, I.; Menouni, A.; El Ghazi, I.; Godderis, L.; Duca, R.-C.; El Jaafari, S. Health and ecological risk assessment based on pesticide monitoring in Saïss plain (Morocco) groundwater. Environ. Pollut. 2021, 276, 116638. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Uno, B.; Tomita, M. Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J. Chromatogr. A 1991, 540, 411. [Google Scholar] [CrossRef]
- Fontanella, M.C.; Lamastra, L.; Beone, G.M. Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS. Molecules 2022, 27, 8049. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Huo, Z.; Sun, H.; Zhang, F.; Zhu, B. An ion chromatography tandem mass spectrometry (IC-MS/MS) method for glyphosate and amino methyl phosphoric acid in serum of occupational workers. Microchem. J. 2021, 170, 106614. [Google Scholar] [CrossRef]
- Qiu, H.-M.; Geng, J.-J.; Han, C.; Ren, H.-Q. Determination of Phosphite, Phosphate, Glyphosate and Aminomethylphosphonic Acid by Two-Dimensional Ion Chromatography System Coupled with Capillary Ion Chromatography. Chin. J. Anal. Chem. 2013, 41, 1910–1914. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Araújo, A.N.; Montenegro, M.C. Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. Sci. Tota. Environ. 2021, 793, 148496. [Google Scholar] [CrossRef]
- Fama, F.; Feltracco, M.; Moro, G.; Barbaro, E.; Bassanello, M.; Gambaro, A.; Zanardi, C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023, 253, 123969. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Romero-González, R.; Frenich, A.G. Simultaneous determination of polar pesticides in human blood serum by liquid chromatography coupled to triple quadrupole mass spectrometer. J. Pharm. Biomed. Anal. 2020, 190, 113492. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Moreno-González, D.; Martínez-Piernas, A.B.; García-Reyes, J.F.; Molina-Díaz, A. Novel liquid chromatography/mass spectrometry-based approaches for the determination of glyphosate and related compounds: A review. Trends Environ. Anal. Chem. 2022, 36, e00186. [Google Scholar] [CrossRef]
- Melo, K.G.; De Nucci, G.; Trape, A.Z.; Jacobucci, S.R.E.; Garlipp, C.R.; Rosa, P.C.P. Brief review analytical methods for the determination of glyphosate. MOJ Toxicol. 2018, 4, 39. [Google Scholar] [CrossRef]
- Verdini, E.; Pecorelli, I. The Current Status of Analytical Methods Applied to the Determination of Polar Pesticides in Food of Animal Origin: A Brief Review. Foods 2022, 11, 1527. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Galea, K.S.; Basinas, I.; Kenny, L.; McGowan, P.; Coggins, M. Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. Int. J. Hyg. Environ. Health 2017, 220, 1064. [Google Scholar] [CrossRef]
- Guo, H.; Wang, H.; Zheng, J.; Liu, W.; Zhong, J.; Zhao, Q. Sensitive and rapid determination of glyphosate, glufosinate, bialaphos and metabolites by UPLC–MS/MS using a modified Quick Polar Pesticides Extraction method. Forensic Sci. Int. 2018, 283, 111. [Google Scholar] [CrossRef]
- Connolly, A.; Koslitz, S.; Bury, D.; Brüning, T.; Conrad, A.; Kolossa-Gehring, M.; Coggins, M.A.; Koch, H.M. Sensitive and selective quantification of glyphosate and aminomethylphosphonic acid (AMPA) in urine of the general population by gas chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1158, 122348. [Google Scholar] [CrossRef]
- Connolly, A.; Coggins, M.A.; Koch, H.M. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. Toxics 2020, 8, 60. [Google Scholar] [CrossRef]
- Krüger, M.; Schledorn, P.; Schrödl, W.; Hoppe, H.W.; Lutz, W.; Shehata, A.A. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4, 210. [Google Scholar] [CrossRef]
- Mesnage, R.; Moesch, C.; Grand, R.L.G.; Lauthier, G.; de Vendômois, J.S.; Gress, S.; Séralini, G.-E. Glyphosate Exposure in a Farmer’s Family. J. Environ. Prot. 2012, 3, 1001. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Lai, Y.-C.; Liu, H.-C.; Liu, R.H.; Lin, D.-L. Simultaneous Determination and Quantitation of Paraquat, Diquat, Glufosinate and Glyphosate in Postmortem Blood and Urine by LC–MS-MS. J. Anal. Toxicol. 2016, 40, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; McGuire, M.A.; Price, W.J.; Shafii, B.; Carrothers, J.M.; Lackey, K.A.; Goldstein, D.A.; Jensen, P.K.; Vicini, J.L. Glyphosate and aminomethylphosphonic acid are not detectable in human milk. Am. J. Clin. Nutr. 2016, 103, 1285. [Google Scholar] [CrossRef] [PubMed]
- Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.J.; Class, T.J.; Pinheiro, N.C. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2016, 64, 1414. [Google Scholar] [CrossRef]
- Ohara, T.; Yoshimoto, T.; Natori, Y.; Ishii, A. A simple method for the determination of glyphosate, glufosinate and their metabolites in bio-logical specimen by liquid chromatography/tandem mass spectrometry: An application for forensic toxicology. Nagoya J. Med. Sci. 2021, 83, 567. [Google Scholar] [CrossRef]
- Viegas, S.; Jeddi, M.Z.; Hopf, N.B.; Bessems, J.; Palmen, N.; Galea, K.S.; Jones, K.; Kujath, P.; Duca, R.-C.; Verhagen, H.; et al. Biomonitoring as an Underused Exposure Assessment Tool in Occupational Safety and Health Context—Challenges and Way Forward. Int. J. Environ. Res. Public Health 2020, 17, 5884. [Google Scholar] [CrossRef]
- Jansons, M.; Pugajeva, I.; Bartkevics, V.; Karkee, H.B. LC-MS/MS characterisation and determination of dansyl chloride derivatised glyphosate, aminomethylphosphonic acid (AMPA), and glufosinate in foods of plant and animal origin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1177, 122779. [Google Scholar] [CrossRef]
- Eurofins/Abraxis—Glyphosate ELISA Plate and Derivatization Kit, 96-Test. Available online: https://abraxis.eurofins-technologies.com/home/products/rapid-test-kits/glyphosate/glyphosate-elisa-plate-kits/glyphosate-elisa-96-test/ (accessed on 10 October 2022).
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environ. Health Perspect. 2004, 112, 321. [Google Scholar] [CrossRef]
- Qian, K.; Tang, T.; Shi, T.; Wang, F.; Li, J.; Cao, Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal. Chim. Acta 2009, 635, 222. [Google Scholar] [CrossRef]
- Khrolenko, M.V.; Wieczorek, P.P. Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride. J. Chromatogr. A 2005, 1093, 111. [Google Scholar] [CrossRef]
Biological Matrix | Sample Timing | Analytical Separation and Detection Method | Sample Preparation Technique | Biomarker of Exposure | Limit of Quantification | Limit of Detection | Authors, Year, Journal |
---|---|---|---|---|---|---|---|
Urine | Once | ELISA | Dilution with water and centrifugation | Glyphosate | 0.13 ng/mL | 0.05 ng/mL | [12] Rendón-von Osten, Dzul-Caamal; 2017; International Journal of Environmental Research and Public Health |
Serum, urine | Once | GC-MS | (1) Spin column extraction (2) Derivatization with MTBSTFA + 1% TBDMCS | Glyphosate | 0.5 μg/mL | 0.1 μg/mL | [22] Saito, Aoki, Namera, Oikawa, Miyazaki, Nakamoto, Inokuchi; 2011; Analytical Sciences |
Serum | Once | IC-MS | (3) Protein precipitation | Glyphosate and AMPA | 2 ng/mL for glyphosate 4 ng/mL for AMPA | 0.6 ng/mL for glyphosate 1.2 ng/mL for AMPA | [36] Zhang, Liu, Huo, Sun, Zhang, Zhu; 2021; Microchemical Journal |
Serum | Once | LC-MS | (4) Protein precipitation and LLE extraction of interferents with hexane | Glyphosate | 25 ng/mL | not specified | [40] López-Ruiz, Romero-González, Garrido Frenich; 2020; Journal of Pharmaceutical and Biomedical Analysis |
Urine | Once | LC-MS | Solid phase extraction (SPE) | Glyphosate | Single 20 ng/mL standard | 0.5 ng/mL | [44] Connolly, Jones, Galea, Basinas, Kenny, McGowan, Coggins; 2017; International Journal of Hygiene and Environmental Health |
Urine | Once | GC-MS and ELISA | (1) Molecular weight cutoff ultrafiltration for both GC-MS and ELISA (2) Additionally, derivatization with 2,2,2-trifluoroethanol for GC-MS | Glyphosate | Not specified for ELISA 0.3 ng/mL for GC-MS | 0.05 ng/mL for ELISA 0.1 ng/mL for GC-MS | [48] Krüger, Schledorn, Schrödl, Hoppe, Lutz, Shehata; 2014; Journal of Environmental & Analytical Toxicology |
Urine | Multiple | LC-MS | Not detailed | Glyphosate | 2 ng/mL | 1 ng/mL | [49] Mesnage, Moesch, Le Grand, Lauthier, Spiroux de Vendômois, Gress, Séralini; 2012; Journal of Environmental Protection |
Blood, urine, gastric content | Once | LC–MS | Protein precipitation and sample backwashing | Glyphosate | 1 μg/ml | 0.1 μg/ml | [50] Tsao, Lai, HC Liu, R Liu, Lin; 2016; Journal of Analytical Toxicology |
Urine | Once | LC-MS | Not detailed | Glyphosate | 0.08 ng/mL for water 0.5 ng/mL for urine | 0.02 ng/mL for water 0.1 ng/mL for urine | [51] Parvez, Gerona, Proctor, Friesen, Ashby, Reiter, Lui, Winchester; 2018; Environmental Health |
Breast milk, urine | Once | LC-MS | Protein precipitation | Glyphosate and AMPA | 0.1 ng/mL for glyphosate 0.1 ng/mL for AMPA | 0.02 ng/mL for glyphosate 0.03 ng/mL for AMPA | [52] McGuire, McGuire, Price, Shafii, Carrothers, Lackey, Goldstein, Jensen, Vicini; 2016; American Journal of Clinical Nutrition |
Breast milk | Once | LC-MS and GC-MS | (1a) Molecular weight cutoff ultrafiltration for LC-MS (1b) cation exchange cleanup prep column (2) derivatization with 2,2,3,3,4,4,4-heptafluoro-1-butanol for GC-MS | Glyphosate | 1 ng/mL for both LC-MS and GC-MS | not specified | [53] Steinborn, Alder, Michalski, Zomer, Bendig, Aleson Martinez, Mol, Class, Costa Pinheiro; 2016; Journal of Agricultural and Food Chemistry |
Plasma | Once | LC-MS | Derivatization with trimethyl orthoacetate | Glyphosate and AMPA | 50 ng/mL for glyphosate 50 ng/mL for AMPA | 20 ng/mL for glyphosate 20 ng/mL for AMPA | [54] Ohara, Yoshimoto, Natori, Ishii; 2021; Nagoya Journal of Medical Science |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, H.; Imre, S.; Duca, R.C.; Farczádi, L. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. Int. J. Environ. Res. Public Health 2023, 20, 3314. https://doi.org/10.3390/ijerph20043314
Moldovan H, Imre S, Duca RC, Farczádi L. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. International Journal of Environmental Research and Public Health. 2023; 20(4):3314. https://doi.org/10.3390/ijerph20043314
Chicago/Turabian StyleMoldovan, Horațiu, Silvia Imre, Radu Corneliu Duca, and Lénárd Farczádi. 2023. "Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate" International Journal of Environmental Research and Public Health 20, no. 4: 3314. https://doi.org/10.3390/ijerph20043314
APA StyleMoldovan, H., Imre, S., Duca, R. C., & Farczádi, L. (2023). Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. International Journal of Environmental Research and Public Health, 20(4), 3314. https://doi.org/10.3390/ijerph20043314