A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Bass Model
2.2.2. Improved Generalised Bass Model
2.3. CO2 Emission Reduction Estimation (WTW Phase)
2.3.1. The WTT Stage CO2 Emissions
2.3.2. The TTW Stage CO2 Emissions
3. Results and Discussion
3.1. NEVs Ownership from 2025 to 2050
3.2. Scenario Analysis of CO2 Emission Reduction
3.2.1. Scenario Setting
- (1)
- Business as Usual (BAU) Scenario
- (2)
- Ideal Scenario
- (3)
- Enhanced Scenario
- (4)
- Radical Scenario
3.2.2. CO2 Reduction Potential under Different Scenarios
4. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NEV | New Energy Vehicles |
BEV | Battery Electric Vehicles |
PHEV | Plug-in Hybrid Electric Vehicles |
FCV | Fuel Cell Vehicles |
ICEV | Internal Combustion Engine Vehicle |
SCC | The Social Cost of Carbon |
WTW | Well-to-Wheel |
WTT | Well-to-Tank |
TTW | Tank-to-Well |
CD range | Charge-depleting range |
CS range | Charge-sustaining range |
UF | Utility Factor |
References
- Office, T.M. Atmospheric Carbon Dioxide at Record High LEVELS Despite REDUCED Emissions in 2020. 2021. Available online: https://www.metoffice.gov.uk/research/news/2021/record-co2-levels-despite-lower-emissions-in-2020 (accessed on 26 October 2022).
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- The International Panel on Climate Change (IPCC). Climate Change Widespread, Rapid, and Intensifying—IPCC. 2021. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 26 October 2022).
- IEA/OECD. CO2 Emissions from Fuel Combustion Highlights 2020; International Energy Agency and Organization for Economic Cooperation and Development: Paris, France, 2020; Available online: https://enerji.mmo.org.tr/wp-content/uploads/2020/08/IEA-CO2_Emissions_from_Fuel_Combustion_Overview_2020_edition.pdf (accessed on 12 February 2023).
- Xi, J. China headed towards carbon neutrality by 2060. In Proceedings of the General Assembly Seventy-Fifth Session 4th Plenary Meeting, New York, NY, USA, 22 September 2020; Available online: https://www.un.org/en/ga/info/meetings/76schedule.shtml (accessed on 30 November 2022).
- International Energy Agency (IEA). Global CO2 Emissions Rebounded to Their Highest Level in History in 2021. Available online: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 (accessed on 15 August 2022).
- Nation, T.U. The Paris Agreement; T.U. Nation: New York, NY, USA, 2015. [Google Scholar]
- NDANEV. Annual Report on the Big Data of New Energy Vehicle in China 2021; China Machine Press: Beijing, China, 2021. [Google Scholar]
- Khanna, N.; Lu, H.; Fridley, D.; Zhou, N. Near and long-term perspectives on strategies to decarbonize China’s heavy-duty trucks through 2050. Sci. Rep. 2021, 11, 20414. [Google Scholar] [CrossRef]
- Rietmann, N.; Hügler, B.; Lieven, T. Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. J. Clean. Prod. 2020, 261, 121038. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, M.-S.; Roh, J.-H.; Yang, J.-P.; Park, J.-B. Forecasting of Electric Vehicles Charging Pattern Using Bayesians method with the Convolustion. IFAC-PapersOnLine 2019, 52, 413–418. [Google Scholar] [CrossRef]
- Yuan, X.; Cai, Y. Forecasting the development trend of low emission vehicle technologies: Based on patent data. Technol. Forecast. Soc. Chang. 2021, 166, 120651. [Google Scholar] [CrossRef]
- Lin, B.; Shi, L. Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles. Appl. Energy 2022, 310, 118582. [Google Scholar] [CrossRef]
- Ramos-Real, F.J.; Ramírez-Díaz, A.; Marrero, G.A.; Perez, Y. Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands). Renew. Sustain. Energy Rev. 2018, 98, 140–149. [Google Scholar] [CrossRef]
- Hidrue, M.K.; Parsons, G.R.; Kempton, W.; Gardner, M.P. Willingness to pay for electric vehicles and their attributes. Resour. Energy Econ. 2011, 33, 686–705. [Google Scholar] [CrossRef] [Green Version]
- Danielis, R.; Rotaris, L.; Giansoldati, M.; Scorrano, M. Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transp. Res. Part A Policy Pract. 2020, 137, 79–94. [Google Scholar] [CrossRef]
- Schmidt, M.; Staudt, P.; Weinhardt, C. Evaluating the importance and impact of user behavior on public destination charging of electric vehicles. Appl. Energy 2019, 258, 114061. [Google Scholar] [CrossRef]
- Will, C.; Lehmann, N.; Baumgartner, N.; Feurer, S.; Jochem, P.; Fichtner, W. Consumer understanding and evaluation of carbon-neutral electric vehicle charging services. Appl. Energy 2022, 313, 118799. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, L. Policy cognition of potential consumers of new energy vehicles and its sensitivity to purchase willingness. J. Clean. Prod. 2020, 261, 121032. [Google Scholar] [CrossRef]
- Gallagher, K.S.; Muehlegger, E. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. J. Environ. Econ. Manag. 2011, 61, 1–15. [Google Scholar] [CrossRef]
- Ye, R.-K.; Gao, Z.-F.; Fang, K.; Liu, K.-L.; Chen, J.-W. Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China’s NEVs in the post-subsidy era. Technol. Forecast. Soc. Chang. 2021, 168, 120757. [Google Scholar] [CrossRef]
- Dong, F.; Liu, Y. Policy evolution and effect evaluation of new-energy vehicle industry in China. Resour. Policy 2020, 67, 101655. [Google Scholar] [CrossRef]
- Yi, T.; Zhang, C.; Lin, T.; Liu, J. Research on the spatial-temporal distribution of electric vehicle charging load demand: A case study in China. J. Clean. Prod. 2019, 242, 118457. [Google Scholar] [CrossRef]
- Patil, P.; Kazemzadeh, K.; Bansal, P. Integration of charging behavior into infrastructure planning and management of electric vehicles: A systematic review and framework. Sustain. Cities Soc. 2023, 88, 104265. [Google Scholar] [CrossRef]
- Su, C.-W.; Yuan, X.; Tao, R.; Umar, M. Can new energy vehicles help to achieve carbon neutrality targets? J. Environ. Manag. 2021, 297, 113348. [Google Scholar] [CrossRef]
- Küfeoğlu, S.; Hong, D.K.K. Emissions performance of electric vehicles: A case study from the United Kingdom. Appl. Energy 2019, 260, 114241. [Google Scholar] [CrossRef]
- Moriarty, P.; Wang, S.J. Can Electric Vehicles Deliver Energy and Carbon Reductions? Energy Procedia 2017, 105, 2983–2988. [Google Scholar] [CrossRef] [Green Version]
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef] [Green Version]
- Palencia, J.C.G.; Otsuka, Y.; Araki, M.; Shiga, S. Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet. Appl. Energy 2017, 204, 1444–1462. [Google Scholar] [CrossRef]
- Chen, A.; You, S. The Fuel Cycle Carbon Reduction Effects of New Energy Vehicles: Empirical Evidence Based on Regional Data in China. Sustainability 2022, 14, 16003. [Google Scholar] [CrossRef]
- Li, F.; Ou, R.; Xiao, X.; Zhou, K.; Xie, W.; Ma, D.; Liu, K.; Song, Z. Regional comparison of electric vehicle adoption and emission reduction effects in China. Resour. Conserv. Recycl. 2019, 149, 714–726. [Google Scholar] [CrossRef]
- Yang, X.; Lin, W.; Gong, R.; Zhu, M.; Springer, C. Transport decarbonization in big cities: An integrated environmental co-benefit analysis of vehicles purchases quota-limit and new energy vehicles promotion policy in Beijing. Sustain. Cities Soc. 2021, 71, 102976. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Chen, L.; Yang, Y.; Li, X. Carbon emission of energy consumption of the electric vehicle development scenario. Environ. Sci. Pollut. Res. 2021, 28, 42401–42413. [Google Scholar] [CrossRef]
- China’s NEV Stock, TABMP. Security; Beijing, China, 2021. Available online: https://www.mot.gov.cn/ (accessed on 26 October 2022).
- NDANEV. New Energy Vehicle Big Data Research Report 2021; Wang, Z., Liang, Z., Eds.; China Machine Press: Beijing, China, 2021. [Google Scholar]
- NDANEV. New Energy Vehicle National Big Data Alliance Briefing 2021; Wang, Z., Liang, Z., Eds.; China Machine Press: Beijing, China, 2021. [Google Scholar]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Mahajan, V.; Muller, E.; Bass, F.M. New Product Diffusion Models in Marketing: A Review and Directions for Research. J. Mark. 1990, 54, 1–26. [Google Scholar] [CrossRef]
- Bass, F.M.; Krishnan, T.V.; Jain, D.C. Why the Bass Model Fits without Decision Variables. Mark. Sci. 1994, 13, 203–223. [Google Scholar] [CrossRef]
- Ilgin, M.A.; Gupta, S.M. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. J. Environ. Manag. 2010, 91, 563–591. [Google Scholar] [CrossRef]
- Moro, A.; Helmers, E. A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. Int. J. Life Cycle Assess. 2015, 22, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Wang, M.; Zhang, X.; He, K.; Gong, H.; Jiang, K.; Jin, Y.; Shi, Y.; Yu, X. Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts. Energy Policy 2011, 43, 37–48. [Google Scholar] [CrossRef]
- Ramírez-Hassan, A.; Montoya-Blandón, S. Forecasting from others’ experience: Bayesian estimation of the generalized Bass model. Int. J. Forecast. 2019, 36, 442–465. [Google Scholar] [CrossRef]
- Xian, Y.; Xia, M.; Su, S.; Guo, M.; Chen, F. Research on the Market Diffusion of Fuel Cell Vehicles in China Based on the Generalized Bass Model. IEEE Trans. Ind. Appl. 2021, 58, 2950–2960. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, Y.-X.; Fan, Z.-P. Forecasting the box offices of movies coming soon using social media analysis: A method based on improved Bass models. Expert Syst. Appl. 2021, 191, 116241. [Google Scholar] [CrossRef]
- Massiani, J.; Gohs, A. The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies. Res. Transp. Econ. 2015, 50, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Zhang, Q.; Wang, M.Q.; Streets, D.G.; He, K. Environmental Implication of Electric Vehicles in China. Environ. Sci. Technol. 2010, 44, 4856–4861. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Wu, L.; Zhu, J.; Shang, G. Forecasting the development trend of new energy vehicles in China by an optimized fractional discrete grey power model. J. Clean. Prod. 2022, 372, 133708. [Google Scholar] [CrossRef]
- Liu, B.; Song, C.; Wang, Q.; Zhang, X.; Chen, J. Research on regional differences of China’s new energy vehicles promotion policies: A perspective of sales volume forecasting. Energy 2022, 248, 123541. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; He, X.; Hao, H. Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy 2019, 177, 222–233. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A.J. The next thirty-three years: A framework for speculation. Daedalus 1967, 705–732. [Google Scholar]
- Wang, L.; Xue, X.; Zhao, Z.; Wang, Y.; Zeng, Z. Finding the de-carbonization potentials in the transport sector: Application of scenario analysis with a hybrid prediction model. Environ. Sci. Pollut. Res. 2020, 27, 21762–21776. [Google Scholar] [CrossRef] [PubMed]
- The International Panel on Climate Change (IPCC), Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 26 December 2022).
- Jian, L.; Yongqiang, Z.; Larsen, G.N.; Snartum, A. Implications of road transport electrification: A long-term scenario-dependent analysis in China. Etransportation 2020, 6, 100072. [Google Scholar] [CrossRef]
- Hao, X.; Yuan, Y.; Wang, H.; Ouyang, M. Plug-in hybrid electric vehicle utility factor in China cities: Influencing factors, empirical research, and energy and environmental application. Etransportation 2021, 10, 100138. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Daim, T.; Li, X.; Li, Z. Evaluation of China’s new energy vehicle policy texts with quantitative and qualitative analysis. Technol. Soc. 2021, 67, 101770. [Google Scholar] [CrossRef]
0.25 | 2.50 | 0.997 |
2030 | 2050 | |||||||
---|---|---|---|---|---|---|---|---|
Decreasing Rate of | Proportion of Thermal Power Electricity | FCV Rate | UF | Decreasing Rate of | Proportion of Thermal Power Electricity | FCV Rate | UF | |
Ideal Scenario | 14.03% | 60% | 20% | 0.69 | 36.45% | 30% | 50% | 0.8 |
Enhanced Scenario | 21.57% | 50% | 40% | 0.8 | 51.83% | 20% | 75% | 1 |
Radical Scenario | 21.57% | 40% | 50% | 1 | 51.83% | 10% | 100% | 1 |
Million Tons | |||||||||
---|---|---|---|---|---|---|---|---|---|
Scenarios | Ideal | Enhanced | Radical | ||||||
Types | Cars | Buses | Trucks | Cars | Buses | Trucks | Cars | Buses | Trucks |
2025 | 59 | 475 | 251 | 63 | 528 | 261 | 68 | 575 | 270 |
2030 | 294 | 2476 | 1311 | 339 | 2980 | 1580 | 384 | 3462 | 1602 |
2035 | 742 | 6406 | 3222 | 891 | 8083 | 3946 | 992 | 9178 | 3901 |
2040 | 1123 | 9872 | 4822 | 1384 | 12,782 | 5968 | 1504 | 14,105 | 5738 |
2045 | 1322 | 11,771 | 5638 | 1641 | 15,335 | 7020 | 1743 | 16,477 | 6564 |
2050 | 1425 | 12,827 | 6073 | 1768 | 16,644 | 7594 | 1838 | 17,455 | 6905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; You, S.; Liu, H.; Zhu, J.; Peng, X. A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China. Int. J. Environ. Res. Public Health 2023, 20, 3406. https://doi.org/10.3390/ijerph20043406
Chen A, You S, Liu H, Zhu J, Peng X. A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China. International Journal of Environmental Research and Public Health. 2023; 20(4):3406. https://doi.org/10.3390/ijerph20043406
Chicago/Turabian StyleChen, Anqi, Shibing You, Huan Liu, Jiaxuan Zhu, and Xu Peng. 2023. "A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China" International Journal of Environmental Research and Public Health 20, no. 4: 3406. https://doi.org/10.3390/ijerph20043406
APA StyleChen, A., You, S., Liu, H., Zhu, J., & Peng, X. (2023). A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China. International Journal of Environmental Research and Public Health, 20(4), 3406. https://doi.org/10.3390/ijerph20043406