Epidemiological Predictors of Positive SARS-CoV-2 Polymerase Chain Reaction Test in Three Cohorts: Hospitalized Patients, Healthcare Workers, and Military Population, Serbia, 2020
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus Disease (COVID-19) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 28 December 2022).
- Technical Guidance Publications. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications (accessed on 28 December 2022).
- Abbas, M.; Robalo Nunes, T.; Martischang, R.; Zingg, W.; Iten, A.; Pittet, D.; Harbarth, S. Nosocomial Transmission and Outbreaks of Coronavirus Disease 2019: The Need to Protect Both Patients and Healthcare Workers. Antimicrob. Resist. Infect. Control 2021, 10, 7. [Google Scholar] [CrossRef]
- Zhang, M. Estimation of Differential Occupational Risk of COVID-19 by Comparing Risk Factors with Case Data by Occupational Group. Am. J. Ind. Med. 2021, 64, 39–47. [Google Scholar] [CrossRef]
- Escalera-Antezana, J.P.; Mariaca-Cerball, C.A.; Alvarado-Arnez, L.E.; Balderrama-Saavedra, M.A.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Incidence of SARS-CoV-2/COVID-19 in Military Personnel of Bolivia. BMJ Mil Health 2021, 167, 215–216. [Google Scholar] [CrossRef]
- Segal, D.; Rotschield, J.; Ankory, R.; Kutikov, S.; Moaddi, B.; Verhovsky, G.; Benov, A.; Twig, G.; Glassberg, E.; Fink, N.; et al. Measures to Limit COVID-19 Outbreak Effects Among Military Personnel: Preliminary Data. Mil. Med. 2020, 185, e1624–e1631. [Google Scholar] [CrossRef]
- Professional and Methodological Guidelines to Control the Introduction and Prevention of the Spread of the New Corona Virus SARS-CoV-2 in the Republic of Serbia. Available online: http://demo.paragraf.rs/demo/combined/Old/t/t2020_04/PP_004_2020_002.htm (accessed on 28 December 2022).
- COVID-19. Ministry of Health of Republic of Serbia. Available online: https://covid19.rs/ (accessed on 30 March 2022).
- During the State of Emergency. American Chamber of Commerce in Serbia. Available online: https://www.amcham.rs/combating-covid-19/during-the-state-of-emergency.1112.html (accessed on 30 December 2022).
- Lan, F.-Y.; Filler, R.; Mathew, S.; Buley, J.; Iliaki, E.; Bruno-Murtha, L.A.; Osgood, R.; Christophi, C.A.; Fernandez-Montero, A.; Kales, S.N. COVID-19 Symptoms Predictive of Healthcare Workers’ SARS-CoV-2 PCR Results. PLoS ONE 2020, 15, e0235460. [Google Scholar] [CrossRef]
- Jovanovic, M.; Vukosavljevic, M.; Dincic, D.; Ratkovic, N.; Perisic, N.; Ilic, R.; Lepic, T.; Suljagic, V.; Jadranin, Z.; Lazic, S.; et al. Medical Care of Patients in the Emergency Department of the Military Medical Academy in Belgrade during the Epidemic of COVID-19. VSP 2021, 78, 231–235. [Google Scholar] [CrossRef]
- Li, L.-Q.; Huang, T.; Wang, Y.-Q.; Wang, Z.-P.; Liang, Y.; Huang, T.-B.; Zhang, H.-Y.; Sun, W.; Wang, Y. COVID-19 Patients’ Clinical Characteristics, Discharge Rate, and Fatality Rate of Meta-Analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef]
- Korean Society of Infectious Diseases; Korean Society of Pediatric Infectious Diseases; Korean Society of Epidemiology; Korean Society for Antimicrobial Therapy; Korean Society for Healthcare-Associated Infection Control and Prevention; Korea Centers for Disease Control and Prevention. Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. J. Korean Med. Sci. 2020, 35, e112. [Google Scholar] [CrossRef]
- Tian, S.; Hu, N.; Lou, J.; Chen, K.; Kang, X.; Xiang, Z.; Chen, H.; Wang, D.; Liu, N.; Liu, D.; et al. Characteristics of COVID-19 Infection in Beijing. J. Infect. 2020, 80, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; El Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance-United States, January 22–May 30, 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of Sex and Gender on COVID-19 Outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Balon, B. The Position of Women in the Armed Forces of the Western Balkans; South Eastern and Eastern Europe Clearinghouse for the Control of Small Arms and Light Weapons: Belgrade, Serbia, 2014. [Google Scholar]
- Bradas, S.; Reljanovic, M.; Sekulovic, I. Uticaj Epidemije COVID-19 na Polozaj i Prava Radnica i Radnika u Srbiji [The Impact of the COVID-19 Epidemic on the Position and Rights of Workers in Serbia]; Fondacija Centar za Demokratiju: Belgrade, Serbia, 2020. [Google Scholar]
- Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; CMMID COVID-19 Working Group; Eggo, R.M. Age-Dependent Effects in the Transmission and Control of COVID-19 Epidemics. Nat. Med. 2020, 26, 1205–1211. [Google Scholar] [CrossRef]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore Y Piontti, A.; Mu, K.; Rossi, L.; Sun, K.; et al. The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (COVID-19) Outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Online Global Consultation on Contact Tracing for COVID-19, 9–11 June 2020. Available online: https://www.who.int/publications-detail-redirect/online-global-consultation-on-contact-tracing-for-covid-19-9-11-june-2020 (accessed on 30 December 2022).
- Marin-Gomez, F.X.; Fàbregas-Escurriola, M.; Seguí, F.L.; Pérez, E.H.; Camps, M.B.; Peña, J.M.; Comellas, A.R.; Vidal-Alaball, J. Assessing the Likelihood of Contracting COVID-19 Disease Based on a Predictive Tree Model: A Retrospective Cohort Study. PLoS ONE 2021, 16, e0247995. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.E.; Frankel, D.N.; Pawlak, M.T.; Casey, T.M.; Blackwell, R.S.; Tran, F.V.; Dolan, M.J.; Yun, H.C. COVID-19 Monitoring and Response Among U.S. Air Force Basic Military Trainees-Texas, March-April 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.W.A.; Pong, J.J.J.; Teoh, J.; Wahab, M.T.; Tan, C. COVID-19 Monitoring and Response for Military Bases in Singapore—Perspectives and Lessons from January to June 2020. Mil. Med. 2021. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690135/ (accessed on 12 January 2023).
- Ebert, T.J.; Dugan, S.; Barta, L.; Gordon, B.; Nguyen-Ho, C.; Pagel, P.S. Clinical Features of COVID-19 Infection in Patients Treated at a Large Veterans Affairs Medical Center. WMJ 2020, 119, 248–252. [Google Scholar] [PubMed]
- Puah, S.H.; Young, B.E.; Chia, P.Y.; Ho, V.K.; Loh, J.; Gokhale, R.S.; Tan, S.Y.; Sewa, D.W.; Kalimuddin, S.; Tan, C.K.; et al. Clinical Features and Predictors of Severity in COVID-19 Patients with Critical Illness in Singapore. Sci. Rep. 2021, 11, 7477. [Google Scholar] [CrossRef]
- Gholami, M.; Fawad, I.; Shadan, S.; Rowaiee, R.; Ghanem, H.; Hassan Khamis, A.; Ho, S.B. COVID-19 and Healthcare Workers: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2021, 104, 335–346. [Google Scholar] [CrossRef]
- Heo, J.; Park, J.A.; Han, D.; Kim, H.-J.; Ahn, D.; Ha, B.; Seog, W.; Park, Y.R. COVID-19 Outcome Prediction and Monitoring Solution for Military Hospitals in South Korea: Development and Evaluation of an Application. J. Med. Internet Res. 2020, 22, e22131. [Google Scholar] [CrossRef]
- Sipetic-Grujicic, S.; Miljus, D.; Soldatovic, I.; Nikolic, A.; Vujcic, I. Prehypertension and Hypertension Prevalence and Risk Factors among Adult Population in Republic of Serbia: A Cross-Sectional Study. VSP 2020, 77, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Ratkovic, N.; Pandrc, M.; Peric, V.; Stojanovic, M.; Rancic, N. Relationship between Plasma High-Sensitivity C-Reactive Protein and Traditional Cardiovascular Risk Factors among Active-Duty Military Personnel in the Republic of Serbia. VSP 2022, 79, 714–723. [Google Scholar] [CrossRef]
- Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; et al. Large-Vessel Stroke as a Presenting Feature of COVID-19 in the Young. N. Engl. J. Med. 2020, 382, e60. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
Respondents with Positive Test (n = 199) (%) | Respondents with Negative Test (n = 1709) (%) | RR § (95% CI) | ULRA * Crude OR ‡ (95%CI) | ULRA * p | MLRA † Adjusted (95%CI) | MLRA † p | |
---|---|---|---|---|---|---|---|
Demographics | |||||||
Male, n (%) Female, n (%) | 131 (65.8) 68 (34.2) | 1069 (62.6) 640 (37.4) | 10.9/9.6 = 1.14 (0.86–1.50) | 0.86 (0.64–1.18) | 0.365 | / | / |
Age, median (IQR) | 67 (53–75) | 68 (55–76) | 0.99 (0.99–1.00) | 0.224 | / | / | |
Exposure risk factors | |||||||
History of travel in a country with confirmed virus transmission, n (%) | 2 (1.0) | 4 (0.2) | 33.1/10.4 = 3.22 (1.03–10.06) | 4.33 (0.79–23.78) | 0.092 | / | / |
Treatment in a hospital with COVID-19 cases, n (%) | 40 (20.1) | 153 (9.0) | 20.7/9.3 = 2.23 (1.63–3.06) | 2.56 (1.74–3.76) | <0.001 | 1.51 (0.97–2.36) | 0.067 |
Contact with known COVID-19 cases within 14 days, n (%) | 52 (26.1) | 176 (10.3) | 22.8/8.8 = 2.60 (1.96–3.46) | 3.08 (2.17–4.38) | <0.001 | 2.56 (1.71–3.83) | <0.001 |
Clinical signs and symptoms | |||||||
Fever, n (%) | 116 (58.3) | 688 (40.3) | 14.4/7.5 = 1.92 (1.47–2.51) | 2.07 (1.54–2.79) | <0.001 | 1.89 (1.38–2.59) | <0.001 |
Sore throat, n (%) | 21 (10.6) | 113 (6.6) | 15.7/10.0 = 1.57 (1.03–2.37) | 1.67 (1.02–2.72) | 0.041 | 1.11 (0.65–1.88) | 0.697 |
Cough, n (%) | 56 (28.1) | 409 (23.9) | 12.0/9.9 = 1.21 (0.91–1.62) | 1.245 (0.90–1.73) | 0.191 | / | / |
Headache, n (%) | 33 (16.6) | 176 (10.3) | 15.8/9.8 = 1.61 (1.14–2.28) | 1.73 (1.15–2.60) | 0.008 | 1.35 (0.87–2.09) | 0.176 |
Myalgia/arthralgia, n (%) | 28 (14.1) | 220 (12.9) | 11.3/10.3 = 1.10 (0.75–1.60) | 1.11 (0.72–1.69) | 0.635 | / | |
Fatigue, n (%) | 1 (0.5) | 4 (0.2) | 20.0/10.4 = 1.92 (0.33–11.15) | 2.15 (0.24–19.36) | 0.494 | / | / |
Gastrointestinal symptoms, n (%) | 1 (0.5) | 18 (1.1) | 5.3/10.5 = 0.50 (0.07–3.40) | 0.47 (0.06–3.57) | 0.469 | / | / |
Pneumonia, n (%) | 51 (25.6) | 284 (16.6) | 15.2/9.4 = 1.62 (1.20–2.17) | 1.73 (1.23–2.44) | 0.002 | 1.46 (1.02–2.09) | 0.041 |
Comorbidities | |||||||
No chronic diseases, n (%) | 29 (14.6) | 209 (12.2) | 12.2/10.2 = 1.20 (0.83–1.73) | 1.22 (0.805–1.86) | 0.344 | / | / |
Chronic cardiac disease, n (%) | 53 (26.6) | 433 (25.5) | 10.9/10.3 = 1.06 (0.79–1.43) | 1.07 (0.77–1.49) | 0.691 | / | / |
Cardiomyopathy, n (%) | 8 (4.0) | 95 (5.6) | 7.8/10.6 = 0.73 (0.37–1.45) | 0.71 (0.34–1.49) | 0.363 | / | / |
Hypertension, n (%) | 77 (38.7) | 701 (41.0) | 9.9/10.8 = 0.92 (0.70–1.20) | 0.91 (0.67–1.23) | 0.528 | / | / |
Chronic pulmonary diseases, n (%) | 22 (11.1) | 192 (11.2) | 10.3/10.4 = 0.98 (0.65–1.50) | 0.98 (0.61–1.57) | 0.940 | / | / |
Chronic liver diseases, n (%) | 9 (4.5) | 52 (3.0) | 14.8/10.3 = 1.44 (0.77–2.66) | 1.51 (0.73–3.11) | 0.265 | / | / |
Diabetes mellitus, n (%) | 36 (18.1) | 310 (18.1) | 10.4/10.4 = 1.00 (0.71–1.40) | 0.99 (0.68–1.46) | 0.987 | / | / |
Neurological diseases, n (%) | 8 (4.0) | 185 (10.8) | 4.1/11.1 = 0.37 (0.19–0.74) | 0.34 (0.17–0.71) | 0.004 | 0.37 (0.18–078) | 0.009 |
Malignancy, n (%) | 52 (26.1) | 395 (23.1) | 11.6/10.1 = 1.15 (0.86–1.56) | 1.18 (0.84–1.65) | 0.342 | / | / |
Immunodeficiency, n (%) | 4 (2.0) | 32 (1.9) | 11.1/10.4 = 1.07 (0.42–2.71) | 1.07 (0.38–3.07) | 0.893 | / | / |
Chronic kidney disease, n (%) | 18 (9.0) | 186 (10.9) | 8.8/10.6 = 0.83 (0.52–1.32) | 0.81 (0.49–1.35) | 0.428 | / | / |
Characteristics | Respondents with Positive Test (n = 165) (%) | Respondents with Negative Test (n = 871) (%) | RR § (95% CI) | ULRA Crude OR ‡ (95%CI) | ULRA p | MLRA Adjusted OR ‡ (95%CI) | MLRA p |
---|---|---|---|---|---|---|---|
Demographics | |||||||
Male, n (%) Female, n (%) | 61 104 | 290 581 | 17.4/15.2 = 1.14 (0.86–1.53) | 0.85 (0.60–1.20) | 0.361 | / | / |
Age, median (IQR) | 44 (36–53) | 45 (36–54) | / | 0.99 (0.98–1.01) | 0.618 | / | |
Exposures risk factors | |||||||
History of travel in a country with confirmed virus transmission, n (%) | 1 (0.6) | 9 (1.0) | 10.0/16.0 = 0.62 (0.10–4.04) | 0.58 (0.07–4.64) | 0.611 | / | / |
Treatment in a hospital with COVID-19 cases, n (%) | 51 (30.9) | 311 (35.7) | 14.1/16.9 = 0.83 (0.61–1.13) | 0.81 (0.56–1.15) | 0.237 | / | / |
Contact with a known COVID-19 case within 14 days, n (%) | 108 (65.5) | 543 (62.3) | 16.6/14.8 = 1.12 (0.83–1.50) | 1.14 (0.81–1.62) | 0.448 | / | / |
Clinical signs and symptoms | |||||||
Fever, n (%) | 84 (50.9) | 147 (16.9) | 36.4/10.1 = 3.61 (2.76–4.72) | 5.11 (3.59–7.27) | <0.001 | 2.75 (1.83–4.13) | <0.001 |
Sore throat, n (%) | 63 (38.2) | 201 (23.1) | 23.9/13.2 = 1.81 (1.36–2.39) | 2.06 (1.45–2.93) | <0.001 | 0.86 (0.56–1.33) | 0.499 |
Cough, n (%) | 76 (46.1) | 161 (18.5) | 32.1/11.1 = 2.88 (2.20–3.77) | 3.766 (2.65–5.35) | 0.001 | 2.04 (1.32–3.14) | 0.001 |
Headache, n (%) | 95 (57.6) | 236 (27.1) | 28.7/9.9 = 2.89 (2.18–3.82) | 3.65 (2.59–5.15) | <0.001 | 1.76 (1.15–2.68) | 0.008 |
Myalgia/arthralgia, n (%) | 88 (53.3) | 196 (22.5) | 31.0/10.2 = 3.03 (2.30–3.98) | 3.94 (2.79–5.56) | <0.001 | 1.58 (1.02–2.45) | 0.039 |
Fatigue, n (%) | 2 (1.2) | 8 (0.9) | 20.0/15.9 = 1.26 (0.36–4.38) | 1.32 (0.28–6.29) | 0.724 | / | / |
Gastrointestinal symptoms, n (%) | 5 (3.0) | 3 (0.3) | 62.5/15.6 = 4.02 (2.30–7.00) | 9.04 (2.14–38.21) | 0.003 | 3.38 (0.69–16.44) | 0.132 |
Pneumonia, n (%) | 2 (1.2) | 5 (0.6) | 28.6/15.8 = 1.80 (0.55–5.87) | 2.14 (0.41–11.05) | 0.370 | / | / |
Comorbidities | |||||||
No chronic diseases, n (%) | 115 (69.7) | 555 (63.7) | 17.2/13.7 = 1.26 (0.92–1.71) | 1.31 (0.91–1.88) | 0.142 | / | / |
Chronic cardiac disease, n (%) | 5 (3.0) | 28 (3.2) | 15.2/16.0 = 0.95 (0.42–2.16) | 0.94 (0.36–2.47) | 0.902 | / | / |
Cardiomyopathy, n (%) | / | / | 0.0/15.9 = / | / | / | / | / |
Hypertension, n (%) | 27 (16.4) | 135 (15.5) | 16.7/15.8 = 1.06 (0.72–1.54) | 1.07 (0.68–1.67) | 0.779 | / | / |
Chronic pulmonary diseases, n (%) | 1 (0.6) | 18 (2.1) | 5.3/16.1 = 0.33 (0.05–2.21) | 0.29 (0.04–2.18) | 0.229 | / | / |
Chronic liver diseases, n (%) | / | 1 (0.1) | 0.0/15.9 = / | / | 1.000 | / | / |
Diabetes mellitus, n (%) | 4 (2.4) | 28 (3.2) | 12.5/16.0 = 0.78 (0.31–1.97) | 0.75 (0.26–2.16) | 0.592 | / | / |
Neurological diseases, n (%) | 1 (0.6) | / | 100.0/15.8 = 6.31 (5.48–7.26) | / | 1.000 | / | / |
Malignancy, n (%) | 1 (0.6) | 9 (1.0) | 10.0/16.0 = 0.63 (0.10–4.04) | 0.58 (0.07–4.64) | 0.611 | / | / |
Immunodeficiency, n (%) | / | / | 0.0/15.9 = / | / | 1.000 | / | / |
Chronic kidney disease, n (%) | / | 1 | 0.0/15.9 = / | / | 1.000 | / | / |
Characteristics | Respondents with Positive Test (n = 970) (%) | Respondents with Negative Test (n = 2998) (%) | RR § (95% CI) | ULRA Crude OR ‡ (95% CI) | ULRA p | MLRA Adjusted OR ‡ (95% CI) | MLRA p |
---|---|---|---|---|---|---|---|
Demographics | |||||||
Male, n (%) Female, n (%) | 718 252 | 2172 826 | 24.8/23.4 = 1.06 (0.94–1.20) | 0.92 (0.78–1.09) | 0.339 | / | / |
Age, median (IQR) | 40 (27–51) | 41 (29–51) | / | 0.99 (0.99–1.01) | 0.182 | / | / |
Exposures risk factors | |||||||
History of travel in a country with confirmed virus transmission, n (%) | 9 (0.9) | 39 (1.3) | 18.8/24.5 = 0.77 (0.42–1.38) | 0.71 (0.34–1.47) | 0.358 | / | / |
Treatment in a hospital with COVID-19 cases, n (%) | / | / | / | / | / | / | / |
Contact with a known COVID-19 case within 14 days, n (%) | 457 (47.1) | 886 (29.6) | 34.0/19.5 = 1.74 (1.56–1.94) | 2.12 (1.83–2.46) | <0.001 | 1.48 (1.25–1.76) | <0.001 |
Clinical signs and symptoms | |||||||
Fever, n (%) | 670 (69.1) | 733 (24.4) | 47.8/11.7 = 4.08 (3.62–4.60) | 6.90 (5.88–8.09) | <0.001 | 3.66 (3.04–4.41) | <0.001 |
Sore throat, n (%) | 369 (38.0) | 576 (19.2) | 39.0/19.9 = 1.96 (1.76–2.19) | 2.58 (2.20–3.02) | <0.001 | 0.93 (0.76–1.13) | 0.443 |
Cough, n (%) | 501 (51.6) | 614 (20.5) | 44.9/16.4 = 2.74 (2.46–3.04) | 4.15 (3.56–4.84) | <0.001 | 1.91 (1.59–2.30) | <0.001 |
Headache, n (%) | 519 (53.5) | 712 (23.7) | 42.2/16.5 = 2.56 (2.30–2.85) | 3.70 (3.17–4.30) | <0.001 | 1.24 (1.023–1.50) | 0.028 |
Myalgia/arthralgia, n (%) | 535 (55.2) | 599 (20.0) | 47.2/15.3 = 3.08 (2.76–3.42) | 4.93 (4.22–5.75) | <0.001 | 2.00 (1.65–2.42) | <0.001 |
Fatigue, n (%) | 3 (0.3) | 21 (0.7) | 12.5/24.5 = 0.51 (0.18–1.47) | 0.44 (0.13–1.48) | 0.184 | / | / |
Gastrointestinal symptoms, n (%) | 14 (1.4) | 34 (1.1) | 29.2/24.4 = 1.20 (0.77–1.86) | 1.28 (0.68–2.39) | 0.445 | / | / |
Pneumonia, n (%) | 6 (0.6) | 22 (0.7) | 21.4/24.5 = 0.88 (0.43–1.78) | 0.84 (0.34–2.08) | 0.710 | / | / |
Comorbidities | |||||||
No chronic diseases, n (%) | 693 (71.4) | 2158 (72.0) | 24.3/24.8 = 0.98 (0.87–1.11) | 0.97 (0.83–1.14) | 0.746 | / | / |
Chronic cardiac disease, n (%) | 28 (2.9) | 67 (2.2) | 29.5/24.3 = 1.21 (0.88–1.66) | 1.30 (0.83–2.03) | 0.250 | / | / |
Cardiomyopathies, n (%) | / | / | 0.0/24.5 = / | / | / | / | |
Hypertension, n (%) | 145 (14.9) | 341 (11.4) | 29.8/23.7 = 1.26 (1.08–1.46) | 1.37 (1.11–1.69) | 0.003 | 1.12 (0.88–1.44) | 0.355 |
Chronic pulmonary diseases, n (%) | 13 (1.3) | 27 (0.9) | 32.5/24.4 = 1.33 (0.85–2.09) | 1.49 (0.77–2.91) | 0.237 | / | / |
Chronic liver disease, n (%) | / | 2 (0.1) | 0.0/24.5 = / | / | 0.999 | / | / |
Diabetes mellitus, n (%) | 44 (4.5) | 95 (3.2) | 31.7/24.2 = 1.31 (1.02–1.68) | 1.45 (1.01–2.09) | 0.045 | 0.27 (0.83–1.95) | 0.268 |
Neurological diseases, n (%) | 4 (0.4) | 7 (0.2) | 36.4/24.4 = 1.49 (0.68–3.26) | 1.77 (0.52–6.06) | 0.363 | / | / |
Malignancy, n (%) | 16 (1.6) | 73 (2.4) | 18.0/24.6 = 0.73 (0.47–1.14) | 0.67 (0.39–1.16) | 0.154 | / | / |
Immunodeficiency, n (%) | / | / | 50.0/24.4 = 2.05 (0.51–8.19) | 3.09 (0.19–49.49) | 0.425 | / | / |
Chronic kidney disease, n (%) | 2 (0.2) | 14 (0.5) | 12.5/24.5 = 0.51 (0.14–1.87) | 0.44 (0.10–1.94) | 0.279 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuljagić, V.; Đurić-Petković, D.; Lazić, S.; Mladenović, J.; Rakonjac, B.; Opačić, D.; Ljubenović, N.; Milojković, B.; Radojević, K.; Nenezić, I.; et al. Epidemiological Predictors of Positive SARS-CoV-2 Polymerase Chain Reaction Test in Three Cohorts: Hospitalized Patients, Healthcare Workers, and Military Population, Serbia, 2020. Int. J. Environ. Res. Public Health 2023, 20, 3601. https://doi.org/10.3390/ijerph20043601
Šuljagić V, Đurić-Petković D, Lazić S, Mladenović J, Rakonjac B, Opačić D, Ljubenović N, Milojković B, Radojević K, Nenezić I, et al. Epidemiological Predictors of Positive SARS-CoV-2 Polymerase Chain Reaction Test in Three Cohorts: Hospitalized Patients, Healthcare Workers, and Military Population, Serbia, 2020. International Journal of Environmental Research and Public Health. 2023; 20(4):3601. https://doi.org/10.3390/ijerph20043601
Chicago/Turabian StyleŠuljagić, Vesna, Danijela Đurić-Petković, Srđan Lazić, Jovan Mladenović, Bojan Rakonjac, Dolores Opačić, Nenad Ljubenović, Biljana Milojković, Katarina Radojević, Ivana Nenezić, and et al. 2023. "Epidemiological Predictors of Positive SARS-CoV-2 Polymerase Chain Reaction Test in Three Cohorts: Hospitalized Patients, Healthcare Workers, and Military Population, Serbia, 2020" International Journal of Environmental Research and Public Health 20, no. 4: 3601. https://doi.org/10.3390/ijerph20043601
APA StyleŠuljagić, V., Đurić-Petković, D., Lazić, S., Mladenović, J., Rakonjac, B., Opačić, D., Ljubenović, N., Milojković, B., Radojević, K., Nenezić, I., & Rančić, N. (2023). Epidemiological Predictors of Positive SARS-CoV-2 Polymerase Chain Reaction Test in Three Cohorts: Hospitalized Patients, Healthcare Workers, and Military Population, Serbia, 2020. International Journal of Environmental Research and Public Health, 20(4), 3601. https://doi.org/10.3390/ijerph20043601