Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of MWCNTs
2.3. Adsorption Kinetics Experiments
2.3.1. Adsorption Kinetics Experiment of Nonionic Surfactants and Phe by MWCNTs
2.3.2. Adsorption Kinetic Models
2.4. Adsorption Isotherm Experiments
2.4.1. Adsorption Isotherm Experiment of Phe by MWCNTs
2.4.2. Adsorption Isotherm Experiment of Phe by MWCNTs under the Influence of Nonionic Surfactants
2.4.3. Adsorption Isotherm Models
2.5. Phe and Nonionic Surfacant Analysis
3. Results and Discussion
3.1. Adsorption of Nonionic Surfactants
3.2. Adsorption Kinetics of Phe on MWCNTs as Affected by Nonionic Surfactants
3.3. Equilibrium Adsorption of Phe on MWCNTs as Affected by Nonionic Surfactants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upadhyayula, V.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 2009, 408, 1–13. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar]
- Zhang, W.; Qiu, X.; Wang, C.; Zhong, L.; Fu, F.; Zhu, J.; Zhang, Z.; Qin, Y.; Yang, D.; Xu, C.C. Lignin derived carbon materials: Current status and future trends. Carbon Res. 2022, 1, 14. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, X.; Yu, H. Birnessite MnO2 supported on CNTs in-situ for low-temperature oxidation of ethyl acetate. Carbon Res. 2022, 1, 25. [Google Scholar] [CrossRef]
- Wu, F.; Li, F.; Zhao, X.; Bolan, N.S.; Fu, P.; Lam, S.S.; Mašek, O.; Ong, H.C.; Pan, B.; Qiu, X.; et al. Meet the challenges in the “Carbon Age”. Carbon Res. 2022, 1, 1. [Google Scholar] [CrossRef]
- Ramachandran, K.; Boopalan, V.; Bear, J.C.; Subramani, R. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: A review. J. Mater. Sci. 2022, 57, 3923–3953. [Google Scholar] [CrossRef]
- Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 2007, 58, 49–52. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Chen, J.; Chen, Y.; Chen, W. Enhanced adsorption of aromatic chemicals on boron and nitrogen co-doped single-walled carbon nanotubes. Environ. Sci. Nano 2017, 4, 558–564. [Google Scholar] [CrossRef]
- Yang, K.; Wang, X.; Zhu, L.; Xing, B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol. 2006, 40, 5804–5810. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Pan, B.; Xing, B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 9167–9173. [Google Scholar] [CrossRef]
- Wang, S.; Ng, C.W.; Wang, W.; Li, Q.; Hao, Z. Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem. Eng. J. 2012, 197, 34–40. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Gaspard, S.; Sillanpää, M. As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants. J. Hazard. Mater. 2015, 286, 195–203. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, W.; Chen, Y.; Werner, D.; Cornelissen, G.; Xing, B.; Tao, S.; Wang, X. Surfactant removal with multiwalled carbon nanotubes. Water Res. 2016, 106, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Riding, M.J.; Doick, K.J.; Martin, F.L.; Jones, K.C.; Semple, K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. J. Hazard. Mater. 2013, 261, 687–700. [Google Scholar] [CrossRef]
- Li, S.; Turaga, U.; Shrestha, B.; Anderson, T.A.; Ramkumar, S.; Green, M.J.; Das, S.; Cañas-Carrell, J.E. Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes. Ecotoxicol. Environ. Saf. 2013, 96, 168–174. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Manning, D.A.; Fialips, C.I. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds. J. Environ. Manag. 2014, 142, 30–35. [Google Scholar] [CrossRef]
- Shrestha, B.; Anderson, T.A.; Acosta-Martinez, V.; Payton, P.; Cañas-Carrell, J.E. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicol. Environ. Saf. 2015, 116, 143–149. [Google Scholar] [CrossRef]
- Wang, M.; Jia, S.; Lee, S.H.; Chow, A.; Fang, M. Polycyclic aromatic hydrocarbons (PAHs) in indoor environments are still imposing carcinogenic risk. J. Hazard. Mater. 2020, 409, 124531. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Zuo, G.; Kong, J.; Guo, Y.; Sun, C.; Xian, Q. Photocatalytic degradation mechanism of phenanthrene over visible light driven plasmonic Ag/Ag3PO4/g-C3N4 heterojunction nanocomposite. Chemosphere 2022, 293, 133575. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Xing, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environ. Sci. Technol. 2006, 40, 1855–1861. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.; Gibbs, B. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Li, J.; Fang, Z.; Bolan, N.; Bhatnagar, A.; Gao, B.; Hou, D.; Wang, S.; Song, H.; et al. Engineered biochar for environmental decontamination in aquatic and soil systems: A review. Carbon Res. 2022, 1, 4. [Google Scholar] [CrossRef]
- Hilding, J.; Grulke, E.A.; George Zhang, Z.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41. [Google Scholar] [CrossRef]
- Vaisman, L.; Marom, G.; Wagner, H.D. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv. Funct. Mater. 2006, 16, 357–363. [Google Scholar] [CrossRef]
- Liu, G.; Dai, Z.; Liu, X.; Dahlgren, R.A.; Xu, J. Modification of agricultural wastes to improve sorption capacities for pollutant removal from water—A review. Carbon Res. 2022, 1, 24. [Google Scholar] [CrossRef]
- Bai, Y.; Lin, D.; Wu, F.; Wang, Z.; Xing, B. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere 2010, 79, 362–367. [Google Scholar] [CrossRef]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Ramli, A.; Abu Bakar, N.H.; Saad, B.; Rozaini, M.N.; Isiyaka, H.A.; Osman, A.M.; Sulieman, A. An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. Water 2020, 12, 2921. [Google Scholar] [CrossRef]
- Shah, A.; Shahzad, S.; Munir, A.; Nadagouda, M.N.; Khan, G.S.; Shams, D.F.; Dionysiou, D.D.; Rana, U.A. Micelles as soil and water decontamination agents. Chem. Rev. 2016, 116, 6042–6074. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, H.; Tao, Y.; Zhang, H. Selective adsorption of phenanthrene dissolved in Tween 80 solution using activated carbon derived from walnut shells. Chemosphere 2018, 208, 951–959. [Google Scholar] [CrossRef]
- Yang, K.; Jing, Q.; Wu, W.; Zhu, L.; Xing, B. Adsorption and conformation of a cationic surfactant on single-walled carbon nanotubes and their influence on naphthalene sorption. Environ. Sci. Technol. 2009, 44, 681–687. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Für Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Li, C.; Gao, Y.; Li, A.; Zhang, L.; Ji, G.; Zhu, K.; Wang, X.; Zhang, Y. Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue. Environ. Pollut. 2019, 254, 113005. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: Static and dynamic conditions. Fuel 2015, 159, 15–26. [Google Scholar] [CrossRef]
- Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef]
- Svilović, S.; Rušić, D.; Bašić, A. Investigations of different kinetic models of copper ions sorption on zeolite 13X. Desalination 2010, 259, 71–75. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Sun, X.; Hu, W. Separation of polycyclic aromatic hydrocarbons from rhamnolipid solution by activated carbon adsorption. Environ. Earth Sci. 2016, 75, 1453. [Google Scholar] [CrossRef]
- Kim, I.S.; Park, J.-S.; Kim, K.-W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem. 2001, 16, 1419–1428. [Google Scholar] [CrossRef]
- Arnold, C.; Ulrich, S.; Stoll, S.; Marie, P.; Holl, Y. Monte Carlo simulations of surfactant aggregation and adsorption on soft hydrophobic particles. J. Colloid Interface Sci. 2011, 353, 188–195. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X. Adsorption of phenanthrene dissolved in nonionic surfactant solution by activated carbon. Res. Environ. Sci. 2015, 28, 1481–1486. [Google Scholar]
- Wang, X.; Shu, L.; Wang, Y.; Xu, B.; Bai, Y.; Tao, S.; Xing, B. Sorption of peat humic acids to multi-walled carbon nanotubes. Environ. Sci. Technol. 2011, 45, 9276–9283. [Google Scholar] [CrossRef]
- Luo, X.; Yu, L.; Wang, C.; Yin, X.; Mosa, A.; Lv, J.; Sun, H. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 2017, 169, 609–617. [Google Scholar] [CrossRef]
- Gotovac, S.; Hattori, Y.; Noguchi, D.; Miyamoto, J.-i.; Kanamaru, M.; Utsumi, S.; Kanoh, H.; Kaneko, K. Phenanthrene adsorption from solution on single wall carbon nanotubes. J. Phys. Chem. B. 2006, 110, 16219–16224. [Google Scholar] [CrossRef]
- Wu, B.; Bai, L. Effect of non-ionic surfactants on the dispersion of multiwalled carbon nanotubes at high loading in ethanol. Acta Phys. Chim. Sin. 2009, 25, 1065–1069. [Google Scholar]
- Brownawell, B.J.; Chen, H.; Zhang, W.; Westall, J.C. Sorption of nonionic surfactants on sediment materials. Environ. Sci. Technol. 1997, 31, 1735–1741. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, X.; Guo, C.; Dang, Z. Competitive partitioning of phenanthrene in carbon nanomaterials and anionic and nonionic micelles. Colloids Surf. Physicochem. Eng. Asp. 2018, 553, 612–617. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Zhao, Q.; Xing, B. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ. Sci. Technol. 2013, 48, 331–339. [Google Scholar] [CrossRef]
- West, C.C.; Harwell, J.H. Surfactants and subsurface remediation. Environ. Sci. Technol. 1992, 26, 2324–2330. [Google Scholar] [CrossRef]
- Murillo, R.; Garcıa, T.; Aylón, E.; Callén, M.; Navarro, M.; López, J.; Mastral, A. Adsorption of phenanthrene on activated carbons: Breakthrough curve modeling. Carbon 2004, 42, 2009–2017. [Google Scholar] [CrossRef]
- Deng, L.-L.; Taxipalati, M.; Que, F.; Zhang, H. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Rosas, J.M.; Santos, A.; Romero, A. Soil-washing effluent treatment by selective adsorption of toxic organic contaminants on activated carbon. Water Air Soil Pollut. 2013, 224, 1506. [Google Scholar] [CrossRef]
Surfactant | Pseudo-First-Order Model | Pseudo-Second-Order Model | Weber–Morris Model | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe (mg·g−1) | k1 (min−1 × 10−3) | R2 | Qe (mg·g−1) | k2 (g·mg−1·min−1 × 10−5) | R2 | A | Ka (mg·g−1·h0.5) | R2 | |
TW-80-20 | 284.568 | 4.060 | 0.932 | 281.690 | 3.985 | 0.997 | 72.152 | 40.032 | 0.902 |
TW-80-40 | 396.186 | 21.37 | 0.433 | 390.625 | 4.288 | 0.962 | 57.658 | 222.344 | 0.980 |
TW-80-60 | 535.288 | 20.290 | 0.465 | 534.760 | 12.075 | 0.988 | 80.383 | 294.680 | 0.982 |
TW-80-80 | 916.562 | 3.680 | 0.344 | 980.392 | 0.513 | 0.993 | 148.240 | 321.840 | 0.867 |
TW-80-100 | 985.475 | 11.200 | 0.588 | 1067.027 | 0.455 | 0.961 | 180.776 | 380.236 | 0.900 |
TX-100-20 | 140.600 | 16.390 | 0.385 | 160.771 | 7.620 | 0.999 | 73.067 | 21.634 | 0.922 |
TX-100-60 | 212.530 | 7.380 | 0.656 | 221.730 | 6.953 | 0.997 | 79.726 | 36.324 | 0.984 |
TX-100-100 | 241.890 | 7.080 | 0.667 | 255.755 | 5.006 | 0.998 | 84.753 | 44.830 | 0.973 |
TX-100-140 | 136.409 | 14.24 | 0.382 | 145.560 | 14.656 | 0.993 | 68.368 | 20.977 | 0.985 |
TX-100-180 | 118.959 | 1.590 | 0.960 | 125.786 | 3.225 | 0.991 | 0.243 | 27.833 | 0.964 |
Compound | Pseudo-First-Order Model | Pseudo-Second-Order Model | Weber–Morris Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qe, exp (mg·g−1) | Qe (mg·g−1) | k1 (min−1 × 10−2) | R2 | Qe (mg·g−1) | k2 (g·mg−1·min−1 × 10−4) | R2 | A | Ka (mg·g−1·h0.5) | R2 | ||
Phe | MWCNTs | 34.930 | 34.400 | 3.296 | 0.680 | 35.051 | 29.095 | 0.999 | 27.640 | 2.210 | 0.896 |
TW-80-50 | 21.890 | 22.804 | 2.683 | 0.533 | 24.378 | 15.735 | 0.997 | 12.400 | 3.440 | 0.965 | |
TW-80-100 | 23.560 | 20.093 | 3.107 | 0.587 | 22.065 | 8.945 | 0.999 | 12.570 | 2.560 | 0.899 | |
TX-100-100 | 29.320 | 29.172 | 1.623 | 0.629 | 31.387 | 6.359 | 0.998 | 11.420 | 5.790 | 0.905 | |
TX-100-200 | 30.720 | 28.483 | 1.219 | 0.865 | 29.842 | 8.168 | 0.999 | 9.380 | 6.270 | 0.913 |
Compound | Freundlich | Langmuir | |||||
---|---|---|---|---|---|---|---|
k | 1/n | R2 | Qm (mg·g−1) | A | R2 | ||
Phe | MWCNT | 59.501 | 0.268 | 0.960 | 35.793 | 0.012 | 0.987 |
TW-80-100 | 29.996 | 0.503 | 0.250 | 27.102 | 0.182 | 0.994 | |
TW-80-50 | 48.911 | 0.609 | 0.671 | 28.490 | 0.125 | 0.992 | |
TX-100-200 | 62.359 | 0.597 | 0.962 | 29.790 | 0.065 | 0.996 | |
TX-100-100 | 84.092 | 0.563 | 0.912 | 30.990 | 0.029 | 0.998 |
Bulk Elemental Composition (%) | Pore Volume (cm3/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O | N | ash | SA (m2/g) | Pore size (nm) | Vmic | Vmes + mac | |
MWCNTs | 95.975 | 0.100 | 1.809 | 0.984 | 1.132 | 142.048 | 22.764 | 0.012 | 0.796 |
TW-80-60 | 94.598 | 0.669 | 2.320 | 0.906 | 1.507 | 116.673 | 31.013 | 0 | 0.905 |
TW-80-100 | 93.271 | 0.783 | 2.800 | 0.100 | 3.046 | 109.420 | 31.070 | 0 | 0.850 |
TX-100-100 | 93.342 | 0.883 | 3.556 | 0.889 | 1.330 | 89.537 | 34.682 | 0 | 0.705 |
TX-100-180 | 89.901 | 1.101 | 4.111 | 0.779 | 4.108 | 76.719 | 31.484 | 0 | 0.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Zhou, Z.; Wang, C.; Sun, H. Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants. Int. J. Environ. Res. Public Health 2023, 20, 3648. https://doi.org/10.3390/ijerph20043648
Cao H, Zhou Z, Wang C, Sun H. Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants. International Journal of Environmental Research and Public Health. 2023; 20(4):3648. https://doi.org/10.3390/ijerph20043648
Chicago/Turabian StyleCao, Huimin, Zhenyang Zhou, Cuiping Wang, and Hongwen Sun. 2023. "Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants" International Journal of Environmental Research and Public Health 20, no. 4: 3648. https://doi.org/10.3390/ijerph20043648
APA StyleCao, H., Zhou, Z., Wang, C., & Sun, H. (2023). Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants. International Journal of Environmental Research and Public Health, 20(4), 3648. https://doi.org/10.3390/ijerph20043648