Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Technology and Carbon Reduction
2.2. Fuzzy MCDM for Evaluation
3. Enterprise Carbon Accounts
3.1. Definition of Carbon Accounts
3.2. Accounting Methods of Enterprise Carbon Accounts
3.3. Evaluation Process of Enterprise Carbon Accounts
4. Evaluation Index System of the Social Effects of Enterprise Carbon Accounts
4.1. Construction of an Evaluation System for the Social Effects of Enterprise Carbon Accounts
4.2. Interpretation of the Evaluation Index System for the Social Effects of Enterprise Carbon Accounts
5. Calculation Process of the Variable-Weight Fuzzy VIKOR Model
5.1. Defuzzification Steps of the Fuzzy VIKOR Method
5.2. Calculation of Constant Weight Value by CFPR
- i.
- Calculate preference value set B of the decision matrix:
- ii.
- Calculate the k value:
- iii.
- Calculate P:
- iv.
- The conversion function of fuzzy preference relation is as follows:
5.3. Calculation of the Variable Weight Value
5.4. Determination of the Ideal Solution and Ranking Alternations
6. Case Study
6.1. Expert Language Evaluation Values of the Secondary Indicators (B)
6.2. Calculation of Evaluation Values and Constant Weight Values of Secondary Indicators of B
6.3. Calculation of the Evaluation Values and Variable Weight Values of the Primary Indicators
6.4. Determination of the Ideal Solution and Ranking Alternations
6.5. Comprehensive Analysis of the Evaluation Values
7. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Ma, X.; Chen, B. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Bi, J.; Liu, M. New challenges of the Belt and Road Initiative under China’s “3060” carbon target. J. Clean. Prod. 2022, 376, 134180. [Google Scholar] [CrossRef]
- Tian, Y.; Li, L. Will COVID-19 affect China’s peak CO2 emissions in 2030? An analysis based on the systems dynamics model of green finance. J. Clean. Prod. 2022, 356, 131777. [Google Scholar] [CrossRef]
- Jiang, X. Quzhou discusses heroes with “carbon efficiency”. Policy Decis. 2022, 42–44. [Google Scholar]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Lin, W.; Wei, W. How does digital technology promote carbon emission reduction? Empirical evidence based on e-commerce pilot city policy in China. J. Environ. Manag. 2023, 325, 116524. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Q.; Chen, Y.; Liu, J. The impact of digital technology development on carbon emissions: A spatial effect analysis for China. Resour. Conserv. Recycl. 2022, 185, 106445. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.; Lv, S.; Fang, Z. A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry. Int. J. Environ. Res. Public Health 2022, 19, 12432. [Google Scholar] [CrossRef]
- Görener, A. Comparing AHP and ANP: An application of strategic decisions making in a manufacturing company. Int. J. Bus. Soc. Sci. 2012, 3, 194–208. [Google Scholar]
- Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 2004, 154, 98–109. [Google Scholar] [CrossRef]
- Kahraman, C.; Çebi, S.; Onar, S.; Öztayşi, B. Recent Developments on Fuzzy AHP and ANP Under Vague and Imprecise Data: Evidence from INFUS Conferences. Int. J. Anal. Hierarchy Process 2022, 14, 1–17. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Javed, S.; Mardani, A. Gresilient supplier selection through fuzzy ordinal priority approach: Decision-making in post-COVID era. Oper. Manag. Res. 2022, 15, 208–232. [Google Scholar] [CrossRef]
- Sathyan, R.; Parthiban, P.; Dhanalakshmi, R.; Sachin, M.S. An integrated Fuzzy MCDM approach for modelling and prioritising the enablers of responsiveness in automotive supply chain using Fuzzy DEMATEL, Fuzzy AHP and Fuzzy TOPSIS. Soft Comput. 2023, 27, 257–277. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, J.; Huang, L.; Mardani, A. Digital transformation solutions of entrepreneurial SMEs based on an information error-driven T-spherical fuzzy cloud algorithm. Int. J. Inf. Manag. 2021, 69, 102384. [Google Scholar] [CrossRef]
- Jia, G.; Lam, H.; Althoefer, K. Variable weight algorithm for convolutional neural networks and its applications to classification of seizure phases and types. Pattern Recognit. 2022, 121, 108226. [Google Scholar] [CrossRef]
- Ayyildiz, E.; Taskin, A. A novel spherical fuzzy AHP-VIKOR methodology to determine serving petrol station selection during COVID-19 lockdown: A pilot study for İstanbul. Socio-Econ. Plan. Sci. 2022, 83, 101345. [Google Scholar] [CrossRef] [PubMed]
- İç, Y.; Çelik, B.; Kavak, S.; Baki, B. An integrated AHP-modified VIKOR model for financial performance modeling in retail and wholesale trade companies. Decis. Anal. J. 2022, 3, 100077. [Google Scholar] [CrossRef]
- Zhu, G.; Ma, J.; Hu, J. A fuzzy rough number extended AHP and VIKOR for failure mode and effects analysis under uncertainty. Adv. Eng. Inform. 2022, 51, 101454. [Google Scholar] [CrossRef]
- Chen, L.; Wang, T. Optimizing partners’ choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR. Int. J. Prod. Econ. 2009, 120, 233–242. [Google Scholar] [CrossRef]
- Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- Wang, T.; Chang, T. Forecasting the probability of successful knowledge management by consistent fuzzy preference relations. Expert Syst. Appl. 2007, 32, 801–813. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y. Applying consistent fuzzy preference relations to partnership selection. Omega 2007, 35, 384–388. [Google Scholar] [CrossRef]
- Liu, W. Equilibrium function and its application in variable weight synthesis. Syst. Eng. Theory Pract. 1997, 17, 59–65. [Google Scholar]
FLAG COLOR | Strength Grade | Benchmarking Rate | Grade Description |
---|---|---|---|
Dark green | A | 0, 50% | Excellent |
Light green | B | 50%, 100% | Good |
Yellow | C | 100%, 120% | Secondary |
Red | D | 120%, +∞ | Poor |
Order Number | Primary Indicators | Secondary Indicators |
---|---|---|
A | Concepts of energy conservation and carbon reduction | A1 Publicize awareness of energy conservation and carbon reduction A2 Spread knowledge of energy conservation and carbon reduction A3 Create an atmosphere of energy conservation and carbon reduction |
B | Contribution of energy conservation and carbon reduction | B1 Promote the formulation of national or industrial energy conservation and carbon reduction standards B2 Promoting social energy consumption and saving B3 Reduce carbon emissions and promote optimization of the ecological environment B4 Promote the transformation of green, low-carbon, and high-quality development |
C | Technological innovations related to energy conservation and carbon reduction | C1 Promote the digitalization of the production process C2 Promote intelligent energy data collection C3 Promote the optimization of enterprise management methods |
D | Customer respect and trust earned by energy conservation and carbon reduction | D1 Improve enterprise reputation D2 Ensure that the carbon emission standards of products meet consumer demands |
Language Variables | Triangular Fuzzy Numbers |
---|---|
Very weak (VW) | (0, 0, 2.5) |
Weak (W) | (0, 2.5, 5) |
Medium (M) | (2.5, 5, 7.5) |
good (G) | (5, 7.5, 10) |
Very good (VG) | (7.5, 10, 10) |
B1 | B2 | B3 | B4 | ||
---|---|---|---|---|---|
Enterprise 1 | E1 E2 E3 E4 E5 E6 E7 | G G M VG VG W VG | G VG VG G M M G | M M G W W G VG | M G G VG M M W |
Enterprise 2 | E1 E2 E3 E4 E5 E6 E7 | M VG G M M G W | M G W G VG G G | G G W M W M M | VG M W W G G M |
Enterprise 3 | E1 E2 E3 E4 E5 E6 E7 | G G M VG M W W | W G M VG G G VG | G G G M W G G | VG M G VG G VG M |
Enterprise 4 | E1 E2 E3 E4 E5 E6 E7 | G G M G G G W | M G W VG M M G | G VG W M W G M | G G VW W G G M |
Enterprise 5 | E1 E2 E3 E4 E5 E6 E7 | M VG G G M G G | M VG W G VG VG G | VG G VG M W G M | VG M VW W G M M |
Enterprise 6 | E1 E2 E3 E4 E5 E6 E7 | M G G VG M G W | M G W VG G VG G | VG G W W W M M | VG M M G G G M |
B1 | B2 | B3 | B4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterprise 1 | 5.0 | 7.5 | 8.9 | 5.0 | 7.5 | 9.3 | 3.2 | 5.7 | 7.9 | 3.6 | 6.1 | 8.2 |
Enterprise 2 | 3.6 | 6.1 | 8.2 | 4.3 | 6.8 | 8.9 | 2.5 | 5.0 | 7.5 | 3.2 | 5.7 | 7.9 |
Enterprise 3 | 3.2 | 5.7 | 7.9 | 4.6 | 7.1 | 8.9 | 3.9 | 6.4 | 8.9 | 5.4 | 7.9 | 9.3 |
Enterprise 4 | 3.9 | 6.4 | 8.9 | 3.6 | 6.1 | 8.2 | 3.2 | 5.7 | 7.9 | 3.2 | 5.4 | 7.9 |
Enterprise 5 | 4.6 | 7.1 | 9.3 | 5.0 | 7.5 | 8.9 | 4.3 | 6.8 | 8.6 | 2.9 | 5.0 | 7.1 |
Enterprise 6 | 3.9 | 6.4 | 8.6 | 4.6 | 7.1 | 8.9 | 2.5 | 5.0 | 7.1 | 4.3 | 6.8 | 8.9 |
B1 | B2 | B3 | B4 | |
---|---|---|---|---|
Constant weight values | 0.201 | 0.239 | 0.212 | 0.248 |
Enterprise 1 | 7.23 | 7.33 | 5.63 | 6.00 |
Enterprise 2 | 6.00 | 6.70 | 5.00 | 5.63 |
Enterprise 3 | 5.63 | 6.93 | 6.40 | 7.63 |
Enterprise 4 | 6.40 | 6.00 | 5.63 | 5.48 |
Enterprise 5 | 7.04 | 7.23 | 6.61 | 5.00 |
Enterprise 6 | 6.33 | 6.96 | 4.91 | 6.70 |
A | B | C | D | |
---|---|---|---|---|
Enterprise 1 | 6.12 | 5.89 | 6.89 | 6.87 |
Enterprise 2 | 5.64 | 6.27 | 6.22 | 6.37 |
Enterprise 3 | 6.12 | 6.04 | 6.17 | 6.04 |
Enterprise 4 | 5.87 | 6.27 | 5.86 | 5.96 |
Enterprise 5 | 6.01 | 6.78 | 6.75 | 5.98 |
Enterprise 6 | 6.53 | 5.64 | 6.64 | 6.27 |
A | B | C | D | |
---|---|---|---|---|
Constant weight | 0.213 | 0.274 | 0.258 | 0.255 |
Enterprise 1 | 0.218 | 0.286 | 0.249 | 0.247 |
Enterprise 2 | 0.222 | 0.271 | 0.256 | 0.250 |
Enterprise 3 | 0.212 | 0.275 | 0.256 | 0.256 |
Enterprise 4 | 0.215 | 0.268 | 0.261 | 0.256 |
Enterprise 5 | 0.220 | 0.266 | 0.251 | 0.264 |
Enterprise 6 | 0.208 | 0.288 | 0.250 | 0.254 |
A | 6.53 | 5.64 |
B | 6.78 | 5.64 |
C | 6.89 | 5.86 |
D | 6.87 | 5.96 |
Si | Ri | Qi | Sort | |
---|---|---|---|---|
Enterprise 1 | 0.324 | 0.223 | 0.009 | 1 |
Enterprise 2 | 0.648 | 0.222 | 0.343 | 2 |
Enterprise 3 | 0.689 | 0.234 | 0.473 | 4 |
Enterprise 4 | 0.796 | 0.261 | 0.795 | 6 |
Enterprise 5 | 0.420 | 0.258 | 0.372 | 3 |
Enterprise 6 | 0.516 | 0.288 | 0.704 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Luo, H.; Lian, Y.; Jiang, Y. Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR. Int. J. Environ. Res. Public Health 2023, 20, 3704. https://doi.org/10.3390/ijerph20043704
Lin X, Luo H, Lian Y, Jiang Y. Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR. International Journal of Environmental Research and Public Health. 2023; 20(4):3704. https://doi.org/10.3390/ijerph20043704
Chicago/Turabian StyleLin, Xiangyi, Hongyun Luo, Yinghuan Lian, and Yifei Jiang. 2023. "Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR" International Journal of Environmental Research and Public Health 20, no. 4: 3704. https://doi.org/10.3390/ijerph20043704
APA StyleLin, X., Luo, H., Lian, Y., & Jiang, Y. (2023). Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR. International Journal of Environmental Research and Public Health, 20(4), 3704. https://doi.org/10.3390/ijerph20043704