The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review
Abstract
:1. Introduction
2. Methodology
3. Organic Contaminants—A General Characterization
3.1. Pesticides
3.2. Herbicides—A Main Concern
3.2.1. Fluorinated-based herbicides
Inhibitors Type | Target Characterization | Action Mode | Chemical Compounds | Aim/Application |
---|---|---|---|---|
Acetolactate Synthase (ALS) Inhibitor | ALS is a flavin enzyme involved in the biosynthesis of the ramified chain of the amino acids L-valine, L-leucine, and L-isoleucine [10,15] | Act over the ALS, leading to the decrease in the synthesis of the amino-acids-ramified chain, essential to the early tissues growth [8,9] | Sulphonamides; Flumetsulam; Florasulam; Penoxsulam; Piroxsulam. | Fight against broadleaf weeds on wheat crops and other cereals [123] |
Acetil-CoA Carboxylase (ACC) Inhibitors | ACC catalyzes the 1st step of the fatty acids’ biosynthesis on plants. ACC catalyzes the conversion from Acetil-CoA to Malonil-CoA—with a key role on the saturated fatty acids assembly in the plastids. | ACC inhibition prevents the fatty acids biosynthesis and drains the Malonil-CoA levels in the cell to the additional elongation of SFAs, when they are transported from the plastids to the cytosol [10,11] | Clodinafop-propargil; Fluazifop; Fluazifop-P-butyl; Haloxifop. | Cereal crops |
Mitosis Inhibitors | Cell division | Chemicals enter the cell and establish a link with tubulin, causing disruption to the microtubules formation and, therefore, inhibition of mitosis [10] | Trifluralin; Ethalfluralin. | Prevent the growth of weeds on the crops |
Synthetic Auxins | Plant hormones | Auxins are applied and adsorbed by the leaf and quickly distributed through the plant. They induce auxins as a response, leading to the atypical development of morphologies [124]. | Fluoroxipir | |
PDSs are involved in the carotenoids biosynthesis; Catalyzes the conversion from phytoene to carotene and phytofluene in plants | PDS inhibition causes chlorophyll degradation and consequent bleaching of the leaves [125,126] | Diflufenican | ||
Protoporphyrinogen Oxidase (PPO) or ‘Protox’ Inhibitors | PPO is a key enzyme that catalyzes the oxidation of protoporphyrinogen IX into protoporphyrin IX, an intermediate essential to the chlorophyll biosynthetic pathway [10,12] and to the chloroplasts, and then it is distributed through the chloroplast membrane [127] | PPO inhibitors block the protoporphyrin production; Accumulation of protoporphyrinogen on the chloroplasts; Leakage of protoporphyrinogen to the cytosol and non-enzymatic oxidation; Massive production of singlet oxygen and lipid peroxidation [13] | Oxifluorfen; Fomesafen; Lactofen. | |
4-Hydroxyphenylpiruvate dioxygenase (HPPD)Inhibitors | HPPD is an enzyme involved on the tyrosine biosynthesis; HPPD converts tyrosine into homogentisate, a metabolic precursor to plastoquinone and tocopherol in plants. | HPPD inhibitors affects the chlorophyll production, causing bleaching [14,15] | Isoxaflutole; Pyrasulfatole; Tembotrione. | Fight against broadleaf and grass weeds on rice and maize farms. |
Very Long-Chain Fatty Acids (VLCFAs) Elongase Inhibitors | VLCFAs have an essential importance in the formation of glycosylphosphatidyl-inositol anchors and sphingolipids [128]. | Inhibition of the elongase that catalyzes the very long-chain fatty acids biosynthesis [16,17] | Flufenacet. | Prevent weeds on cereals and corn crops. |
3.2.2. Oxyfluorfen and Its Effects
4. Metal Contamination
4.1. Copper—From Essential to a Toxic Element
4.2. Copper Applications and Copper Sulfate Effects on Aquatic Organisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem. 2014, 167, 16–29. [Google Scholar] [CrossRef]
- Luo, Y.L.; Guo, W.S.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef]
- FAO. Pesticides Use; FAO: Rome, Italy, 2020. [Google Scholar]
- Eurostat. Agri-Environmental Indicator—Consumption of Pesticides—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides (accessed on 11 March 2022).
- Fernández, P.; Alcántara, R.; Osuna, M.D.; Vila-Aiub, M.M.; De Prado, R. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species. Pest Manag. Sci. 2017, 73, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Corbett, C.-A.L.; Tardif, F.J. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: A review. Pest Manag. Sci. 2006, 62, 584–597. [Google Scholar] [CrossRef]
- Singh, B.K.; Shaner, D. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. Plant Cell 1995, 7, 935–944. [Google Scholar] [CrossRef]
- Duke, S.O. Overview of herbicide mechanisms of action. Environ. Health Perspect. 1990, 87, 263–271. [Google Scholar] [CrossRef]
- Polyak, S.W.; Abell, A.D.; Wilce, M.C.J.; Zhang, L.; Booker, G.W. Structure, function and selective inhibition of bacterial acetyl-coa carboxylase. Appl. Microbiol. Biotechnol. 2012, 93, 983–992. [Google Scholar] [CrossRef]
- Hao, G.-F.; Zuo, Y.; Yang, S.-G.; Yang, G.-F. Protoporphyrinogen Oxidase Inhibitor: An Ideal Target for Herbicide Discovery. Chim. Int. J. Chem. 2011, 65, 961–969. [Google Scholar] [CrossRef]
- Park, J.; Ahn, Y.O.; Nam, J.-W.; Hong, M.-K.; Song, N.; Kim, T.; Yu, G.-H.; Sung, S.-K. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. Pestic. Biochem. Physiol. 2018, 152, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, H.; Lange, G.; Müller, T.; Rosinger, C.; Willms, L.; Van Almsick, A. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors in Combination with Safeners: Solutions for Modern and Sustainable Agriculture. Angew. Chem. Int. Ed. 2013, 52, 9388–9398. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Böger, P. Target sites for herbicides: Entering the 21st century. Pest Manag. Sci. 2002, 58, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gajbhiye, V.T. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 2002, 47, 901–906. [Google Scholar] [CrossRef]
- Lechelt-Kunze, C.; Meissner, R.C.; Drewes, M.; Tietjen, K. Flufenacet herbicide treatment phenocopies the fiddlehead mutant in Arabidopsis thaliana. Pest Manag. Sci. 2003, 59, 847–856. [Google Scholar] [CrossRef]
- Mesquita, A.; Gonçalves, F.; Rocha, C.; Marques, J.; Gonçalves, A. Biochemical Effects of Two Pesticides in Three Different Temperature Scenarios on the Diatom Thalassiosira weissflogii. Processes 2021, 9, 1247. [Google Scholar] [CrossRef]
- Sheeba; Singh, V.P.; Srivastava, P.K.; Prasad, S.M. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicol. Environ. Saf. 2011, 74, 1981–1993. [Google Scholar] [CrossRef]
- Geoffroy, L.; Teisseire, H.; Couderchet, M.; Vernet, G. Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic. Biochem. Physiol. 2002, 72, 178–185. [Google Scholar] [CrossRef]
- Hassanein, H.M.A. toxicological effects of the herbicide oxyfluorfen on acetylcholinesterase in two fish species: Oreochromis niloticus and Gambusia affinis. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2002, 37, 521–527. [Google Scholar] [CrossRef]
- Peixoto, F.; Alves-Fernandes, D.; Santos, D.; Fontaínhas-Fernandes, A. Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic. Biochem. Physiol. 2006, 85, 91–96. [Google Scholar] [CrossRef]
- Hassanein, H.M.A.; Banhawy, M.A.; Soliman, F.M.; Abdel-Rehim, S.A.; Müller, W.E.G.; Schröder, H.C. Induction of Hsp70 by the Herbicide Oxyfluorfen (Goal) in the Egyptian Nile Fish, Oreochromis niloticus. Arch. Environ. Contam. Toxicol. 1999, 37, 78–84. [Google Scholar] [CrossRef]
- Maazouzi, C.; Masson, G.; Izquierdo, M.S.; Pihan, J.-C. Chronic copper exposure and fatty acid composition of the amphipod Dikerogammarus villosus: Results from a field study. Environ. Pollut. 2008, 156, 221–226. [Google Scholar] [CrossRef]
- Ritter, A.; Dittami, S.M.; Goulitquer, S.; Correa, J.A.; Boyen, C.; Potin, P.; Tonon, T. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol. 2014, 14, 116. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Goulitquer, S.; Salaün, J.-P.; Tonon, T.; Correa, J.A.; Potin, P. Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata. New Phytol. 2008, 180, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Filimonova, V.; Gonçalves, F.; Marques, J.C.; De Troch, M.; Gonçalves, A.M. Biochemical and toxicological effects of organic (herbicide Primextra® Gold TZ) and inorganic (copper) compounds on zooplankton and phytoplankton species. Aquat. Toxicol. 2016, 177, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Filimonova, V.; Nys, C.; De Schamphelaere, K.A.C.; Gonçalves, F.; Marques, J.C.; Gonçalves, A.M.M.; De Troch, M. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa. Environ. Sci. Pollut. Res. 2018, 25, 22180–22195. [Google Scholar] [CrossRef]
- Mesquita, A.; Gonçalves, F.; Verdelhos, T.; Marques, J.; Gonçalves, A. Fatty acids profiles modifications in the bivalves Cerastoderma edule and Scrobicularia plana in response to copper sulphate. Ecol. Indic. 2018, 85, 318–328. [Google Scholar] [CrossRef]
- Sibi, G.; Anuraag, T.; Bafila, G. Copper stress on cellular contents and fatty acid profiles in chlorella species. Online J. Biol. Sci. 2014, 14, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Gomes, D.G.; Lopes-Oliveira, P.J.; Debiasi, T.V.; da Cunha, L.S.; Oliveira, H.C. Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants. Planta 2021, 253, 1–14. [Google Scholar] [CrossRef]
- Tagliaferro, M.; Gonçalves, A.M.; Bergman, M.; Sobral, O.; Graça, M.A. Assessment of metal exposure (uranium and copper) by the response of a set of integrated biomarkers in a stream shredder. Ecol. Indic. 2018, 95, 991–1000. [Google Scholar] [CrossRef]
- EEA. EEA Water 2012 Report: European Waters—Assessment of Status and Pressures; EEA: Boston, MA, USA, 2012. [Google Scholar]
- Littlefield-Wyer, J.; Brooks, P.; Katouli, M. Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities. Environ. Pollut. 2008, 153, 393–400. [Google Scholar] [CrossRef]
- Pinto, E.; Carvalho, A.P.; Cardozo, K.H.M.; Malcata, F.; dos Anjos, F.M.; Colepicolo, P. Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Rev. Bras. Farm. 2011, 21, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Fokina, N.N.; Ruokolainen, T.R.; Nemova, N.N.; Bakhmet, I.N. Changes of Blue Mussels Mytilus edulis L. Lipid Composition Under Cadmium and Copper Toxic Effect. Biol. Trace Element Res. 2013, 154, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Chelomin, V.; Belcheva, N. Alterations of microsomal lipid synthesis in gill cells of bivalve mollusc Mizuhopecten yessoensis in response to cadmium accumulation. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1991, 99, 1–5. [Google Scholar] [CrossRef]
- Anu, P.; Nandan, S.B.; Jayachandran, P.; Xavier, N.D. Toxicity effects of copper on the marine diatom, Chaetoceros calcitrans. Reg. Stud. Mar. Sci. 2016, 8, 498–504. [Google Scholar] [CrossRef]
- Gharedaashi, E.; Nekoubin, H.; Imanpoor, M.R.; Taghizadeh, V. Effect of copper sulfate on the survival and growth performance of Caspian Sea kutum, Rutilus frisii kutum. Springerplus 2013, 2, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.; Carew, E.; Sloman, K. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 2007, 84, 431–438. [Google Scholar] [CrossRef]
- Mayor, D.J.; Gray, N.B.; Elver-Evans, J.; Midwood, A.J.; Thornton, B. Metal-Macrofauna Interactions Determine Microbial Community Structure and Function in Copper Contaminated Sediments. PLoS ONE 2013, 8, e64940. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, A.F.; Marques, S.M.; Marques, J.C.; Gonçalves, F.J.M.; Gonçalves, A.M.M. Copper sulphate impact on the antioxidant defence system of the marine bivalves Cerastoderma edule and Scrobicularia plana. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nekoubin, H.; Gharedaashi, E.; Hatefi, S.; Sudagar, M.; Shahriari, R.; Asgharimoghadam, A. Determination of LC 50 of Copper Sulfate and Lead (II) Nitrate and Behavioral Responses of Grass Carp (Ctenopharyngodon idella). Walailak J. Sci. Technol. WJST 2012, 9, 333–340. [Google Scholar]
- Mesquita, A.F.; Abrantes, N.; Campos, I.; Nunes, C.; Coimbra, M.A.; Gonçalves, F.J.; Marques, J.C.; Gonçalves, A.M. Effects of wildfire ash on the growth and biochemical profiles of the aquatic macrophyte Lemna minor. Aquat. Toxicol. 2022, 250, 106245. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.C. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res. Microbiol. 2012, 163, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, I.B.; Mesquita, A.F.; Nunes, C.; Coimbra, M.A.; Gonçalves, F.J.; Marques, J.C.; Gonçalves, A.M. Impacts of S-metolachlor and terbuthylazine in fatty acid and carbohydrate composition of the benthic clam Scrobicularia plana. Ecotoxicol. Environ. Saf. 2019, 173, 293–304. [Google Scholar] [CrossRef]
- Hernández, P.P.; Moreno, V.; Olivari, F.A.; Allende, M. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear. Res. 2006, 213, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lozano, P.; Trombini, C.; Crespo, E.; Blasco, J.; Moreno-Garrido, I. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol. Environ. Saf. 2014, 104, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Matozzo, L.B.V.; Ballarin, L.; Pampanin, D.M.; Marin, M.G. Effects of Copper and Cadmium Exposure on Functional Responses of Hemocytes in the Clam, Tapes philippinarum. Arch. Environ. Contam. Toxicol. 2001, 41, 163–170. [Google Scholar] [CrossRef]
- McElroy, D.J.; Hochuli, D.F.; Doblin, M.A.; Murphy, R.J.; Blackburn, R.J.; Coleman, R.A. Effect of copper on multiple successional stages of a marine fouling assemblage. Biofouling 2017, 33, 904–916. [Google Scholar] [CrossRef]
- Paila, R.V.; Yallapragada, P.R. Antioxidant Responses and Lipid Peroxidation of Penaeus Indicus Postlarvae Subjected to Sublethal Copper Exposure. Crustaceana 2011, 84, 1197–1210. [Google Scholar] [CrossRef]
- Satyaparameshwar, K.; Reddy, T.R.; Kumar, N.V. Study of carbohydrate metabolism in selected tissues of freshwater mussel, Lamellidens marginalis under copper sulphate toxicity. J. Environ. Biol. 2006, 27, 39–41. [Google Scholar]
- Jesus, F.; Mesquita, F.; Aldama, E.V.; Marques, A.; Gonçalves, A.M.M.; Magalhães, L.; Nogueira, A.J.A.; Ré, A.; Campos, I.; Pereira, J.L.; et al. Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden. Int. J. Environ. Res. Public Health 2023, 20, 1326. [Google Scholar] [CrossRef]
- Al-Subiai, S.N.; Moody, A.J.; Mustafa, S.A.; Jha, A.N. A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol. Environ. Saf. 2011, 74, 1913–1920. [Google Scholar] [CrossRef]
- Livingstone, D. Contaminant-stimulated Reactive Oxygen Species Production and Oxidative Damage in Aquatic Organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Van der Oost, R.; Beyer, J.; Vermeulen, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Oxidative Stress; Nova Science Publishers: Orlando, FL, USA,; Academic Press: London, UK, 1985. [Google Scholar]
- Wang, G.; Liu, B.; Tang, B.; Zhang, T.; Xiang, J. Pharmacological and immunocytochemical investigation of the role of catecholamines on larval metamorphosis by β-adrenergic-like receptor in the bivalve Meretrix meretrix. Aquaculture 2006, 258, 611–618. [Google Scholar] [CrossRef]
- Amiard, J.; Amiard-Triquet, C. Les Biomarqueurs Dans L’évaluation de L’état Écologique Des Milieux Aquatiques; Editions Technique & Doc; Lavoisier: Paris, France, 2008. [Google Scholar]
- Verlecar, X.; Jena, K.; Chainy, G. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 2008, 71, 1977–1985. [Google Scholar] [CrossRef]
- Amiard, J.-C.; Caquet, T.; Lagadic, L. Use of Biomarkers for Environmental Quality Assessment; CRC Press: London, UK, 2021. [Google Scholar] [CrossRef]
- Gagnon, M.M.; Holdway, D.A. Metabolic Enzyme Activities in Fish Gills as Biomarkers of Exposure to Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 1999, 44, 92–99. [Google Scholar] [CrossRef]
- Diamantino, T.C.; Almeida, E.; Soares, A.M.; Guilhermino, L. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere 2001, 45, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Ohori, Y.; Sato, Y.; Böger, P.; Wakabayashi, K. Changes in Fatty Acid Composition of Neutral Lipid in Mung Bean Cotyledons by Oxyfluorfen-Induced Peroxidation. Pestic. Biochem. Physiol. 2001, 69, 166–173. [Google Scholar] [CrossRef]
- Bagchi, D.; Bagchi, M.; Hassoun, E.A.; Stohs, S.J. Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in sprague-dawley rats. Biol. Trace Element Res. 1996, 52, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, W.; Xu, W.; Zhang, Y.; Zhou, H.; Mai, K. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino. J. Ocean Univ. China 2015, 14, 511–521. [Google Scholar] [CrossRef]
- Ramírez, B.; Montero, D.; Izquierdo, M.; Haroun, R. Aquafeed imprint on bogue (Boops boops) populations and the value of fatty acids as indicators of aquaculture-ecosystem interaction: Are we using them properly? Aquaculture 2013, 414–415, 294–302. [Google Scholar] [CrossRef]
- Engle, T.; Fellner, V.; Spears, J. Copper Status, Serum Cholesterol, and Milk Fatty Acid Profile in Holstein Cows Fed Varying Concentrations of Copper. J. Dairy Sci. 2001, 84, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.; Castro, B.; Vidal, T.; Vieira, R.; Marques, J.; Coutinho, J.; Gonçalves, F.; Gonçalves, A. Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (Primextra® Gold TZ) and its active ingredient (S-metolachlor). Ecol. Indic. 2015, 53, 220–230. [Google Scholar] [CrossRef]
- De Troch, M.; Boeckx, P.; Cnudde, C.; Van Gansbeke, D.; Vanreusel, A.; Vincx, M.; Caramujo, M. Bioconversion of fatty acids at the basis of marine food webs: Insights from a compound-specific stable isotope analysis. Mar. Ecol. Prog. Ser. 2012, 465, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.; Mesquita, A.; Verdelhos, T.; Coutinho, J.; Marques, J.; Gonçalves, F. Fatty acids’ profiles as indicators of stress induced by of a common herbicide on two marine bivalves species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (da Costa, 1778). Ecol. Indic. 2016, 63, 209–218. [Google Scholar] [CrossRef]
- Kelly, J.R.; Scheibling, R.E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 2012, 446, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Grahl-Nielsen, O.; Andersen, M.; DeRocher, A.; Lydersen, C.; Wiig, Ø.; Kovacs, K. Fatty acid composition of the adipose tissue of polar bears and of their prey: Ringed seals, bearded seals and harp seals. Mar. Ecol. Prog. Ser. 2003, 265, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Iverson, S.; Field, C.; Bowen, W.D.; Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 2004, 74, 211–235. [Google Scholar] [CrossRef]
- Budge, S.M.; Iverson, S.J.; Koopman, H.N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci. 2006, 22, 759–801. [Google Scholar] [CrossRef]
- Begul, P.K.; More, B.C.; Patole, S.S. Studies on Sub Lethal Effect of Cypermethrin and Oxyfluorfen on Biochemical Parameters of Earthworm Species, Eisenia Foetida Savigny, 1826. Int. J. Innov. Res. Sci. 2017, 6, 20437–20440. [Google Scholar] [CrossRef]
- Neethu, K.V.; Saranya, K.S.; Krishna, N.G.A.; Praved, P.H.; Aneesh, B.P.; Nandan, S.B.; Marigoudar, S.R. Toxicity of copper on marine diatoms, Chaetoceros calcitrans and Nitzchia closterium from Cochin estuary, India. Ecotoxicology 2021, 30, 783–793. [Google Scholar] [CrossRef]
- Li, Q.; Chen, H.-H.; Qi, Y.-P.; Ye, X.; Yang, L.-T.; Huang, Z.-R.; Chen, L.-S. Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Environ. Sci. Pollut. Res. 2019, 26, 30188–30205. [Google Scholar] [CrossRef] [PubMed]
- Lochmiller, R.L.; Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, M.; Manandhar-Shrestha, K.; Abbriano, R. Effects of chrysolaminarin synthase knockdown in the diatom Thalassiosira pseudonana: Implications of reduced carbohydrate storage relative to green algae. Algal Res. 2017, 23, 66–77. [Google Scholar] [CrossRef]
- Davey, M.E.; O’Toole, G.A. Microbial Biofilms: From Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-C.; Santschi, P.H.; Gillow, J.B. Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydr. Polym. 2005, 61, 141–147. [Google Scholar] [CrossRef]
- Sutherland, I.W. Microbial Polysaccharides from Gram-Negative Bacteria. Int. Dairy J. 2001, 11, 663–674. [Google Scholar] [CrossRef]
- Kazy, S.K.; Sar, P.; Singh, S.P.; Sen, A.K.; D’Souza, S.F.D. Extracellular Polysaccharides of Copper-Sensitive and Copper-Resintant Pseudomonas Aeruginosa Strain: Synthesis, Chemical Nature and Copper Binding. World J. Microbiol. Biotechnol. 2002, 18, 583–588. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, M.; Liu, H. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. J. Hazard. Mater. 2011, 188, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Nagda, G.K.; Diwan, A.M.; Ghole, V.S. Potencial of Tendu Leaf Refuse for Phenol Removal in Aqueous Systems. Appl. Ecol. Environ. Res. 2007, 5, 1–9. [Google Scholar] [CrossRef]
- Nanseu-Njiki, C.P.; Dedzo, G.K.; Ngameni, E. Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. J. Hazard. Mater. 2010, 179, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, Z.; Mohammad, S.G. Study of the Adsorption Efficiency of an Eco-Friendly Carbohydrate Polymer for Contaminated Aqueous Solution by Organophosphorus Pesticide. Open J. Org. Polym. Mater. 2014, 4, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Valili, S.; Siavalas, G.; Karapanagioti, H.K.; Manariotis, I.D.; Christanis, K. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. J. Environ. Manag. 2013, 128, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.A.; Nichols, P.D.; Schlabach, M.; Noad, M.; Nash, S.B. Vertical distribution of lipids, fatty acids and organochlorine contaminants in the blubber of southern hemisphere humpback whales (Megaptera novaeangliae). Mar. Environ. Res. 2014, 94, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S. Egyptian Apricot Stone (Prunus armeniaca) as a Low Cost and Eco-friendly Biosorbent for Oxamyl Removal from Aqueous Solutions. Am. J. Exp. Agric. 2014, 4, 302–321. [Google Scholar] [CrossRef]
- Daam, M.A.; Brink, P.J.V.D. Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 2010, 19, 24–37. [Google Scholar] [CrossRef]
- Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, P.P.; Tripathi, V.; Verma, H.; Singh, S.K.; Srivastava, A.K.; Kumar, A. Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review. J. Environ. Manag. 2018, 224, 361–375. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Wilson, P.C.; Foos, J.F. Survey of carbamate and organophosphorous pesticide export from a south Florida (USA) agricultural watershed: Implications of sampling frequency on ecological risk estimation. Environ. Toxicol. Chem. 2006, 25, 2847–2852. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Li, Z.; Jennings, A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef] [Green Version]
- Kojima, H.; Sata, F.; Takeuchi, S.; Sueyoshi, T.; Nagai, T. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology 2011, 280, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhou, T.; Tao, Y.; Feng, Y.; Shen, X.; Mei, S. Exposure to organochlorine pesticides and non-Hodgkin lymphoma: A meta-analysis of observational studies. Sci. Rep. 2016, 6, 25768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiklund, K.; Dich, J.; Holm, L.E. Risk of malignant lymphoma in Swedish pesticide appliers. Br. J. Cancer 1987, 56, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, M.; Huss, A.; van der Mark, M.; Nijssen, P.C.G.; Mulleners, W.M.; Sas, A.M.G.; van Laar, T.; de Snoo, G.R.; Kromhout, H.; Vermeulen, R.C.H. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ. Int. 2017, 107, 100–110. [Google Scholar] [CrossRef]
- Wang, A.; Cockburn, M.; Ly, T.T.; Bronstein, J.M.; Ritz, B. The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup. Environ. Med. 2014, 71, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Koifman, R.J.; Sarcinelli, P.N.; Rosa, A.C.S.; Clapauch, R.; Koifman, S. Long-term exposure to organochlorine pesticides and thyroid status in adults in a heavily contaminated area in Brazil. Environ. Res. 2013, 127, 7–15. [Google Scholar] [CrossRef]
- Mazur, C.S.; Marchitti, S.A.; Zastre, J. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide–drug interactions. Toxicol. Lett. 2015, 232, 37–45. [Google Scholar] [CrossRef]
- Kirkhorn, S.R.; Schenker, M.B. Current Health Effects of Agricultural Work: Respiratory Disease, Cancer, Reproductive Effects, Musculoskeletal Injuries, and Pesticide–Related Illnesses. J. Agric. Saf. Health 2002, 8, 199–214. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Musicco, M.; Sant, M.; Molinari, S.; Filippini, G.; Gatta, G.; Berrino, F. A case-control study of brain gliomas and occupational exposure to chemical carcinogens: The risk to farmers. Am. J. Epidemiol. 1988, 128, 778–785. [Google Scholar] [CrossRef]
- Norman, C. EPA halts dieldrin production. Nature 1974, 250, 528. [Google Scholar] [CrossRef]
- Ansbaugh, N.; Shannon, J.; Mori, M.; Farris, P.E.; Garzotto, M. Agent Orange as a risk factor for high-grade prostate cancer. Cancer 2013, 119, 2399–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardersen, S.; Wratten, S.D. The Effects of Carbaryl Exposure of the Penultimate Larval Instars of Xathocnemis Zealandica on Emergence and Fluctuating Asymmetry. Ecotoxicology 1998, 7, 297–304. [Google Scholar] [CrossRef]
- Galhano, V.; Santos, H.; Oliveira, M.M.; Gomes-Laranjo, J.; Peixoto, F. Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process. Biochem. 2011, 46, 2152–2162. [Google Scholar] [CrossRef]
- Dayan, F.E.; Duke, S.O. Natural Compounds as Next-Generation Herbicides. Plant Physiol. 2014, 166, 1090–1105. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F.R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingredients. J. Fluor. Chem. 2013, 152, 2–11. [Google Scholar] [CrossRef]
- Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manag. Sci. 2010, 66, 10–27. [Google Scholar] [CrossRef]
- Theodoridis, G. Chapter 4 Fluorine-Containing Agrochemicals: An Overview of Recent Developments. Adv. Fluor. Sci. 2006, 2, 121–175. [Google Scholar] [CrossRef]
- MacDougall, P. Agri-Service Report. 2010. Available online: https://www.spglobal.com/en/ (accessed on 25 February 2019).
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Dunitz, J.D. Organic Fluorine: Odd Man Out. Chembiochem 2004, 5, 614–621. [Google Scholar] [CrossRef]
- Yu, Q.; Nelson, J.K.; Zheng, M.Q.; Jackson, M.; Powles, S. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 2007, 63, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2009, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.S.; Dayan, F.E.; Michel, A.; Howell, J.; Scheffler, B.E. Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnol. J. 2006, 4, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.S.; Netherland, M.D.; Scheffler, B.; Puri, A.; Dayan, F. Molecular evolution of herbicide resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its potential use to generate herbicide-resistant crops. Pest Manag. Sci. 2005, 61, 258–268. [Google Scholar] [CrossRef]
- Aizawa, H.; Brown, H.M. Metabolism and Degradation of Porphyrin Iosynthesis Herbicides. In Peroxidizing Herbicides; Böger, P., Wakabayashi, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 438–481. [Google Scholar]
- Böger, P.; Matthes, B.; Schmalfuß, J. Towards the Primary Target of Chloroacetamides -New Findings Pave the Way. Pest Manag. Sci. 2000, 56, 497–508. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Dong, F.; Liu, X.; Wu, Y.; Wu, X.; Zheng, Y. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway. Appl. Microbiol. Biotechnol. 2016, 100, 6837–6845. [Google Scholar] [CrossRef]
- ECHA. Annexes II, III, IV, VII—Defined & Temporary Maximum Residue Levels; ECHA: Helsinki, Finland, 2022. [Google Scholar]
- Ibrahim, A.M.; Sayed, D.A. Toxicological impact of oxyfluorfen 24% herbicide on the reproductive system, antioxidant enzymes, and endocrine disruption of Biomphalaria alexandrina (Ehrenberg, 1831) snails. Environ. Sci. Pollut. Res. 2019, 26, 7960–7968. [Google Scholar] [CrossRef]
- Matringe, M.; Scalla, R. Studies on the Mode of Action of Acifluorfen-Methyl in Nonchlorophyllous Soybean Cells: Accumulation of Tetrapyrroles. Plant Physiol. 1988, 86, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Matringe, M.; Camadro, J.-M.; Labbe, P.; Scalla, R. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 1989, 260, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, D.A.; Halling, B.P. Inhibition of Plant Protoporphyrinogen Oxidase by the Herbicide Acifluorfen-Methyl. Plant Physiol. 1989, 90, 1239–1242. [Google Scholar] [CrossRef] [Green Version]
- Hallahan, B.J.; Camilleri, P.; Smith, A.; Bowyer, J.R. Mode of Action Studies on a Chiral Diphenyl Ether Peroxidizing Herbicide: Correlation between Differential Inhibition of Protoporphyrinogen IX Oxidase Activity and Induction of Tetrapyrrole Accumulation by the Enantiomers. Plant Physiol. 1992, 100, 1211–1216. [Google Scholar] [CrossRef]
- Duke, S.O.; Lydon, J.; Becerril, J.M.; Sherman, T.D.; Lehnen, L.P., Jr.; Matsumoto, H. Protoporphyrinogen Oxidase-Inhibiting Herbicides. Weed Sci. 1991, 39, 465–473. [Google Scholar] [CrossRef]
- Scalla, R.; Matringe, M.; Camadro, J.-M.; Labbe, P. Recent Advances in the Mode of Action of Diphenyl Ethers and Related Herbicides. Z. Für Nat. C 1990, 45, 503–511. [Google Scholar] [CrossRef]
- Camadro, J.-M.; Matringe, M.; Scalla, R.; Labbe, P. Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem. J. 1991, 277, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mance, G. Introduction. In Pollution Threat of Heavy Metals in Aquatic Environments; Springer: Dordrecht, The Netherlands, 1987; pp. 1–8. [Google Scholar] [CrossRef]
- El-Rayis, O.A.; Abouldahab, O.; Halim, Y.; Riley, J.P. Levels of Trace Metals in Some Food Chain Organisms from El-Mex Bay, West of Alexandria, Egypt. In Proceedings of the 7th International Conference: Environment Protection is a Must, Alexandria University and USPD, Alexandria, Egypt, 21–23 May 1997; pp. 20–22. [Google Scholar]
- Soualili, D.; Dubois, P.; Gosselin, P.; Pernet, P.; Guillou, M. Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: Use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES J. Mar. Sci. 2008, 65, 132–139. [Google Scholar] [CrossRef]
- Simkiss, K. Cellular Discrimination Processes in Metal Accumulating Cells. J. Exp. Biol. 1981, 94, 317–327. [Google Scholar] [CrossRef]
- Williams, R.J.P.; Coombs, T.L.; Tinker, P.B. Physico-chemical aspects of inorganic element transfer through membranes. Philos. Trans. R. Soc. B Biol. Sci. 1981, 294, 57–74. [Google Scholar] [CrossRef]
- Bae, J.H.; Lim, S.Y. Heavy Metals and Biochemical Composition of Four Sea Bream Species (Acanthopagrus Schlegelii Bleeker, Pagrus Major Temminck & Schlegel, Oplegnathus Fasciatus Krøyer and Girella Punctata Gray). Philipp. Agric. Sci. 2012, 95, 185–191. [Google Scholar]
- Dallinger, R. Metabolism an Toxicity of Metals: Metallothionines and Metal Elimination. In Cell Biology in Environment Toxicology; Cajaraville, M.P., Ed.; Universidade del Pais Vasco: Bilbao, Spain, 1995; pp. 171–190. [Google Scholar]
- Suzuki, K.T.; Suzuki, T. An Introduction to Clinical Aspects of Toxicity. In Toxicology of Metals; Chang, W., Ed.; LCRC Lewis Publishers: Boca Raton, FL, USA, 1996; pp. 333–335. [Google Scholar]
- Engel, D.W.; Sunda, W.G. Toxicity of cupric lon to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia. Mar. Biol. 1979, 50, 121–126. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Spencer, K.; Kloas, W.; Toffolon, M.; Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef]
- Ardelan, M.V.; Steinnes, E.; Lierhagen, S.; Linde, S.O. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. Sci. Total. Environ. 2009, 407, 6255–6266. [Google Scholar] [CrossRef]
- Millero, F.; Woosley, R.J.; Ditrolio, B.; Waters, J. Effect of Ocean Acidification on the Speciation of Metals in Seawater. Oceanography 2009, 22, 72–85. [Google Scholar] [CrossRef]
- López, I.R.; Kalman, J.; Vale, C.; Blasco, J. Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ. Sci. Pollut. Res. 2010, 17, 1519–1528. [Google Scholar] [CrossRef]
- Millero, F.J.; Ditrolio, B.R. Use of Thermodynamics in Examining the Effects of Ocean Acidification. Elements 2010, 6, 299–303. [Google Scholar] [CrossRef]
- Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Jeffree, R.; Bustamante, P. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis. Biogeosciences 2009, 6, 2561–2573. [Google Scholar] [CrossRef] [Green Version]
- Pascal, P.-Y.; Fleeger, J.W.; Galvez, F.; Carman, K.R. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Mar. Pollut. Bull. 2010, 60, 2201–2208. [Google Scholar] [CrossRef]
- Ivanina, A.V.; Beniash, E.; Etzkorn, M.; Meyers, T.B.; Ringwood, A.H.; Sokolova, I.M. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria. Aquat. Toxicol. 2013, 140–141, 123–133. [Google Scholar] [CrossRef]
- Myint, U.M.; Tyler, P.A. Effects of temperature, nutritive and metal stressors on the reproductive biology of Mytilus edulis. Mar. Biol. 1982, 67, 209–223. [Google Scholar] [CrossRef]
- Parry, H.; Pipe, R. Interactive effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat. Toxicol. 2004, 69, 311–325. [Google Scholar] [CrossRef] [PubMed]
- de Mora, S.; Fowler, S.W.; Wyse, E.; Azemard, S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar. Pollut. Bull. 2004, 49, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelli, A.; Rousselet, E.; Dycke, C.; Bouron, A.; Moulis, J.-M. Cadmium toxicity in animal cells by interference with essential metals. Biochimie 2006, 88, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Cherkasov, A.A.; Overton, R.A.; Sokolov, E.P.; Sokolova, I.M. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: A role of temperature in oxidative stress and allosteric enzyme regulation. J. Exp. Biol. 2007, 210 Pt 1, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Cannino, G.; Ferruggia, E.; Luparello, C.; Rinaldi, A.M. Cadmium and mitochondria. Mitochondrion 2009, 9, 377–384. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Al-Malki, A.L.; Moselhy, S.S. Impact of pesticides residue and heavy metals on lipids and fatty acids composition of some seafoods of Red Sea (KSA). Hum. Exp. Toxicol. 2011, 30, 1666–1673. [Google Scholar] [CrossRef]
- Petroody, S.S.A.; Hamidian, A.H.; Ashrafi, S.; Eagderi, S.; Khazaee, M. Investigation of Body Size Effect on Bioaccumulation Pattern of Cd, Pb and Ni in the Soft Tissue of Rock Oyster Saccostrea Cucullata from Laft Port Alavian. J. Persian Gulf Mar. Sci. 2013, 4, 39–45. [Google Scholar]
- MacFarlane, G.R.; Schreider, M.; McLennan, B. Biomarkers of Heavy Metal Contamination in the Red Fingered Marsh Crab, Parasesarma erythodactyla. Arch. Environ. Contam. Toxicol. 2006, 51, 584–593. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Rainbow, P. Ecophysiology of Trace Metal Uptake in Crustaceans. Estuar. Coast. Shelf Sci. 1997, 44, 169–176. [Google Scholar] [CrossRef]
- Krishnamurti, C.R.; Viswanathan, P. Toxic Metals in the Indian Environment; Tata McGraw-Hill Limited: New Delhi, India, 1991. [Google Scholar]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients—food safety issues. Field Crop. Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Toxicological Profile for Copper; U.S. Department of Health and Human Services: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Francisco, C.D.M.; Bertolino, S.M.; Júnior, R.J.D.O.; Morelli, S.; Pereira, B.B. Genotoxicity assessment of polluted urban streams using a native fish Astyanax altiparanae. J. Toxicol. Environ. Health Part A 2019, 82, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Boucard, C.; Anguiano-Vega, G.; Mercier, L.; Del Castillo, E.R. Pesticide Residues, Heavy Metals, and DNA Damage in Sentinel Oysters Crassostrea Gigas From Sinaloa and Sonora, Mexico. J. Toxicol. Environ. Health Part A 2014, 77, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-B.; Kang, H.-M.; Lee, M.-C.; Byeon, E.; Park, H.G.; Lee, J.-S. Effects of polluted seawater on oxidative stress, mortality, and reproductive parameters in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus. Aquat. Toxicol. 2018, 208, 39–46. [Google Scholar] [CrossRef]
- Gabryelak, T.; Filipiak, A.; Brichon, G. Effects of zinc on lipids of erythrocytes from carp (Cyprinus carpio L.) acclimated to different temperatures. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2000, 127, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; Windham, L.; Santiago-Bass, C.; Weis, P. Growth, survival, and metal content of marsh invertebrates fed diets of detritus from Spartina alterniflora Loisel. and Phragmites australis Cav. Trin. ex Steud. from metal-contaminated and clean sites. Wetl. Ecol. Manag. 2002, 10, 71–84. [Google Scholar] [CrossRef]
- Kwok, K.W.; Leung, K.M.; Bao, V.W.; Lee, J.-S. Copper toxicity in the marine copepod Tigropus japonicus: Low variability and high reproducibility of repeated acute and life-cycle tests. Mar. Pollut. Bull. 2008, 57, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Population and Guild Analysis for Interpretation of Heavy Metal Pollution in Streams. In Community Toxicity Testing; ASTM International: West Conshohocken, PA, USA, 1986; pp. 180–198. [Google Scholar] [CrossRef]
- Luoma, S.N.; Rainbow, P.S. Metal Contamination in Aquatic Environments: Science and Lateral Management; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Krupanidhi, S.; Sreekumar, A.; Sanjeevi, C.B. Copper & biological health. Indian J. Med. Res. 2008, 128, 448–461. [Google Scholar] [PubMed]
- Cotou, E.; Henry, M.; Zeri, C.; Rigos, G.; Torreblanca, A.; Catsiki, V.-A. Short-term exposure of the European sea bass Dicentrarchus labrax to copper-based antifouling treated nets: Copper bioavailability and biomarkers responses. Chemosphere 2012, 89, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, S.; Mozaffari, V. Interactive Effect of Soil Salinity and Copper Application on Growth and Chemical Composition of Pistachio Seedlings (cv. Badami). Commun. Soil Sci. Plant Anal. 2014, 45, 688–702. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Rucker, R.B.; Commisso, J.F.; Keen, C.L. Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J. Nutr. Biochem. 2005, 16, 312–320. [Google Scholar] [CrossRef]
- Barman, T.E. Enzyme Handbook; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar] [CrossRef]
- Santore, R.C.; Di Toro, D.M.; Paquin, P.R.; Allen, H.E.; Meyer, J.S. Biotic ligand model of the acute toxicity of metals. 2. application to acute copper toxicity in freshwater fish and daphnia. Environ. Toxicol. Chem. 2001, 20, 2397–2402. [Google Scholar] [CrossRef]
- Zeri, C.; Hatzianestis, I. Distribution of total dissolved and C18 extractable copper and nickel in relation to dissolved organic matter sources, in the Thermaikos Gulf (eastern Mediterranean). J. Mar. Syst. 2005, 58, 143–152. [Google Scholar] [CrossRef]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Gaetke, L.M. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Viarengo, A.; Canesi, L.; Pertica, M.; Poli, G.; Moore, M.; Orunesu, M. Heavy metal effects on lipid peroxidation in the tissues of mytilus gallopro vincialis lam. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1990, 97, 37–42. [Google Scholar] [CrossRef]
- Frasco, M.F.; Fournier, D.; Carvalho, F.; Guilhermino, L. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 2005, 10, 360–375. [Google Scholar] [CrossRef]
- Muhvich, A.G.; Jones, R.T.; Kane, A.S.; Anderson, R.S.; Reimscheussel, R. Effects of chronic copper exposure on the macrophage chemiluminescent response and gill histology in goldfish (Carassius auratus L.). Fish Shellfish. Immunol. 1995, 5, 251–264. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Piccoli, G.; Stocchi, V.; Viarengo, A.; Gallo, G. In vitro and in vivo effects of heavy metals on mussel digestive gland hexokinase activity: The role of glutathione. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 120, 261–268. [Google Scholar] [CrossRef]
- de Almeida, E.A.; Miyamoto, S.; Bainy, A.C.D.; de Medeiros, M.H.G.; Di Mascio, P. Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals. Mar. Pollut. Bull. 2004, 49, 386–392. [Google Scholar] [CrossRef]
- Doyotte, A.; Cossu, C.; Jacquin, M.-C.; Babut, M.; Vasseur, P. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat. Toxicol. 1997, 39, 93–110. [Google Scholar] [CrossRef]
- Maria, V.; Bebianno, M. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 56–63. [Google Scholar] [CrossRef]
- Hall, L.W.H.; Scott, M.C.; Killen, W.D. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed. Environ. Toxicol. Chem. 1998, 17, 1172–1189. [Google Scholar] [CrossRef]
- Xie, Z.-C.; Wong, N.-C.; Qian, P.-Y.; Qiu, J.-W. Responses of polychaete Hydroides elegans life stages to copper stress. Mar. Ecol. Prog. Ser. 2005, 285, 89–96. [Google Scholar] [CrossRef]
- Piola, R.F.; Johnston, E.L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 2008, 14, 329–342. [Google Scholar] [CrossRef]
- Lawes, J.C.; Clark, G.F.; Johnston, E.L. Contaminant cocktails: Interactive effects of fertiliser and copper paint on marine invertebrate recruitment and mortality. Mar. Pollut. Bull. 2016, 102, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Sierra, M.; Sanhueza, A.; Alcántara, R.; Sánchez, G. Antimicrobial evaluation of copper sulfate (II) on strains of Enterococcus faecalis. In vitro study. J. Oral Res. 2013, 2, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Hu, K.; Yang, X. The Efficacy of Copper Sulfate in Controlling Infection of Saprolegnia parasitica. J. World Aquac. Soc. 2014, 45, 220–225. [Google Scholar] [CrossRef]
- Abramova, A.; Gedanken, A.; Popov, V.; Ooi, E.-H.; Mason, T.J.; Joyce, E.M.; Beddow, J.; Perelshtein, I.; Bayazitov, V. A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for itsimplementation. Mater. Lett. 2013, 96, 121–124. [Google Scholar] [CrossRef]
- Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surfaces B Biointerfaces 2013, 101, 430–433. [Google Scholar] [CrossRef]
- Geng, J.-J.; Dimkpa, C.O.; Calder, A.; Britt, D.W.; McLean, J.E.; Anderson, A.J. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ. Pollut. 2011, 159, 1749–1756. [Google Scholar] [CrossRef]
- İpeksaç, T.; Kaya, F.; Kaya, C. Template-free hydrothermal method for the synthesis of multi-walled CuO nanotubes. Mater. Lett. 2014, 130, 68–70. [Google Scholar] [CrossRef]
- Mageshwari, K.; Sathyamoorthy, R. Flower-shaped CuO Nanostructures: Synthesis, Characterization and Antimicrobial Activity. J. Mater. Sci. Technol. 2013, 29, 909–914. [Google Scholar] [CrossRef]
- Sathyamoorthy, R.; Mageshwari, K. Synthesis of hierarchical CuO microspheres: Photocatalytic and antibacterial activities. Phys. E Low Dimens. Syst. Nanostructures 2013, 47, 157–161. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Moghaddam, M.M.; Salavatiyan, T. Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 73–78. [Google Scholar] [CrossRef]
- Sonia, S.; Jayram, N.D.; Kumar, P.S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C. Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method. Superlattices Microstruct. 2014, 66, 1–9. [Google Scholar] [CrossRef]
- Dewez, D.; Geoffroy, L.; Vernet, G.; Popovic, R. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat. Toxicol. 2005, 74, 150–159. [Google Scholar] [CrossRef]
- Subramanian, B.; Priya, K.A.; Rajan, S.T.; Dhandapani, P.; Jayachandran, M. Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics. Mater. Lett. 2014, 128, 1–4. [Google Scholar] [CrossRef]
- Zabrieski, Z.; Morrell, E.; Hortin, J.; Dimkpa, C.O.; McLean, J.E.; Britt, D.; Anderson, A.J. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 2015, 24, 1305–1314. [Google Scholar] [CrossRef]
- Song, L.-Y.; Wang, Y.-Q. Investigation of microbial community structure of a shallow lake after one season copper sulfate algaecide treatment. Microbiol. Res. 2015, 170, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Doran, G.; Mo, J. Efficacy and environmental fate of copper sulphate applied to Australian rice fields for control of the aquatic snail Isidorella newcombi. Crop. Prot. 2014, 63, 48–56. [Google Scholar] [CrossRef]
- Sengco, M.R. Prevention and control of Karenia brevis blooms. Harmful Algae 2009, 8, 623–628. [Google Scholar] [CrossRef]
- Dummee, V.; Tanhan, P.; Kruatrachue, M.; Damrongphol, P.; Pokethitiyook, P. Histopathological changes in snail, Pomacea canaliculata, exposed to sub-lethal copper sulfate concentrations. Ecotoxicol. Environ. Saf. 2015, 122, 290–295. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Li, S.; Li, J. The combined effects of copper sulfate and rosin sizing agent treatment on some physical and mechanical properties of poplar wood. Constr. Build. Mater. 2013, 40, 33–39. [Google Scholar] [CrossRef]
- Halpern, M.; Gasith, A.; Teltsch, B.; Porat, R.; Broza, M. Chloramine and Copper Sulphate as Control Agents of Planktonic Larvae of Chironomus Luridus in Water Supply Systems. J. Am. Mosq. Control. Assoc. 1999, 15, 453–457. [Google Scholar]
- Straus, D.L.; Farmer, B.D.; Ledbetter, C.K.; Beck, B.H.; Williams, R.S.; Clark, M.L.; Freeze, T.M. Use of Copper Sulfate to Control Egg Saprolegniasis at a Commercial Sunshine Bass Hatchery. N. Am. J. Aquac. 2016, 78, 243–250. [Google Scholar] [CrossRef]
- Amorim, M.J.B. The Daunting Challenge of Ensuring Sustainable Development of Nanomaterials. Int. J. Environ. Res. Public Health 2016, 13, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, C.; Selck, H.; Misra, S.K.; Berhanu, D.; Dybowska, A.; Valsami-Jones, E.; Forbes, V.E. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: A comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat. Toxicol. 2012, 106–107, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramskov, T.; Selck, H.; Banta, G.; Misra, S.K.; Berhanu, D.; Valsami-Jones, E.; Forbes, V.E. Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus antipodarum. Environ. Toxicol. Chem. 2014, 33, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.A.; Adeleye, A.S.; Conway, J.R.; Garner, K.L.; Zhao, L.; Cherr, G.N.; Hong, J.; Gardea-Torresdey, J.L.; Godwin, H.A.; Hanna, S.; et al. Comparative environmental fate and toxicity of copper nanomaterials. Nanoimpact 2017, 7, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Scanes, P. ‘Oyster watch’: Monitoring trace metal and organochlorine concentrations in Sydney’s coastal waters. Mar. Pollut. Bull. 1996, 33, 226–238. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [CrossRef]
- Johnston, E.; Marzinelli, E.; Wood, C.; Speranza, D.; Bishop, J. Bearing the burden of boat harbours: Heavy contaminant and fouling loads in a native habitat-forming alga. Mar. Pollut. Bull. 2011, 62, 2137–2144. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Mebane, C.A.; Schmidt, T.S.; Miller, J.L.; Balistrieri, L.S. Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environ. Toxicol. Chem. 2020, 39, 812–833. [Google Scholar] [CrossRef] [Green Version]
- Grosell, M. Copper. Fish Physiol. 2011, 31, 53–133. [Google Scholar] [CrossRef]
- Shioi, Y.; Tamai, H.; Sasa, T. Inhibition of Photosystem II in the Green Alga Ankistrodesmus falcatus by Copper. Physiol. Plant. 1978, 44, 434–438. [Google Scholar] [CrossRef]
- Küpper, H.; Šetlík, I.; Spiller, M.; Küpper, F.C.; Prášil, O. Heavy metal-induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation. J. Phycol. 2002, 38, 429–441. [Google Scholar] [CrossRef]
- McElroy, D.J.; Doblin, M.A.; Murphy, R.J.; Hochuli, D.F.; Coleman, R.A. A limited legacy effect of copper in marine biofilms. Mar. Pollut. Bull. 2016, 109, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Janssen, C.R. Embryo-Larval Toxicity Tests with the African Catfish (Clarias gariepinus): Comparative Sensitivity of Endpoints. Arch. Environ. Contam. Toxicol. 2002, 42, 256–262. [Google Scholar] [CrossRef]
Concentration/Duration | Species | Effects | References |
---|---|---|---|
0–20 µg/mL (72 h) | Nostoc muscorum Phormidium foveolarum | Significant inhibition of the photosynthetic pigments concentrations (chlorophyll a, carotenoids, and phycocyanin) and photosynthetic activity at all treatments; Significant inhibition of the photosynthetic electrons transport activity (PS II and whole chain) to both treatments; Significant growth inhibition; Significant decrease in the ability of NO3− and PO43− fixation; Significant reduction of the acid phosphatase, alkaline phosphatase, and nitrate reductase to both treatments, except on P. foveolarum, which reported a significant increase in the nitrate reductase activity to both treatments. Significant induction in the superoxide radicals and hydrogen peroxide levels; Changes in the antioxidant enzymatic activity (catalase—CAT, superoxide dismutase—SOD, and peroxidase—POD). | [19] |
0–30 µg/L (24 h) | Scenedesmus obliquos | Significant growth inhibition at 20 µg/L, with IC50 = 15 µg/L; Significant induction of the enzymatic activity: Glutathione reductase up to 53% at 22.5 µg/L; Glutathione S-transferase until 76% at 22.5 µg/L; Ascorbate peroxidase up to 29% at 22.5 µg/L; Catalase until 96% at the same concentration (22.5 µg/L). | [20] |
4.3 mg/L (6 days)—acute bioassay 1.43 mg/L (15 days)—sub-acute bioassay 0.43 mg/L (30 days)—chronic bioassay | Gambusia affinis | Significant inhibition of acetylcholinesterase (AChE) activity (36.7%—2 days and 13.2%—6 days); Significant inhibition of AChE activity between 15.7% (5 days) and 30.64% (15 days); Significant inhibition of AChE activity between 24.5% (10 days) and 25.17% (20 days); Non-significant inhibition of AChE activity at the end of 30 days (decrease of 20.22%). | [21] |
0–0.6 mg/L (21 days) | Oreochromis niloticus | Significant increase in the liver total protein content at the lower concentration (0.3 mg/L), with no significant changes at 0.6 mg/L; Significant increase in the CAT activity to both treatments at 7 and 14 days, and at 21 days to the lower concentration; Opposite trend of SOD activity that showed a significant activity inhibition for both treatments on the different days; Significant induction of GR activity; Significant induction of GST activity at 7 days, followed by a significant inhibition at 14 and 21 days; Changes in the fatty acids’ profiles to both treatments, with the most abundant being C16:0 and C18:0 (saturated fatty acids) and C18:1 and C24:1 (unsaturated fatty acids). | [22] |
3 mg/L (6 days) 1mg/L (15 days) 0.3 mg/L (30 days) | Oreochromis niloticus | Significant inhibition of AChE activity up to 54.5% (2 days); Significant inhibition of AChE activity between 52.7% (5 days) and 81.28% (15 days); Significant inhibition of AChE activity between 19.7% (10 days), 54.48% (20 days), and 65.9% (30 days). Induction of the stress protein family Hsp70. | [21] [23] |
Concentration/Duration | Species/Community | Effects | References |
---|---|---|---|
0.01–1.00% (w/v) | Rhodococcus erytropolis | Effects on the bacterial cytoplasmic membrane; Decrease in the percentage of adapted cells with polarized membranes; Alteration to the fatty acids profile—increase in the saturated fatty acids and decrease in monounsaturated and polyunsaturated fatty acids. | [45] |
30.2–603.4 mg/kg of wet sediment (10 days) | Microbial community of marine sediment | Effects on the biomass and metabolic activities of bacteria associated with the sediment; Changes in the community structure; Effects on activity and survival of marine metazoan fauna; Impacts on the bioturbation ability; Effects on fatty acids profile—Decrease in SFA (C14:0, C15:0, C16:0, C17:0, C18:0), MUFA (C16:1n5), and PUFA (C20:4n5, 8, 11, 14; C20:5n3) at 30 mg/kg; increase in SFA (C15:0, C17:0, C19:0) and MUFA (C17:1n7, C18:1n7) at 90 mg/kg | [41] |
180–840 µg/L (96 h) | Chaetoceros calcitrans | Decrease in the growth rate, with the increase in the concentration and exposure time; Loss of the intact structure at 840 µg/L; Significant changes in the chlorophyll a content (increase at 180 µg/L—96 h, and decrease at 530 µg/L (75%) and at 840 µg/L (94%)) Changes in the enzymatic activity of catalase and superoxide dismutase, establishing a positive correlation with the concentrations 50, 180, and 450 µg/L. | [38] |
5 and 10 µg/L (24 h) | Phaeodactylum tricomutum Rhodomonas salina Cylindrotheca closterium | Lipid peroxidation: Significant increase in the MDA concentration at 10 µg/L (p < 0.05). Significant increase in the catalase activity (p < 0.05), with the difference being dependent on the concentrations. Significant reduction in glutathione peroxidase activity to all treatments (p < 0.05). Significant increase in CAT activity at 5 µg/L. Significant increase in GPx activity at the lower concentration Significant inhibition of ascorbate peroxidase activity to all treatments. Increase in the superoxide dismutase activity, but non-significant. | [48] |
200 ppb | Gracilaria tenuistipitata | Effects in photosynthesis process; Induction of oxidative stress; Changes in fatty acids profile—increase in SFA (C14:0, C16:0, C18:0) and MUFA (C18:1n7, C18:1n9) and decrease in PUFA (C18:2n6, C18:3n6, C18:5n4, C20:4n6, C20:5n3, 22:6n3). | [35] |
Sub-lethal concentrations (72 h) | Lamellidens marginalis | Changes in carbohydrates—increase in lactate levels and decrease in glycogen and pyruvate levels on every treatment; Inhibition of the oxidative metabolism on the tissues—decrease in the succinate dehydrogenase and malate dehydrogenase activities; increase in the glucose-6-pehosphate dehydrogenase activity. | [52] |
Phototrophic organisms and macroinvertebrates | Decrease in photosynthetic health—copper’s disruptive influence on the electrons-carrying system on photosystem II [231,232]; Restructuration effect on biofilms chemical composition—dangerous effects on biofilms function [233]. | [50] | |
0.00–2.10 mg/L (96 h) 0.00–4.00 mg/L (96 h) | Cerastoderma edule Scrobicularia plana | Large Size LC50 = 0.818 (0.595–0.987) mg/L Increase in SFA and PUFA until 31.78% and 16.60%, respectively; Decrease in MUFA and HUFA until 4.65% and 37.73%, respectively. Small Size LC50 = 1.129 (0.968–1.289) mg/L Decrease in SFA, MUFA, and PUFA until 15.43%, 11.71%, and 4.69%, respectively; Increase in HUFA up to 31.82%. Large Size LC50 = 2.563 (2.229–2.903) mg/L Increase in SFA up to 16.98% and maintenance of the levels of unsaturated fatty acids. Small Size LC50 = 4.705 (3.540–12.292) mg/L Decrease in SFA, MUFA, and PUFA until 27.14%, 13%, and 4.69%. Increase up to 24.94%. | [29] |
0.00–2.10 mg/L (96 h) 0.00–4.00 mg/L (96 h) | Cerastoderma edule Scrobicularia plana | Large Size Biphasic response of GR and GST activity Increase in GPx and TBARS levels, indicating the possible occurrence of lipid peroxidation Small Size Decrease in GR, GST, and GPx activity, and TBARS levels Large Size Biphasic response of GR and GST activity Increase in GPx activity and TBARS levels, indicating the possible occurrence of lipid peroxidation Small Size Decrease in GR and GPx activity Maintenance of GST activity Biphasic response regarding TBARS levels and consequently lipid peroxidation occurrence | [29] |
0–100 µg/L (5 days) | Mytilus edulis | Damage on DNA strongly dependent on copper concentration—Significant increase in % tail DNA compared with control, to all treatments and different damage levels among all treatments. Increase in the total glutathione levels on adductor muscle to all treatments, being significant to the organisms exposed at 32 and 56 µg/L. Histological abnormalities on adductor muscle—increase in the myocytes size and loss of the myocytes bundle structure. Histological changes in gills—hypoplasia (loss of cilia) to all treatments Loss of the digestive tubes definitions, likely by necrosis. | [54] |
0.00–3.00 mg/L (96 h) | Ctenopharyngodon idella | LC50 = 1.717 (1.571–1.873) mg/L. Behavioral changes—anxiety, spasms, breathing difficulties, fast and erratic swimming, abrupt change in position and orientation. Fast opercular movement, frequent air intake, and remaining on one side before death, observed on the initial exposure stages, becoming occasional. | [43] |
Lethal effects: 0.00–3.50 mg/L (96 h) Sub-lethal effects: 0.00, 0.11, 0.23 mg/L (60 days) | Rutilus frisii | LC50 = 2.310 (2.165–2.463) mg/L Damage on the growth parameters, such as significant differences on body weight to all treatments, specific growth rate to weight showing significant differences at 0.23 mg/L. Food conversation ratio and survival rate with significant differences at 0.23 mg/L. | [39] |
68–244 µg/L (from egg fertilization for 120 h) | Danio rerio (embryonic stage) | Fewer functional neuromast and inability of the larvae to orient themselves Mortality, hatching inhibition, and impairment of the larvae development. | [40] |
1–50 µg/L (2 h) | Danio rerio (larvae from 2 to 5 days) | Neuromast cell damage, apoptosis, and loss of ciliated cell markers. | [47] |
0.15–2.50 mg/L (5 days) | Clarias gariepinus (embryonic stage) | Decrease in pigmentation (from 15% to 70%). | [234] |
0.1641 ppm (from 24 h to 30 days) | Penaeus indicus | Increase in the lipid peroxidation products regarding the control (p < 0.0001). Significant increase in the catalase activity to all times except to 24 and 48 h (non-significant increase). Increase in the superoxide dismutase activity (from 24 h to 10 days) and decrease at 20 and 30 days. | [51] |
0–110 µg/L -copper chloride (7 days) | Ruditapes philippinarum | Significant decrease in phagocytosis to all treatments. Significant decrease in superoxide dismutase activity to the organisms exposed to 60 and 110 µg/L. Significant increase in the hemocytes percentage showing positivity to cytochrome oxidase to the organisms exposed to 60 µg/L. | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesquita, A.F.; Gonçalves, F.J.M.; Gonçalves, A.M.M. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review. Int. J. Environ. Res. Public Health 2023, 20, 3706. https://doi.org/10.3390/ijerph20043706
Mesquita AF, Gonçalves FJM, Gonçalves AMM. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review. International Journal of Environmental Research and Public Health. 2023; 20(4):3706. https://doi.org/10.3390/ijerph20043706
Chicago/Turabian StyleMesquita, Andreia F., Fernando J. M. Gonçalves, and Ana M. M. Gonçalves. 2023. "The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review" International Journal of Environmental Research and Public Health 20, no. 4: 3706. https://doi.org/10.3390/ijerph20043706
APA StyleMesquita, A. F., Gonçalves, F. J. M., & Gonçalves, A. M. M. (2023). The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review. International Journal of Environmental Research and Public Health, 20(4), 3706. https://doi.org/10.3390/ijerph20043706