Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Fungi Fermentation and Extract Preparation
2.3. Cell Cultures
2.4. L5178Y-R and PBMC Growth Inhibition Assay
2.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results
3.1. Extract Yields
3.2. Cell Growth Inhibition
3.3. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Zhou, L.; Wang, J.; Shan, T.; Lingyun, Z.; Liu, X.; Gao, L. Endophytic Fungi for Producing Bioactive Compounds Originally from Their Host Plants. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex Research Center: Badajoz, Spain, 2010; Volume 1, pp. 567–576. ISBN 978-84-614-6194-3. [Google Scholar]
- Elsbaey, M.; Tanaka, C.; Miyamoto, T. New Secondary Metabolites from the Mangrove Endophytic Fungus Aspergillus Versicolor. Phytochem. Lett. 2019, 32, 70–76. [Google Scholar] [CrossRef]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A Critical Review on Exploiting the Pharmaceutical Potential of Plant Endophytic Fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Rai, N.; Kumari Keshri, P.; Verma, A.; Kamble, S.C.; Mishra, P.; Barik, S.; Kumar Singh, S.; Gautam, V. Plant Associated Fungal Endophytes as a Source of Natural Bioactive Compounds. Mycology 2021, 12, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Mohinudeen, K.; Devan, K.; Srivastava, S. Bioprocessing of Endophytes for Production of High-Value Biochemicals; Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C., Eds.; Springer: Singapore, 2019; Volume 1, ISBN 978-981-13-5862-3. [Google Scholar]
- Hewage, R.T.; Aree, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. One Strain-Many Compounds (OSMAC) Method for Production of Polyketides, Azaphilones, and an Isochromanone Using the Endophytic Fungus Dothideomycete Sp. Phytochemistry 2014, 108, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papagianni, M. Fungal Morphology and Metabolite Production in Submerged Mycelial Processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef] [PubMed]
- Antipova, T.V.; Zhelifonova, V.P.; Kozlovsky, A.G. Effect of Cultivation Conditions on Production of Secondary Metabolites by Penicillium Citrinum. Microbiol. 2015, 84, 365–369. [Google Scholar] [CrossRef]
- Abdelwahab, M.F.; Kurtán, T.; Mándi, A.; Müller, W.E.G.; Fouad, M.A.; Kamel, M.S.; Liu, Z.; Ebrahim, W.; Daletos, G.; Proksch, P. Induced Secondary Metabolites from the Endophytic Fungus Aspergillus Versicolor through Bacterial Co-Culture and OSMAC Approaches. Tetrahedron Lett. 2018, 59, 2647–2652. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Rou, T.; Rao, Y.K.; Tzeng, Y. Effect of PH and Aeration Rate on the Production of Destruxins A and B from Metarhizium anisopliae. Int. J. Appl. Sci. Eng. 2007, 5, 17–26. [Google Scholar]
- Singh, B.; Kaur, T.; Kaur, S.; Manhas, R.K.; Kaur, A. An Alpha-Glucosidase Inhibitor from an Endophytic Cladosporium Sp. with Potential as a Biocontrol Agent. Appl. Biochem. Biotechnol. 2015, 175, 2020–2034. [Google Scholar] [CrossRef]
- Lind, A.L.; Wisecaver, J.H.; Lameiras, C.; Wiemann, P.; Palmer, J.M.; Keller, N.P.; Rodrigues, F.; Goldman, G.H.; Rokas, A. Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters within a Fungal Species. PLoS Biol. 2017, 15, e2003583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Villalobos, J.M.; Romo-Sáenz, C.I.; Morán-Santibañez, K.S.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Orozco-Flores, A.A.; Romero-Arguelles, R.; Tamez-Guerra, R.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Tumor Cell Growth Inhibition Induced by Lophocereus Marginatus (DC.) S. Arias and Terrazas Endophytic Fungi Extracts. Int. J. Environ. Res. Public. Health 2021, 18, 9917. [Google Scholar] [CrossRef] [PubMed]
- Romero-Arguelles, R.; Romo-Sáenz, C.I.; Morán-Santibáñez, K.S.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Orozco-Flores, A.A.; Ramírez-Villalobos, J.M.; Tamez-Guerra, R.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Antitumor Activity of Endophytic and Rhizosphere Gram-Positive Bacteria from Ibervillea sonorae (S. Watson) Greene against L5178Y-R Lymphoma Cells. Int. J. Environ. Res. Public. Health 2022, 19, 894. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luévano, J.H.; Gomez-Flores, R.; Verde-Star, M.J.; Tamez-Guerra, P.; Romo-Sáenz, C.I.; Chávez-Montes, A.; Rodríguez-Garza, N.E.; Quintanilla-Licea, R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants Basel Switz. 2022, 11, 2862. [Google Scholar] [CrossRef] [PubMed]
- Fadhillah, F.; Elfita; Muharni; Yohandini, H.; Widjajanti, H. Chemical Compound Isolated from Antioxidant Active Extract of Endophytic Fungus Cladosporium tenuissimum in Swietenia mahagoni Leaf Stalks. Biodiversitas J. Biol. Divers. 2019, 20, 2645–2650. [Google Scholar] [CrossRef]
- Xu, F.; Wang, S.; Li, Y.; Zheng, M.; Xi, X.; Cao, H.; Cui, X.; Guo, H.; Han, C. Yield Enhancement Strategies of Rare Pharmaceutical Metabolites from Endophytes. Biotechnol. Lett. 2018, 40, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.; Razak, A.; El-Sheikh, H.; Soliman, H.; Khalil, A. Influence of Growth Medium on Diagnostic Characters of Aspergillus and Penicillium Species. Afr. J. Microbiol. Res. 2009, 3, 280–286. [Google Scholar]
- Zhou, J.; Feng, Z.; Zhang, W.; Xu, J. Evaluation of the Antimicrobial and Cytotoxic Potential of Endophytic Fungi Extracts from Mangrove Plants Rhizophora stylosa and R. Mucronata. Sci. Rep. 2022, 12, 2733. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, L.; Liu, Y.; Guo, Z.; Deng, Z.; Chen, J.; Tu, X.; Zou, K. A New Metabolite from the Endophytic Fungus Penicillium citrinum. Nat. Prod. Commun. 2013, 8, 1934578X1300800510. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.M.; Li, H.; Hong, J.; Cho, H.Y.; Bae, K.S.; Kim, M.A.; Kim, D.-K.; Jung, J.H. Bioactive Metabolites from the Sponge-Derived Fungus Aspergillus versicolor. Arch. Pharm. Res. 2010, 33, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-M.; Dang, H.T.; Li, J.; Zhang, P.; Hong, J.-K.; Lee, C.-O.; Jung, J.-H. A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. Bull. Korean Chem. Soc. 2011, 32, 3817–3820. [Google Scholar] [CrossRef] [Green Version]
- El-Maali, N.A.; Mohrram, A.M.; El-Kashef, H.; Gamal, K. Novel Resources of Taxol from Endophytic and Entomopathogenic Fungi: Isolation, Characterization and LC-Triple Mass Spectrometric Quantification. Talanta 2018, 190, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Chen, T.-H.; Liu, B.-L.; Wu, L.-C.; Chen, Y.-C.; Tzeng, Y.-M.; Hsu, S.-L. Destruxin B Isolated from Entomopathogenic Fungus Metarhizium anisopliae Induces Apoptosis via a Bcl-2 Family-Dependent Mitochondrial Pathway in Human Nonsmall Cell Lung Cancer Cells. Evid.-Based Complement. Altern. Med. ECAM 2013, 2013, 548929. [Google Scholar] [CrossRef] [Green Version]
- Hino, M.; Nakayama, O.; Tsurumi, Y.; Adachi, K.; Shibata, T.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. Studies of an Immunomodulator, Swainsonine. I. Enhancement of Immune Response by Swainsonine in Vitro. J. Antibiot. 1985, 38, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Darah, I.; Sumathi, G.; Jain, K.; Lim, S.H. Influence of Agitation Speed on Tannase Production and Morphology of Aspergillus niger FETL FT3 in Submerged Fermentation. Appl. Biochem. Biotechnol. 2011, 165, 1682–1690. [Google Scholar] [CrossRef]
- Tamerler, C.; Keshavarz, T. Optimization of Agitation for Production of Swainsonine from Metarhizium anisopliae in Stirred Tank and Airlift Reactors. Biotechnol. Lett. 1999, 21, 501–504. [Google Scholar] [CrossRef]
- El-Neketi, M.; Ebrahim, W.; Lin, W.; Gedara, S.; Badria, F.; Saad, H.-E.A.; Lai, D.; Proksch, P. Alkaloids and Polyketides from Penicillium citrinum, an Endophyte Isolated from the Moroccan Plant Ceratonia Siliqua. J. Nat. Prod. 2013, 76, 1099–1104. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Liu, D.; Guo, J.; Liu, T.; Xin, Z. Pencitrin and Pencitrinol, Two New Citrinin Derivatives from an Endophytic Fungus Penicillium citrinum Salicorn 46. Phytochem. Lett. 2017, 22, 229–234. [Google Scholar] [CrossRef]
- Chakravarthi, B.V.S.K.; Singh, S.; Kamalraj, S.; Gupta, V.K.; Jayabaskaran, C. Evaluation of Spore Inoculum and Confirmation of Pathway Genetic Blueprint of T13αH and DBAT from a Taxol-Producing Endophytic Fungus. Sci. Rep. 2020, 10, 21139. [Google Scholar] [CrossRef]
- Reginatto, C.; Posso dos Santos, G.; Costa Ramos, K.; Borges Folle, A.; Campos de Souza, B.; Meneghel, L.; Carra, S.; Polidoro, T.A.; Moura da Silveira, M.; Valduga, E.; et al. Inoculation Conditions Improved the Pectinase Productivity in Aspergillus niger LB-02-SF Solid-State Cultivation. Biocatal. Agric. Biotechnol. 2022, 42, 102354. [Google Scholar] [CrossRef]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides Var. Fagaroides on Breast Cancer Cell Lines. Mol. Basel Switz. 2016, 21, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, P.; Arora, D.S. Antioxidant Potential of Penicillium citrinum and its Optimization through Different Statistical Approaches. Free Radic. Antioxid. 2011, 1, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Mao, W.; Yang, Y.; Teng, X.; Zhu, W.; Qi, X.; Chen, Y.; Zhao, C.; Hou, Y.; Wang, C.; et al. Structure and Antioxidant Activity of an Extracellular Polysaccharide from Coral-Associated Fungus, Aspergillus versicolor LCJ-5-4. Carbohydr. Polym. 2012, 87, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.F.; El-Shenawy, F.S.; El-Gendy, M.M.A.A.; El-Bondkly, E.A.M. Purification, Characterization, and Anticancer and Antioxidant Activities of L-Glutaminase from Aspergillus versicolor Faesay4. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2021, 24, 169–181. [Google Scholar] [CrossRef]
- Li, T.-X.; Meng, D.-D.; Wang, Y.; An, J.-L.; Bai, J.-F.; Jia, X.-W.; Xu, C.-P. Antioxidant Coumarin and Pyrone Derivatives from the Insect-Associated Fungus Aspergillus versicolor. Nat. Prod. Res. 2020, 34, 1360–1365. [Google Scholar] [CrossRef]
- Li, J.L.; Lee, Y.-M.; Hong, J.-K.; Bae, K.-S.; Choi, J.-S.; Jung, J.-H. A New Antioxidant from the Marine Sponge-Derived Fungus Aspergillus versicolor. Nat. Prod. Sci. 2011, 17, 14–18. [Google Scholar]
- Sahu, M.K.; Singh, D.; Ghosh, S.C.; Das, A.; Jha, H. Bioactive Potential of Secondary Metabolites of Rhizospheric Fungus Penicillium citrinum Isolate-ABRF3. J. Biosci. Biotechnol. 2022, 11, 1–14. [Google Scholar]
- Chen, L.; Zhang, Q.-Y.; Jia, M.; Ming, Q.-L.; Yue, W.; Rahman, K.; Qin, L.-P.; Han, T. Endophytic Fungi with Antitumor Activities: Their Occurrence and Anticancer Compounds. Crit. Rev. Microbiol. 2016, 42, 454–473. [Google Scholar] [CrossRef]
Culture Media | Experimental Test Conditions | ||
---|---|---|---|
Medium | Description | Test | Description |
PDB | Potato dextrose broth | ShM | Shaking + Mycelium fragment inoculum |
CKB | Czapeck broth | ShS | Shaking + 1 × 106 Spores/mL inoculum |
MB | Malt broth | StM | Static + Mycelium fragment inoculum |
StS | Static + 1 × 106 Spores/mL inoculum |
Strain | Culture Medium | Shaking | Inoculum | L5178Y-R IC50 | PBMC IC50 | SI a |
---|---|---|---|---|---|---|
P. citrinum PME-H002 | PDB | 150 rpm | Spores | 234 ± 1.5 c | 2961 ± 0.4 a | 12.6 |
CKB | 150 rpm | Spores | 185.8 ± 1.5 bc | 8993 ± 0.2 a | 48.4 | |
A. versicolor PME-H005 | PDB | 150 rpm | Mycelium | 123.5 ± 1.3 ab | 4334 ± 0.4 a | 35 |
PDB | Static | Mycelium | 203.2 ± 1.3 bc | 16811 ± 0.2 a | 82.7 | |
MB | Static | Mycelium | 69.67 ± 1.5 a | 851.4 ± 0.7 a | 12.2 | |
MB | Static | Spores | 49.62 ± 1.8 a | 784.1 ± 0.9 a | 15.8 | |
M. anisopliae ME-H007 | PDB | 150 rpm | Mycelium | 84.56 ± 1.5 a | 894.8 ± 0.9 a | 10.5 |
Strain | Culture Medium | Shaking | Inoculum | DPPH IC50 | Activity b |
---|---|---|---|---|---|
P. citrinum PME-H002 | PDB | 150 rpm | Spores | 5792 ± 0.2 b | Weak |
CKB | 150 rpm | Spores | 988.4 ± 1.4 b | Moderate | |
A. versicolor PME-H005 | PDB | 150 rpm | Mycelium | 1163 ± 0.8 b | Weak |
PDB | Static | Mycelium | 29341 ± 0.07 b | Weak | |
MB | Static | Mycelium | 1874 ± 0.8 b | Weak | |
MB | Static | Spores | 1935 ± 0.9 b | Weak | |
M. anisopliae ME-H007 | PDB | 150 rpm | Mycelium | 3647 ± 0.7 b | Weak |
Ascorbic acid | NA a | NA a | NA a | 7.1 ± 1.1 a | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Villalobos, J.M.; Gomez-Flores, R.; Velázquez-Flores, P.V.; Morán-Santibáñez, K.S.; Tamez-Guerra, P.; Pérez-González, O.; de la Garza-Ramos, M.A.; Rodríguez-Padilla, C.; Romo-Sáenz, C.I. Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities. Int. J. Environ. Res. Public Health 2023, 20, 3948. https://doi.org/10.3390/ijerph20053948
Ramírez-Villalobos JM, Gomez-Flores R, Velázquez-Flores PV, Morán-Santibáñez KS, Tamez-Guerra P, Pérez-González O, de la Garza-Ramos MA, Rodríguez-Padilla C, Romo-Sáenz CI. Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities. International Journal of Environmental Research and Public Health. 2023; 20(5):3948. https://doi.org/10.3390/ijerph20053948
Chicago/Turabian StyleRamírez-Villalobos, Jesica María, Ricardo Gomez-Flores, Priscilla Viridiana Velázquez-Flores, Karla Selene Morán-Santibáñez, Patricia Tamez-Guerra, Orquídea Pérez-González, Myriam Angélica de la Garza-Ramos, Cristina Rodríguez-Padilla, and César Iván Romo-Sáenz. 2023. "Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities" International Journal of Environmental Research and Public Health 20, no. 5: 3948. https://doi.org/10.3390/ijerph20053948
APA StyleRamírez-Villalobos, J. M., Gomez-Flores, R., Velázquez-Flores, P. V., Morán-Santibáñez, K. S., Tamez-Guerra, P., Pérez-González, O., de la Garza-Ramos, M. A., Rodríguez-Padilla, C., & Romo-Sáenz, C. I. (2023). Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities. International Journal of Environmental Research and Public Health, 20(5), 3948. https://doi.org/10.3390/ijerph20053948